
ar
X

iv
:1

41
2.

50
10

v1
 [

cs
.D

S]
 1

6
D

ec
 2

01
4

The rectilinear Steiner tree problem with given

topology and length restrictions

Jens Maßberg

Institut für Optimierung und Operations Research, Universität Ulm,
jens.massberg@uni-ulm.de

Keywords: Steiner trees with given topology, rectilinear Steiner trees, dy-
namic programming, totally unimodular, shallow light Steiner trees

Abstract. We consider the problem of embedding the Steiner points of
a Steiner tree with given topology into the rectilinear plane. Thereby,
the length of the path between a distinguished terminal and each other
terminal must not exceed given length restrictions. We want to minimize
the total length of the tree.
The problem can be formulated as a linear program and therefore it
is solvable in polynomial time. In this paper we analyze the structure
of feasible embeddings and give a combinatorial polynomial time algo-
rithm for the problem. Our algorithm combines a dynamic programming
approach and binary search and relies on the total unimodularity of a
matrix appearing in a sub-problem.

1 Introduction

The Rectilinear Steiner Tree Problem With Given Topology And

Length Restrictions can be stated as follows. The input (S, T, r, p, l) consists
of a set of terminals T with positions p : T → R2, a tree S with T ⊆ V (S), a
distinguished terminal r ∈ T - called the root of the tree - and length restrictions
lt ∈ R≥0 for all t ∈ T .

The task is to find an embedding π : V (S) → R2 of the vertices of the tree
into the plane with π(t) = p(t) for all t ∈ T , such that for all t ∈ T the length
dπ(t) of the unique path from r to t in S with edge set ES [r, t] has length at
most lt, that is,

dπ(t) =
∑

{v,w}∈ES[r,t]

||π(v) − π(w)||1 ≤ lt (1)

and the total length

c(π) :=
∑

{v,w}∈E(S)

||π(v) − π(w)||1 (2)

of the tree is minimized. The tree S is called Steiner tree and the vertices in
V (S) \ S Steiner points. Throughout this paper we assume w.l.o.g. that the

http://arxiv.org/abs/1412.5010v1

root is placed at the origin, that is, p(r) = (0, 0). By adding Steiner points and
edges of length zero we can assume that the terminals are leaves of S and that all
Steiner points have degree 3. Moreover, we denote by πx(v) and πy(v) the x- and
y-coordinate, respectively, of π(v) for an embedding π and a vertex v ∈ V (S).

A further generalization of the problem is to extend it to other metrics or
to consider length restrictions between any pair of terminals. In this paper we
restrict ourselves to the ℓ1 metric and length restrictions between one distin-
guished vertex and all other terminals, as this case has a strong application in
practice.

Our problem is motivated by an application arising in VLSI design, where
one of the main challenges is to build so-called repeater trees. These are tree-
like structures consisting of wires and possibly so-called repeater circuits and
their task is to distribute a signal from a source circuit to several sink circuits.
Thereby, the signal is delayed. In order to guarantee, that the chip works on the
desired speed, timing constraints are given, that is, the signal has to arrive at
each sink circuit not later than a given individual time bound. There are several
heuristics to build such repeater trees (see e.g. [1]).

A repeater tree can be modeled as a Steiner tree connecting the source and
the sinks and containing repeater circuits at some of the Steiner points. The
length of a repeater tree corresponds to its power consumption. So the question
arises, if the length of a given tree can be reduced by moving the positions of the
Steiner points. Bartoschek et al. [1] have shown, that by adding repeater circuits
at appropriate positions the delay of a signal on a path from the source to a
sink is approximately proportional to the length of the path. Thus the timing
constraints directly yield length restrictions on root-terminal paths. It turns
out, that the Rectilinear Steiner Tree Problem with given Topology and Length
restrictions is a good model for the task to minimize the power consumption of
given repeater trees without changing their topology.

If we are allowed to change the topology of the tree, the problem becomes
NP-hard, as it contains the Rectilinear Steiner Tree Problem [5]. If, additionally,
lt = ||p(s) − p(t)||1 for all t ∈ T , that is, all root-terminal paths are shortest
paths, we end at the Rectilinear Steiner Arborescence Problem, which is also
NP-hard ([12,11]). In the case where the length restrictions are the same for all
terminals we have the case of Shallow Light Steiner Trees.

However, if we have to keep the topology, but do not have any length restric-
tions, an optimal embedding can be computed in linear time using dynamic pro-
gramming (see e.g. [9]). To our knowledge, the problem of embedding a Steiner
tree with a given topology satisfying length restrictions has not been considered
yet. In this paper we present the first combinatorial polynomial time algorithm
that computes an optimal embedding.

Figure 1 (i) shows an instance with seven terminals drawn as black squares
and 5 Steiner points drawn as white circles. Figure (ii) shows an optimal solution
if there are no length restrictions. In Figure (iii) an optimal solution is shown,
if we have length restrictions lt1 = 5, lt2 = 6 and ls = ∞ otherwise. If there
are no length restrictions, then there always exists an optimal solution where

the Steiner points are positioned at the so called Hanan grid on T (see [7]).
With length restrictions, this is no longer true. Nevertheless, we prove that if
the positions of the terminals and the length restrictions are integral, then there
always exists an solution on half-integral positions.

(i) (ii) (iii)

r

t1

t2

Fig. 1. Instance (i), optimal embedding without length restrictions (ii) and optimal
embedding with length restrictions lt1 = 5 and lt2 = 6 (iii). The regular dotted grid
has a lattice spacing of 1.

The problem can be formulated as a linear program by extending the LPs
presented in [3,9]. Therefore it can be solved in polynomial time by non-combina-
torial algorithms. Nevertheless, we are interested in a combinatorial algorithm
for the problem.

After introducing several definitions concerning the movement of components
of the tree in Section 2, we present our main observations in Section 3. Among
others, we prove that there always exists an optimal embedding where the Steiner
points are on half-integral positions. Based on this observation, we introduce in
Section 4 a dynamic programming algorithm which is the main ingredient to
achieve a pseudo-polynomial time algorithm. Refining this algorithm we finally
gain a polynomial time algorithm in Section 5.

2 Moving Components

Before we come to the main observations of the paper we examine how the
movements of Steiner points of a given embedding influence the total length
of the tree and the length of root-terminal paths. First we start with several
definitions that we need throughout this paper.

If π is an embedding, then an x-component C at position x(C) with respect
to π, x(C) ∈ R, is a connected subtree C of T such that all vertices in C
have x-coordinate x(C). An x-component C is called maximal if there does not
exist any x-component C′ with C (C′. A component always depends on the
embedding π. In the following, we omit π in the notation if it is clear from the
context. In an analogous way we define a y-component C at position y(C). In
the remainder of the paper we introduce several definitions and state lemmata

concerning x-components. By symmetry, these definitions and lemmata also hold
for y-components.

Let Γ (V (C)) be the neighbors of the vertices of C. For an x-component C
we define

Γ π
<(C) := {v ∈ Γ (V (C)) : πx(v) < x(C)} and (3)

Γ π
>(C) := {v ∈ Γ (V (C)) : πx(v) > x(C)}. (4)

In an analogous way we define Γ π
<(C) and Γ π

>(C) for a y-components C. If C
is a component not containing r, then the predecessor of C is the unique vertex
v ∈ Γ π

>(C) ∪ Γ π
<(C) such that v is on the root-w path for all w ∈ V (C). For

simplicity of notation we define

sign(C) =

{

1 if the predecessor of C is in Γ<(C)

−1 otherwise.
(5)

If C is an x-component with respect to some embedding π then we say that
we move C by δ if we replace π by the embedding π′ defined by

π′(v) :=

{

π(v) + (0, δ) for all v ∈ V (C) \ T,

π(v) otherwise.
(6)

We say, that we move C towards its predecessor if δ · sign(C) < 0.

If C is a maximal component containing no terminals, then we define R(C)
to be the set of terminals t such that the unique root-t path P passes C, that
is, V (P)∩ V (C) 6= ∅ and the path enters and leaves C at the same side, that is,
we have either |V (P) ∩ Γ>(C)| = 2 or |V (P) ∩ Γ<(C)| = 2. If we choose δ ∈ R

with |δ| small enough and move C by δ, then the length of all root-t paths with
t ∈ R(C) change by 2sign(C)δ. The length of any other root-terminal path does
not change.

Figure 2 illustrates some of the definitions.

If π and π′ are two embedding, then we say that π′ preserves the local order
of π if for every edge (v, w) ∈ E(S) we have

(πx(v) ≤ πx(w)) ⇒ (π′
x(v) ≤ π′

x(w)) and (7)

(πy(v) ≤ πy(w)) ⇒ (π′
y(v) ≤ π′

y(w)). (8)

Note, that by (7) if πx(v) = πx(w) then π′
x(v) = π′

x(w) and analogously for y.
This implies that each component with respect to π is also a component with
respect to π′ (but not necessarily the other way round!). Moreover, if v is a
vertex of an x-component that contain terminals, we have πx(v) = π′

x(v).

Now we can analyze how the length of the embedding and of root-terminal
paths change if we move maximal components simultaneously and the local order
is preserved.

r

t1

t2

t3

t4

t5

t6

s1

s2

s3
s4

s5

(i)

y(C)

y(C) + δ

(ii)

Fig. 2. (i) An embedding π with a maximal y-component C with V (C) = {s1, s3, s4},
predecessor s2, Γ>(C) = {t2, s5}, Γ<(C) = {t1, s2, t6}, sign(C) = 1 and R(C) =
{t1, t6}. (ii) Embedding obtained by moving C by δ < 0. The new embedding preserves
the local positions of π. The length of all root-t with t ∈ R(C) changed by 2sign(C)δ =
2δ.

Lemma 1. Let π be an embedding, ∆ be the set of all maximal x- and y-
components, and δC ∈ R for C ∈ ∆. Denote by π′ the embedding we obtain
by moving each component C ∈ ∆ by δC . If π

′ preserves the local order of π then

c(π′) = c(π) +
∑

C∈∆

δC (|Γ π
<(C)| − |Γ π

>(C)|) . (9)

Moreover we have for all t ∈ T :

dπ′(t) = dπ(t) +
∑

C∈∆:t∈R(C)

2sign(C) · δC . (10)

Proof. Consider an x-component C ∈ ∆x. If we move C, then only the length of
edges {v, w} ∈ E(S) with v ∈ V (C) and w /∈ V (C) are changed. Let {v, w} be
such an edge and assume w ∈ Γ π

<(C), that is πx(w) < πx(v). As the local order
is preserved, we have π′

x(w) ≤ π′
x(v). But then moving C by δ increases the

length of the edge {v, w} by δ. In an analogous way we see that the length of the
edge decreases by δ if w ∈ Γ π

<(C). Summing up the changes over all components
we obtain (9).

Now consider a terminal t ∈ T . Again, as the local order is preserved by π′,
the length of the root-t path is only influenced by components C with t ∈ R(C).
Consider such a component C. If we move C by |δC | towards the predecessor of
C, the length of the path is reduced by 2|δC |. On the other hand, if we move
C in the other direction by |δC |, then the length is increased by 2|δC |. In total,
the length changes by sign(C)2 · δC . Summing up over all such components, we
obtain (10). ⊓⊔

The following observation is crucial in order to prove that there exist optimal
solutions that are half-integral.

Lemma 2. If ∆ is a set of maximal x-components that do not contain terminals,
then {R(C)}C∈∆ is a laminar family.

R(C1) ∩R(C2) = ∅ R(C1) ∩R(C2) = ∅ R(C2) ⊆ R(C1)

r

C1

C2

v1

v2

r

C1

C2

v1

v2

v

r

C1

C2

v1

v2

v

Fig. 3. The possible positions of two maximal y-components within a tree.

Proof. Let C1, C2 ∈ ∆. By definition V (C1)∩V (C2) = ∅. For i ∈ {1, 2} let vi be
the vertex of V (Ci) that is adjacent to the predecessor of Ci. Note that vi is on
the unique r-t path for every t ∈ R(Ci) (see Figure 3). Now assume that neither
v1 is on the r-v2 path nor v2 is on the r-v1 path. Then R(C1) ∩ R(C2) = ∅.
Otherwise, assume w.l.o.g. that v1 is on the r-v2 path. In this case there exists a
unique vertex v on the v1-v2 path satisfying v ∈ Γ π

>(C1)∪Γ π
<(C1). Now note that

the length of all r-t paths change for all t ∈ R(C2) when moving C1 if and only
if the length of the root-t path changes when moving C1. Hence, R(C2) ⊆ R(C1)
or R(C2) ∩R(C1) = ∅. This implies the desired result. ⊓⊔

Before we continue with the main result we make another simple observation:

Proposition 1. If π is an embedding and there exists a vertex t ∈ T such that
dπ(t) > ||p(v) − p(r)||1, then there exists a component C such that moving C
towards its predecessor decreases the length of the root-t path.

3 Main section

In this section we prove that if all terminals are on integral coordinates and
all length restrictions are integral, then there exists an optimal half-integral
embedding. More precisely we prove that for any given feasible embedding π
there exists a feasible half-integral embedding σ of at most the same cost such
that the ℓ∞ distance between the positions of a vertex in both embeddings is at
most 0.5. To this end we consider a sub problem that can be formulated as a
linear program based on a totally unimodular matrix.

We start with some observations on half-integral embeddings.

Proposition 2. Every half-integral embedding has half-integral cost.

Proof. Obviously, all edges in such an embedding have half-integral lengths and
thus the total length is also half-integral. ⊓⊔

Proposition 3. In every half-integral embedding π the length of every root-
terminal path has integral length.

Proof. Let t ∈ T and denote by P the unique root-t path in S. If P is a shortest
path, then the length of P is ||π(r) − π(t)||1, which is integral. If P is not
a shortest path, then by Proposition 1 there exists a component C such that
moving C towards its predecessor decreases the length of P . As π is half-integral,
we can move C by 0.5 towards its predecessor, reducing the length of P by 1
and obtaining a new half-integral embedding π′. Then by induction the length
of P must be integral. ⊓⊔

The main theorem of this section is the following.

Theorem 1. If π is an embedding for an integral instance (S, T, r, p, l), then
there exists an half-integral embedding σ with maxv∈V ||π(v)−σ(v)||∞ ≤ 0.5 and
c(σ) ≤ c(π).

Proof. For x ∈ R we denote by I(x) the smallest interval in R with half-integral
boundaries such that x is in the interior of the interval, that is,

I(x) := [⌈2x− 1⌉/2, ⌊2x+ 1⌋/2] . (11)

For a point (x, y) ∈ R2 we set I((x, y)) := I(x)× I(y). We show that there exists
an half-integral embedding σ with

σ(v) ∈ I(π(v)) for all v ∈ V (12)

such that c(σ) ≤ c(π).
Let σ be a feasible embedding for (S, T, r, p, l) of minimum cost satisfying

(12). If there are several such embeddings we choose one with a minimal number
of components that are not on half-integral coordinates. We denote this number
by N(σ) and prove that N(σ) = 0. Suppose that this is not the case. The idea
is to move maximal components such that N(σ) gets smaller without increasing
c(σ). As π satisfies (12), we have c(σ) ≤ c(π).

Let ∆x and ∆y be the sets of maximal x- and y-components, respectively,
with respect to σ that are not on half-integral coordinates and set ∆ := ∆x∪̇∆y.
Then N(σ) = |∆|. For C ∈ ∆ we set

z∗C :=

{

x(C)− ⌊2x(C)⌋ /2 C ∈ ∆x,

y(C)− ⌊2y(C)⌋ /2 C ∈ ∆y.
(13)

Consider a vector z ∈ [0, 0.5]∆. Starting with the embedding σ and moving
each component C ∈ ∆ by zC − z∗C we obtain a new embedding τ(z). Note that
by the definition of z∗C this embedding is half-integral if and only if z ∈ {0, 0.5}∆.
Observe that τ(0) is half-integral, but it does not necessarily satisfy the length
restrictions. Since by construction τ(0) preserves the local order of σ we can
apply Lemma 1 and conclude that for all t ∈ T the length of the root-t path
with respect to τ(0) is

dτ(0)(t) = dσ(t) +
∑

C∈∆:t∈R(C)

2sign(C) · (−z∗C). (14)

σ τ0 τ ′

Fig. 4. Detail of an embedding σ with three maximal components not on half-integral
positions. The embedding τ ′ preserves the local order of σ.

As τ(0) is integral, this length is also integral by Proposition 3.
Using z as a variable we can formulate a linear program reflecting the new

cost of the embedding τ(z) and the length restrictions, under the assumption
that τ(z) preserves the local oder of σ:

min c(σ) +
∑

C∈∆

(zC − z∗C) · (|Γ
π
<(C)| − |Γ π

>(C)|),

s.t. dσ(t) +
∑

C∈∆:t∈R(C)

2sign(C)(zC − z∗C) ≤ lt ∀t ∈ T (15)

and 0 ≤ 2zC ≤ 1 ∀C ∈ ∆. (16)

As z = z∗ is a feasible solution the linear program has an optimal solution (see
also Figure 4). Substituting 2zC by z′C for all C ∈ ∆ and using (14) we obtain
the modified linear program (P’):

min
∑

C∈∆

z′C/2 · (|Γ
π
<(C)| − |Γ π

>(C)|),

s.t.
∑

C∈∆:t∈R(C)

sign(C)z′C ≤ lt − dτ(0)(t) ∀t ∈ T (17)

and 0 ≤ z′C ≤ 1 ∀C ∈ ∆. (18)

We show that the matrix A defined by the left side of the inequalities (17) is
totally unimodular. Note that all entries of a column of A are either non-negative
or non-positive. Thus multiplying all rows with non-positive entries by −1 we
obtain a non-negative matrix where each column correspond to the characteristic
vectors of {R(C)}C∈∆ = {R(C)}C∈∆x

∪̇{R(C)}C∈∆y
. Recall, that by Lemma 2

the sets {R(C)}C∈∆x
and {R(C)}C∈∆y

are laminar families. We conclude that
the rows of A correspond to the characteristic vectors of the union of two laminar
families. Edmonds [4] proved, that such matrices are totally unimodular.

Consequently, as the right hand side of (17) is integral, the constraints in
(18) are integral and A is totally unimodular, there exists an optimal solution
for (P’) that is integral which further implies that the original LP has an half-
integral optimal solution ẑ. But then τ(ẑ) is also half integral and satisfies (12)
and c(τ(ẑ)) ≤ c(σ).

If τ(ẑ) preserves the local order of σ, then τ(ẑ) is the embedding we are
looking for. Otherwise choose λ > 0 minimal such that τλ defined by τλ(v) =
λσ(v)+(1−λ)τ(ẑ) preserves the local order of σ. As the cost and length functions
are convex, τλ is a feasible embedding and c(τλ) ≤ λc(σ)+(1−λ)c(τ(ẑ)) ≤ c(σ).
Moreover, every maximal component of σ is a component of τλ. IfN(τλ) = N(σ),
then τλ−ǫ also preserves the local order of σ for ǫ > 0 small enough, contradicting
the choice of λ. Thus N(τλ) < N(σ) contradicting the choice of σ. This finishes
the proof. ⊓⊔

Conclusion 2 If all positions and length restrictions are integral, then there
exists an optimal embedding that is half-integral.

We can improve a non-optimal half-integral embedding by minor movements
of vertices.

4 Dynamic programming.

A consequence of the previous section is, that any non-optimal half-integral
embedding can be improved by small half-integral movements of the Steiner
points.

Lemma 3. If π is a half-integral embedding that is not optimal, then there exists
a half-integral embedding π′ with π(v)− π′(v) ∈ {−0.5, 0, 0.5}2 for all v ∈ V (S)
and c(π′) ≤ c(π)− 0.5.

Proof. Let σ be an optimal half-integral embedding. For λ ∈ (0, 1) we define
πλ by πλ(v) = λπ(v) + (1 − λ)σ(v) for all v ∈ V (S). As π is not optimal
and by the convexity of the length function, πλ is a feasible embedding and we
have c(πλ) ≤ λc(π) + (1 − λ)c(σ) ≤ c(π). Choose λ small enough such that
maxv∈V (S) ||π(v) − πλ(c)||∞ < 0.5. Now we can apply Theorem 1 yields a half-
integral embedding π′ satisfying maxv∈V ||π(v) − π′(v)||∞ ≤ maxv∈V ||π(v) −
πλ(v)||∞ + ||πλ(v) − π′(v)||∞ < 1 and c(π′) ≤ c(πλ) < c(π). The claim follows
by observing that π′ and π are half-integral. ⊓⊔

This lemma gives a direct idea for an algorithm based on dynamic program-
ming to improve a non-optimal half-integral embedding. In the following, we
interpret S as an arborescence rooted at r and denote by Γ+(v) the children
of a vertex v ∈ V (S). For simplicity of notation we set πδ(v) := π(v) + δ for
δ ∈ {−0.5, 0, 0.5}. Moreover, we expand the definition of length restrictions to
Steiner points: Initially we set lπt := lt for all t ∈ T . For each vertex v ∈ V (S)
whose children have a length restriction, we set

lπv = min
w∈Γ+(v)

lπw − ||π(v) − π(w)||1.

Given an half-integral embedding π we want to computes a half-integral
embedding π′ with π(v) − π′(v) ∈ {−0.5, 0, 0.5}2 and c(π′) minimal. Note, that

in this case the length of every root-terminal path changes by at most 2n. As,
additionally, π′ is half-integral, lπ

′

v is half-integral and |lπ
′

v − lπv | ≤ 2n for all
v ∈ V (S).

Thus it is sufficient to compute for every vertex v ∈ V (S), every translation
δ ∈ {−0.5, 0, 0.5}2 and every possible length restriction l ∈ {lπv − 2n, lπv − 2n+
0.5, . . . , lπv −2n+2n−0.5, lπv+2n} the minimum length γ(v, δ, l) of an embedding
of the arborescence rooted at v such that v is positioned at πδ(v) and v satisfies
the length restriction l. For a terminal t we have γ(t, δ, l) = 0 if δ = (0, 0) and
l ≤ lt. Otherwise, we set γ(t, δ, l) = ∞. For all other vertices v ∈ V (T) we
obviously have γ(v, δ, l) =

∑

w∈Γ+(v)

min
δ′∈{−0.5,0,0.5}2

γ (w, δ′, l− ||πδ(v) − πδ′(w)||1) + ||πδ(v)− πδ′ (w)||1.

It follows, that the length of an optimal embedding π′ with π(v) − π′(v) ∈
{−0.5, 0.0.5}2 is γ(r, (0, 0), 0). This number can be computed in O(n2) time:
There are O(n2) different triples (v, δ, l) for which γ(v, δ, l) has to be computed
and each of these computations can be done in constant time.

To compute a global optimal solution, we start with the trivial embedding,
where all Steiner points are positioned at the root. This solution has cost C =
∑

t∈T ||p(t)||1. Then we apply the dynamic programming approach as long as
the cost of the newly computed embedding decrease. As the cost is reduced
by at least 0.5 in every round, we must obtain an optimal embedding after 2C
iterations. Thus our algorithm has a pseudo polynomial running time of O(Cn2).
In the next section we show how to refine this approach in order to achieve a
polynomial running time.

5 An optimal polynomial time algorithm

We refine the ideas of the previous sections in order to obtain a polynomial time
algorithm for our problem. In the first algorithm the Steiner points are moved
by at most 0.5 in each direction in every call of the dynamic programming. The
idea of the refined algorithm is to move the Steiner points by 2k for a suitable
k ∈ Z in the first rounds. As soon as no improvements can be obtained by mov-
ing Steiner points by 2k, we reduce the moving distance to 2k−1 and continue
applying the dynamic programming. Repeating this procedure we finally move
the Steiner points by 0.5, obtaining an optimal embedding. To prove the poly-
nomial running time and to apply the results of the previous sections we have
to consider slightly modified instances where all terminals are on 2k-integral
positions. Here a number x ∈ R is called 2k-integral if x/2k ∈ Z.

First we state a trivial lemma on the existence of feasible embeddings.

Lemma 4. There exists a feasible embedding (and thus an optimal one) for
(S, T, r, p, l) if and only if ||p(t)||1 ≤ lt for all t ∈ T .

Proof. If there exists a feasible embedding, then obviously ||p(v)||1 ≤ l(v) for all
v ∈ T . If on the other hand ||p(v)||1 ≤ l(v), then placing all internal vertices on

the position of the root is a feasible embedding satisfying the length restrictions.
⊓⊔

For each k ∈ N we define a new instance Ik := (S, T, r, pk, lk) on the same
set of terminals and the same topology, but with new positions

pk(v) = (2k⌊px(v)/2
k⌋, 2k⌊py(v)/2

k⌋)

for all v ∈ T and length restrictions

lk(v) = 2k⌊(l(v)− ||p(v)− pk(v)||1)/2
k⌋

for v ∈ T . In other words we move each terminal towards the root onto the next
2k-integral position and round each length restriction to the next lower multiple
of 2k.

If there exists a feasible embedding for (S, T.r, p, l), then there exists also a
feasible embedding for (S, T, r, pk, lk): To show this it is sufficient to prove that
||pk(v)||1 ≤ lk(v) for all v ∈ T by Lemma 4. By the choice of pk and lk we have

||pk(v)||1 = ||p(v)||1 − ||p(v)− pk(v)||1 ≤ l(v)− ||p(v)− pk(v)||1 ≤ lk(v). (19)

Set m := min{m ∈ N : |px(v)| < 2m and |py(v)| < 2m ∀v ∈ V (S)}. Thus m
is the smallest m ∈ N such that pm(v) = (0, 0) for all v ∈ V (S) \ T .

Remark 1. The number m is polynomially bounded in the size of the instance.

In (S, T, r, pm, lm) all terminals are placed at the position of the root. Thus
placing all internal vertices to that position yields a trivial optimal solution of
length 0.

Now we compute by induction an optimal embedding for (S, T, r, pk−1, lk−1)
given an optimal embedding for (S, T, r, pk, lk).

As m is polynomially bounded in the size of the input, each iteration can
be computed in polynomial time and (S, T, r, p, l) = (S, T, r, p0, l0), we obtain a
optimal solution in polynomial time.

Lemma 5. Denote by σk an optimal solution for Ik for all k ∈ N. Then for
k ∈ N we have c(σk+1) ≤ c(σk) + 6n2k.

Proof. Starting with σk we construct a feasible embedding for Ik+1. By Lemma
1 we can assume w.l.o.g. that all internal vertices of S are on 2k−1-integral
positions in σk. We define π by setting π(t) = pk+1(t) for t ∈ T and π(v) = σk(v)
for v ∈ V (S) \ T . By this setting we have

||π(t)− σk(t)||1 = ||pk+1(t)− pk(t)||1 ≤ 2k+1

for all t ∈ T . Thus

c(π) ≤ c(σk) + n2k+1 (20)

and the length of each root-terminal path increased by at most 2k+1. As lk(t) ≤
lk+1(t)+2k+1 for all t ∈ T , we conclude that for each t ∈ T the length restriction
lk+1(t) is hurt in π by at most 2k+2:

∑

e∈E[r,t]

π(e) ≤
∑

e∈E[r,t]

σk(e) + 2k+1 ≤ lk(t) + 2k+1 ≤ lk+1(t) + 2k+2. (21)

Now we move components towards their predecessors, until all length restric-
tions are satisfied. To this end, denote by ∆ the set of all maximal components,
that do not contain the root r. Moving all components C ∈ ∆ by 2k−1 towards
its predecessors we obtain a new feasible embedding π′ with c(π′) ≤ c(π) + n2k.
Moreover, the length of every root-terminal path that has not been a shortest
one with respect to π is reduced by at least 2k. Repeating this process with the
new embedding at most 3 times yields a feasible embedding π∗ for Ik+1. We con-
clude c(π∗) ≤ c(π)+4n2k. Together with (20) we conclude c(π∗) ≤ c(σk)+6n2k.
We finish the proof by observing, that as π∗ is feasible for Ik+1, the embedding
σk+1 cannot be longer. ⊓⊔

Combining the observation of the previous Lemma we obtain our main result.

Theorem 3. The rectilinear Steiner tree embedding problem with length restric-
tions can be solved in polynomial time by a combinatorial algorithm.

Proof. Let I = (S, T, r, p, l) be an instance of the problem. First we calculate m
as above. m is polynomially bounded in the size of the input. Now we have a
polynomial number of instances Ik, k ∈ {1, . . . ,m}. For Im we have the trivial
embedding σm with πm(v) = 0 for all v ∈ V .

Let σk+1 be an optimal embedding for Ik+1. Then π defined as π(v) = pk(v)
for v ∈ T and π(v) = σk+1(v) otherwise is a feasible embedding for Ik. By Lemma
5, c(π) ≤ c(σk+1) + n2k ≤ Ok + 7n2k where Ok denotes the optimal length of
an embedding for Ik. Moreover, Ik is an 2k integral instance. Thus applying the
dynamic programming from the previous section at most 14n times we obtain an
optimal solution σk for Ik. We conclude that computing σk from σk+1 requires at
most time O(n3). By induction we get an optimal solution σ for I1 = (S, T, r, c, l).
The total running time is O(mn3) where m = ⌈max{|px(t)|, |py(t)| : t ∈ T }+1⌉.

⊓⊔

Obviously, every feasible solution for Ik corresponds to a feasible solution
for I. Moreover, all Steiner points of such embeddings are one 2k−1-integral po-
sitions. Due to this observation, the implementation of the algorithm can be
modified in order to decrease the number of dynamic programming steps in
practice. Instead of computing an optimal solution for Ik, we are looking for an
embeddings of minimal cost for the original instance I, but all Steiner points
have to be on 2k−1-integral coordinates. We use the dynamic programming steps
as described in order to improve a given embeddings, but now the cost of each
solution is computed using the original positions of the terminals and consider

(i) (ii)

r

a

b

c

Fig. 5. Instance for the Steiner tree embedding problem (i) and an optimal embedding
if there are no length restrictions (ii).

the original length restrictions. Using this method, the number of dynamic pro-
gramming steps performed in the algorithm get very small. It turns out, that in
practice, the number of dynamic programming calls is constant for each k in the
most cases.

Figures 5 and 6 show how the algorithm works on an example. Figure 5
(i) shows the instance and Figure 5 (ii) an optimal embedding of length 35 if
there are no length restrictions. In Figure 6 the embeddings computed by our
algorithm are shown. As input we used the instance from Figure 5 with length
restrictions la = 10, lb = 11 and lc = 20. As max{|πx(t)|, |πy(t)| : t ∈ T } = 10
we have m = 5. Thus the algorithm begins with an embedding where all Steiner
points are 2m−1-integral (Figure (i)). Proceeding with k = 4 (Figure (ii)) to
k = 0 (Figure (vi)). The last one is the final optimal embedding of length of
37.5. For each k the dynamic programming is called at most twice, the first
time the length is reduced, the second time an embedding of the same cost is
computed, proving, that it is an optimal one.

References

1. Christoph Bartoschek, Stephan Held, Jens Maßberg, Dieter Rautenbach, and Jens
Vygen. The repeater tree construction problem. Information Processing Letters,
110(24):1079–1083, 2010.

2. Ulrich Brenner and Jens Vygen. Analytical methods in VLSI placement. Handbook
of Algorithms for VLSI Physical Design Automation (C.J. Alpert, D.P. Mehta, S.S.
Sapatnekar, eds.), Taylor and Francis, 2008.

3. A. Victor Cabot, Richard L. Francis, and Michael A. Stary. A network flow solution
to a rectilinear distance facility location problem. AIIE Transactions, 2(2):132–141,
1970.

4. Jack Edmonds. Submodular functions, matroids and certain polyhedra. In Gordon
and Breach, editors, Combinatorial Structures and Their Applications, pages 68–
87, New York, 1970.

(i) (ii) (iii)

(iv) (v) (vi)

Fig. 6. Run of the algorithm on the instance shown in Figure 5 (i) with length restric-
tions la = 10, lb = 11 and lc = 20. Figure (vi) shows the final optimal solution.

5. Michael R. Garey and David S. Johnson. The rectilinear Steiner tree problem is
NP-complete. SIAM Journal on Applied Mathematics, 32(4):826–834, 1977.

6. E.N. Gilbert and H.O. Pollak. Steiner minimal trees. SIAM Journal on Applied
Mathematics, 16(1):1–29, 1968.

7. Maurice Hanan. On Steiner’s problem with rectilinear distance. SIAM Journal on
Applied Mathematics, 14(2):255–265, 1966.

8. Frank K. Hwang. A linear time algorithm for full Steiner trees. Operations Research
Letters, 4(5):235–237, 1986.

9. Tao Jiang and Lusheng Wang. Computing shortest networks with fixed topologies.
In Advances in Steiner Trees, volume 6 of Combinatorial Optimization, pages 39–
62. Springer US, 2000.

10. Alexander V. Karzanov. Minimum cost multiflows in undirected networks. Math-
ematical programming, 66(1-3):313–325, 1994.

11. Sailesh K. Rao, P. Sadayappan, Frank K. Hwang, and Peter W. Shor. The recti-
linear Steiner arborescence problem. Algorithmica, 7(1-6):277–288, 1992.

12. Weiping Shi and Chen Su. The rectilinear Steiner arborescence problem is NP-
complete. SIAM Journal on Computation, 35(3):729–740, 2005.

13. Guoliang Xue and Krishnaiyan Thulasiraman. Computing the shortest network
under a fixed topology. Computers, IEEE Transactions on, 51(9):1117–1120, 2002.

14. Martin Zachariasen. Comment on “Computing the shortest network under a fixed
topology”. IEEE Transactions on Computers, 55(6):783–784, 2006.

	The rectilinear Steiner tree problem with given topology and length restrictions

