
Sampling in Space Restricted Settings

Anup Bhattacharya, Davis Issac, Ragesh Jaiswal, and Amit Kumar

Department of Computer Science and Engineering,
Indian Institute of Technology Delhi.?

Abstract. Space efficient algorithms play a central role in dealing with large amount of data. In such
settings, one would like to analyse the large data using small amount of “working space”. One of the
key steps in many algorithms for analysing large data is to maintain a (or a small number) random
sample from the data points. In this paper, we consider two space restricted settings – (i) streaming
model, where data arrives over time and one can use only a small amount of storage, and (ii) query
model, where we can structure the data in low space and answer sampling queries. In this paper, we
prove the following results in above two settings:

– In the streaming setting, we would like to maintain a random sample from the elements seen so far.
We prove that one can maintain a random sample using O(logn) random bits and O(logn) space,
where n is the number of elements seen so far. We can extend this to the case when elements have
weights as well.

– In the query model, there are n elements with weights w1, . . . , wn (which are w-bit integers) and
one would like to sample a random element with probability proportional to its weight. Bringmann
and Larsen (STOC 2013) showed how to sample such an element using nw + 1 space (whereas, the
information theoretic lower bound is nw). We consider the approximate sampling problem, where
we are given an error parameter ε, and the sampling probability of an element can be off by an ε
factor. We give matching upper and lower bounds for this problem.

1 Introduction

Space efficient algorithms are important when data is too large and cannot be stored in the working
memory. Such algorithms have become important with the increasing popularity of mobile devices.
These devices, in many cases have small amount of working memory. Also, there is an increasing
need to process the huge amount of data being generated over the internet for purposes of data
mining. In such scenarios, there is a need for analyzing the data in a streaming fashion. This is
popularly known as the streaming setting. Note that in all these cases, the other resources such as
the running time and amount of randomness1 are equally important because these determine the
power required for processing the data. With the size of computing devices becoming smaller, power
is becoming the most important resource to optimize in all such space-restricted settings.

In this work, we look at the basic problem of random sampling. The problem is very simple. Given
n objects, the goal is to sample an object (or a few objects) uniformly at random. This is called
uniform sampling. We can also consider non-uniform sampling where the objects come along with
some weights and the goal is to sample an object with probability proportional to its weight. We
discuss these sampling problems in two space-restricted settings. The first setting is the streaming
setting, where the data items are available as a stream (i.e., the ith data item is available at time i)
and one does not a priori know the number of data items that one should expect to see. In such
cases, maintaining a random sample at all times is more challenging than sampling in the classical

? Email addresses: {csz128275, davis, rjaiswal, amitk}@cse.iitd.ac.in
1 Note that typically a pseudorandom generator is used for generating random bits.

ar
X

iv
:1

40
7.

16
89

v3
  [

cs
.D

S]
  1

6 
Ja

n 
20

15



setting where all data items are present in the memory. This is partly because we cannot store all
the data items in the stream due to space-restrictions. The second space-restricted setting that
we discuss is the query model. Here, we talk about non-uniform sampling with respect to a given
distribution. In this model, one is allowed to pre-process the data and store a representation in
small space so as to be able to quickly answer sampling queries. Next, we discuss our results in the
above two settings.

1.1 Sampling in the streaming setting

In this setting, the data items are available as a stream. That is, the ith data item can be assumed to
arrive at time i. Here, we are interested in maintaining a uniformly random sample at all times. We
will generalise this for non-uniform sampling. We would like the sampling algorithm to be one-pass
and it should save only one data item (since each data item could be very large – files/packets) in
its working memory.

The most basic method of doing this is called reservoir sampling and it proceeds in the following
manner: Let the items be denoted by O1, ... and the storage location used to store one item in the
stream be denoted by S. Store the first object O1 in S. Subsequently, for Oi, replace the previously
stored item in S with Oi with probability 1

i and continue without changing S with the remaining
probability. Whenever a sample is required, output the object stored in S. Suppose n objects
have been seen until the time when the sample was produced. The probability that S stores Oi is
1
i ·

i
i+1 · ... ·

n−1
n = 1

n . So, we sample with the desired uniform distribution. However, the amount
of randomness required in this procedure is large. Let us try to estimate the number of random
bits required in this sampling procedure. After Oi arrives, the procedure will need random bits
to decide whether the item stored in S needs to be replaced with Oi. This should happen with
probability exactly 1

i . So, at least log i random bits will be required for this2. So, the number of
random bits required for this procedure is at least

∑n
i=1 log i = Ω(n log n) in expectation3. This

should be contrasted with the amount of random bits needed to uniformly sample in the classical
setting where all the items are present in the memory. In this case, in the classical setting where all
the n objects are present in the memory, we will need just log n random bits in expectation. In this
work, we address the gap in the amount of randomness required in the streaming versus the classical
settings. We will consider a model in which strict bounds on randomness may be defined as opposed
to comparing expected amount of randomness required in classical and streaming settings. We will
first formalise the problem and then show that as far as amount of randomness is concerned, there
is no gap in the streaming and the classical settings. That is, even in the streaming setting, uniform
sampling may be done using minimum number of random bits required in the classical setting.

First, we note that upper bounds on randomness cannot be defined with respect to perfectly uniform
sampling. To see this, let us assume that n > 2 is a prime number. For the sake of contradiction,
assume that a uniform sample can be generated using r random bits for some finite r. This means
that there is a function f : {0, 1}r → [n] such that for all i, j ∈ [n], |{x|f(x) = i}| = |{x|f(x) = j}|.
This means that 2r is divisible by n. This is a contradiction since n is a prime number. One natural
way of formalising the question of randomness efficiency with respect to uniform sampling is to
allow the sampling algorithm to return a null answer (denoted by ⊥) with certain small probability

2 Actually, more random bits might be required since i might not be a power of 2 and hence we might need to do
rejection sampling. We can say that O(log i) random bits are needed in expectation.

3 We will discuss a more advanced sampling technique by Vitter that requires Ω((logn)2) random bits in expectation.



ε. This means that the sampling algorithm is allowed not to output any member of the set {1, ..., n}
with probability at most ε. Let us call this uniform sampling with ε-error. We can easily argue (see
Section 2) that Ω(log n

ε ) random bits are required for uniform sampling with ε-error. Following
is a simple algorithm that does uniform sampling with ε-error using O(log n

ε )-bits of randomness:
With the error parameter ε fixed, we first compute the smallest integer r such that b2r/nc > 1
and 2r (mod n) ≤ ε · 2r. Let k = b2r/nc. Consider a function f that maps the first k r-bit strings
(ordered lexicographically) to 1, the next k strings to 2 and so on. The last 2r (mod n) strings are
mapped to ⊥. The sampling algorithm computes the function f on the r random bits and outputs
the value of the function.

Our contributions: Can the sampling ideas of the classical setting be extended to the streaming
setting? The answer is negative. The main bottleneck in the streaming setting is that the value
of n is not known in advance whereas the sampling algorithm in the streaming setting must
maintain a sample at all times. In this work, we give a sampling algorithm that uses O(log n

ε )-bits
of randomness, uses O(log n

ε )-space, and has a running time of O(n+ log n
ε ). Moreover, the running

time for processing each item is a constant except for the first item which is O(log 1
ε ). 4 We also

extend these results for non-uniform sampling. Section 2 gives details of these results. It is important
to point out that the lower bound on the number of random bits remains the same if the sampling
algorithm is allowed to store more than one item from the stream. Our sampling algorithm matches
this lower bound while storing only one item from the stream.

Related work: The initial techniques for sampling and reservoir sampling were discussed in
[Knu81, Vit84, Vit85]. Vitter’s [Vit85] work was one of the early works on sampling in the streaming
setting where the author was interested in sampling records that were stored in a magnetic tape by
making a pass over the tape. However, the computational resource that the author was interested in
optimising was the running time of the sampling algorithm and not the amount of randomness or
the space. In fact, the author assumed that one can sample random numbers of arbitrary precision in
the interval [0, 1] in constant time. Li [Li94] gave quantitative improvement over Vitter’s work, again
in terms of the running time bounds. Park et al. [POS07] extended these ideas for sampling with
replacement whereas Efraimidis and Spirakis [ES06] did the same for weighted sampling. Babcock
et al. [BDM02] gave sampling algorithms where the sample is required to be among the most recent
items seen in the stream. They maintain a random sample over a moving window of the most recent
items in the stream.

Comparison with Vitter’s Reservoir Sampling: Vitter’s work on reservoir sampling [Vit85]
is the most relevant previous work on this topic. So, it is important to compare our results with
those in [Vit85]. We have already seen the most elementary reservoir sampling technique where the
ith item is stored with probability 1/i. The expected number of random bits required for this is
O(log i) and so the expected number of random bits required for the overall algorithm is O(n log n).
Note that this basic technique accesses fresh random bits for every item of the stream. A somewhat
more sophisticated technique in [Vit85] reduces the number of times random bits are accessed by
the sampling algorithm. This technique works as follows: Suppose at time instance i, we have the
ith item stored as the sample in the storage space S. At this time, a positive integer s is chosen from
a particular probability distribution fi : Z→ [0, 1]. This number s denotes the number of stream

4 The running time is in terms of the number of arithmetic operations. If we take into account the number of
bit-operations, then these bounds are larger by a multiplicative factor of O

(
(log n

ε
)2
)
.



items that the algorithm will skip before saving the item (i+ s+ 1). This probability distribution
is defined as fi(s) = i

(i+s)(i+s+1) . So randomness is required only for picking these “skips”. It was

shown in the paper that the expected number of times such skips need to be picked is O(log n).
In order to sample from the distribution fi, the paper assumes that one can uniformly sample
a real number u of arbitrary precision from [0, 1]. One simple idea is to consider the cumulative
distribution Fi(s) =

∑
i≤s fi(s) and then pick the smallest value s such that Fi(s) ≥ u.

Before further discussion regarding Vitter’s work, let us draw a comparison between the models
considered by our work and that in [Vit85]. First, in our model, randomness is consumed only
in terms of random bits. The reservoir sampling described above uses uniform random samples of
arbitrary precision from [0, 1]. The second difference one should note is that both basic reservoir
sampling and the one described above gives guarantees in terms of expected value of the randomness
used. In our model, we are interested in the worst case number of random bits used given that
the sampling algorithm is allowed to make some error. So, in some sense, one may interpret our
algorithm as a Monte Carlo algorithm and Vitter’s reservoir sampling algorithm as a Las Vegas
algorithm.

In order to compare our results more closely, we need to remove the requirement of uniform samples
from [0, 1] in Vitter’s algorithm. So, the next question we address is whether one can sample from
the distribution fi using few random bits instead of uniform samples in [0, 1]. Let us try to design
an algorithm that sample s from the distribution fi such that the expected number of random
bits used by the algorithm is small. Towards this, we first note that Pr[s > i] = 1−

∑
j≤i fi(j) =

1−
∑

j≤i

(
i
i+j −

i
i+j+1

)
≤ 1/2. We now consider the problem as sampling from the set {0, 1, ..., i+1}

as per a distribution D, where ∀j ≤ i,D(j) = fi(j) and D(i + 1) = Pr[s > i]. With respect to
sampling s from fi, the (i+ 1)th item in the above problem corresponds to the case when s > i and
in this case we will draw a conditional sample from {i+ 1, i+ 2, ...}. Note that if we can show that
the expected number of random bits used in the above problem of sampling from {0, 1, ..., i+ 1}
is R, then the expected number of random bits required for sampling s using fi will be O(R). So,
let us just focus on the sampling problem above. For this we use the technique of Bringmann and
Larsen [BL13] (see section 2.1). We will construct an array A that contains numbers in {0, 1, ..., i+1}.
A contains the number j exactly b(i+ 2) · D(j)c+ 1 times. The sampling algorithm is as follows:

1. Pick a uniformly random k ∈ {1, ..., |A|}.
2. If k = 1 or A[k] 6= A[k− 1], then with probability (1− frac((i+ 2) · D(A[k]))) go to step 1.
3. return A[k].

Here frac(x) = x− bxc. Bringmann and Larsen [BL13] show that the above sampling procedure
returns a sample as per distribution D in constant expected time. Let us estimate the randomness
required by this sampling procedure. Note that |A| ≤ 2(i+ 2) and so step 1 costs O(log i) random
bits. Also, since D(j) = i

(i+j)(i+j+1) , the cost for simulating step 2 is O(log i) random bits. So,

the expected number of random bits required in this sampling procedure is O(log i). As per our
discussion earlier, this means that the expected number of bits required to sample s from the
distribution fi is O(log i). This further means that the expected number of bits required for Vitter’s
reservoir sampling algorithm is O(log2 n).

In the classical model where all the items are in the memory, the expected number of random bits
required to sample is O(log n). So, within the model considered by Vitter’s algorithm where one is
interested in the expected number of random bits, there is a gap between the bounds in the classical



and the streaming settings. An interesting question is whether this gap should exist. Recall, that
in our model where we are interested in the number of random bits when the sampling algorithm
is allowed to err with small probability, we show there is no such gap between the classical and
streaming setting.

1.2 Succinct sampling

The second space-restricted setting that we consider is a non-streaming setting where the set of
elements are integers {1, ..., n}. The most natural model of sampling in the non-streaming setting is
the query model. This is the model used by Bringmann and Larsen [BL13] in their work. Our work
within this model may be interpreted as a natural extension of their work. The inputs are w-bit
integers x1, ..., xn. The model includes a pre-processing step where appropriate data structures may
be created. Queries for producing a sample as per the weighted distribution are made and should
be processed quickly using the data structures created in the pre-processing step. The weighted
distribution means that the query algorithm should output i with probability xi∑

j xj
.

Bringmann and Larsen [BL13] observed that the classical Walker’s alias method [Wal74] in the word
RAM model (here unit operations may be performed on words of size w bits) has a pre-processing
algorithm that runs in time O(n), answers a sampling query in O(1) expected time, and uses a
storage of size n(w+2 log n+o(1)) bits. In order to analyse the space usage, they defined a systematic
case where the input is read-only and a non-systematic case where the input representation may
be changed to reduce the total space. The redundancy of a solution is the number of bits used
in addition to the information-theoretic minimum required for storing the input. Given this, the
Walker’s alias solution has a redundancy of (2n log n+ o(n))-bits. Bringmann and Larsen [BL13]
improved this and gave a solution in the systematic case where the preprocessing time is O(n),
expected query time is O(1), and the redundancy is n+O(w). They also gave a solution that has 1
bit of redundancy in the non-systematic case. Furthermore, they showed optimality of their results.
However, all their results are for exact sampling. In our work, we extend their work to approximate
sampling in the word RAM model.

In many realistic scenarios, we might not be required to sample exactly according to the weighted
distribution x1, ..., xn. One such scenario is the sampling based algorithms for k-means clustering
such as the PTAS by Jaiswal et al. [JKS13] where the algorithms are robust against small errors
in sampling probability. This indeed was the starting point of this work. It may be sufficient to
sample from a distribution such that the sampling probabilities are close to the exact sampling
probabilities defined by the weights x1, ..., xn. We will consider two models for closeness. First is

the additive model where the ith item’s sampling probability may be between
(
xi/(

∑
j xj)− ε

)
and(

xi/(
∑

j xj) + ε
)

for some small ε. Second is the multiplicative model where the ith item’s sampling

probability may be between (1− ε) ·
(
xi/(

∑
j xj)

)
and (1 + ε) ·

(
xi/(

∑
j xj)

)
for some small ε.

Before we state our results for approximate sampling, we should first understand the differences
between exact and approximate sampling in terms of space usage. Note that the information theoretic
lower bound on the amount of space required to do exact weighted sampling given n w-bit integers
as input is nw. 5 However, in case of approximate sampling, the information theoretic bounds

5 This is not a trivial observation since x1, ..., xn and x1/2, ..., xn/2 give the same weighted distribution. See Lemma
5.1 in [BL13].



can be much lower since we can use some lossy representation of the inputs that does not effect
the sampling probabilities too much but saves much space. Given this, the non-systematic case
(where data is not read-only and may be re-structured) seems more relevant than the systematic
case (where the inputs are read-only and have to be retained). So, in our work we discuss only the
non-systematic case for approximate sampling. Note that all the algorithms that we study have
optimal pre-processing time of O(n) and optimal query time of O(1).

Our contributions: We show that in the multiplicative model, the lower bound on the space
requirement is Ω(n logw + n log 1

ε ). We design a sampling algorithm and show that the space usage
of our algorithm matches this lower bound. In the additive model, we give similar results. However,
in this case our algorithms match the lower bound only when ε is a constant independent of n.

Related work: Walker [Wal74] gave a solution for exact sampling in the classical setting. Kron-
mal and Peterson [KP79] improved the preprocessing time of Walker’s method. Bringmann and
Panagiotou [BP12] studied variants of sampling from discrete distribution problems. All the above
mentioned works used Real RAM model of computation. Bringmann and Larsen [BL13] analysed
Walker’s alias method in Word RAM model of computation and also gave better bounds for exact
sampling from discrete distribution problems. Their work is most relevant to our current work on
succinct sampling and our results may be regarded as a natural extension to [BL13].

2 Sampling in the Streaming Setting

The input consists of a stream of distinct objects O1, O2, ..., where the object Oi can be thought of
as arriving at time i. At any point of time, we would like to maintain a random sample from the
set of objects seen so far. More formally, we would like to maintain a random variable Xt for all
time t such that Pr[Xt = Oi] is the same for all i = 1, . . . , t. As mentioned in the introduction, this
property cannot be achieved for all values of t. Therefore, the input also specifies a parameter ε –
the algorithm is allowed to output a null object ⊥ with probability at most ε. Therefore, we want
the following property to hold for all time t:

Pr[Xt = ⊥] ≤ ε,Pr[Xt = O1] = Pr[Xt = O2] = · · · = Pr[Xt = Ot].

We shall call such a sequence Xt of random variables uniform samples (with error parameter ε,
which will be implicit in the discussion).

In the setting of streaming algorithms, we would like to limit the space available to the algorithm.
We allow the algorithm to store only one object at any point of time (besides some local variables) –
this is motivated by the fact that each object may be quite large (objects could be large files/packets
etc.), and so it may not be feasible to store too many objects in the local memory of the program.

Consider the amount of random bits needed to uniformly sample in the classical setting where all
the n items are present in the memory and we need a random sample among these items. It is not
difficult to show that O

(
log n

ε

)
bits of randomness suffice (w.r.t. uniform sampling with ε-error).

In fact, it is also fairly easy to show that any algorithm (even in the non-streaming setting) needs
at least these many random bits. We give details of the lower bound on number of random bits in
Section 2.1. In Section 2.2, we show that we can maintain an exact sample with only O

(
log n

ε

)
bits

of randomness (till time n). In Section 2.3, we extend this result to the weighted case.



2.1 Background

We consider the off-line problem of generating a uniform sample with error parameter ε from the
set of objects O1, . . . , On. The proof of the next lemma is given in the Appendix.

Lemma 1. We can generate a uniform sample with error parameter ε from a set of n distinct
objects using O(log n

ε ) random bits. Further, any algorithm for generating such a sample must use
Ω(log n

ε ) random bits.

The above idea for upper bound does not work in the streaming setting. The main problem in the
streaming setting is that the value of n is not known in advance – the algorithm needs to maintain
a uniform sample at all times. One solution is reservoir sampling where fresh random bits are used
after every new item arrives. However, as we have seen, this is costly in terms of the amount of
randomness used. In the next section, we discuss a sampling algorithm in the streaming setting that
uses O(log n

ε ) random bits till time n, and hence, matches the lower bound result mentioned above.

2.2 Uniform samples in the streaming setting

Let us try to understand some of the challenges of designing sampling algorithms in the streaming
setting. Recall that Xt is the random object maintained by the algorithm at time t. Since the
algorithm is allowed to store only one object at any time, it does not store any other object at time
t. At time t + 1, when Ot+1 arrives, the algorithm has only three choices for Xt+1 – Xt, Ot+1 or
⊥. We shall use rt to denote the number of random bits used by our algorithm till time t. Given a
sequence xt of rt random bits, let ft(xt) denote the object stored by the algorithm at time t, i.e.,
Xt = ft(xt). Note that the functions ft need to satisfy a “consistency” property: if x ∈ {0, 1}rt is
a prefix of a string y ∈ {0, 1}rt+1 , then ft+1(y) is either ft(x) or Ot+1 or ⊥. We now describe our
algorithm that we call the doubling-chopping algorithm.

The algorithm For each time t and i ∈ {1, . . . , t} ∪ {⊥}, the algorithm will maintain an ordered
set Ht

i ⊆ {0, 1}rt of strings xt for which ft(xt) = Oi (or ⊥). Of course, this will lead to large space
complexity – we will later show that these sets can be maintained implicitly. Initially, at time 0,
H0
⊥ = ∅ and r0 = 0. We first describe the doubling step in Figure 1. The goal of this step is to

ensure that 2rt stays larger than (t+1)2

ε . Whenever this does not happen, we increase the value of rt
to ensure that this is the case. The functions ft are updated accordingly – they just look at the first
rt bits of the input.
Note that after we call the algorithm Double, the new rt − rt−1 bits do not participate in the choice
of random sample. In Step 3 of the Double algorithm, the set Ht

i is an ordered list – “append” adds
an element to the end of the list.
The next step, which we call the chopping step, shows how to modify the function ft so that
some probability mass moves towards Ot. The algorithm is described in Figure 1. The function
append(T1, T2) takes two ordered lists and outputs a new list obtained by first taking all the elements
in T1 followed by the elements in T2 (in the same order). The algorithm maintains the sets Ht

i ,
where i ∈ {1, . . . , t} ∪ {⊥}. Given these sets, the function ft is immediate. If the string x ∈ {0, 1}rt
lies in the set Ht

i , then ft(x) = i.
To summarise, at time t > 1, we first call the function Double(t) and then the function Chop(t)
(at time t = 1 we only call Double(1)). It is also easy to check that the functions ft satisfy the
consistency criteria.



Algorithm Double(t) :

1. rt ← rt−1.
2. For i ∈ {1, ..., t− 1} ∪ {⊥}
• Initialize Ht

i ← Ht−1
i .

3. While 2rt < (t+1)2

ε

(i) rt ← rt + 1.
(ii) For i ∈ {1, ..., t− 1} ∪ {⊥}
• Initialize H ← ∅.
• For each x ∈ Ht

i in order
append 0x to H.

• For each x ∈ Ht
i in order

append 1x to H.
• Ht

i ← H.

Algorithm Chop(t) :

1. For every i ∈ {1, . . . , t− 1}
Define T ti ← last

(
|Ht

i | − b2rt/tc
)

strings in Ht
i .

Define Ht
i ← Ht

i \ T ti .
2. Initialize T ← ∅.
3. For i = 1, . . . , t− 1

T ← append(T, T ti ).
4. If |T | > b2rt/tc

(a) T tt ← last (|T | − b2rt/tc) strings in T .
(b) Ht

t ← T \ T tt and Ht
⊥ ← append(Ht

⊥, T
t
t )

Else
(i) T t⊥ ← last b2rt/tc − |T | strings of Ht

⊥.
(ii) Set Ht

⊥ ← Ht
⊥ \ T t⊥ and Ht

t ← append(T, T t⊥).

Fig. 1. The doubling and chopping steps

Lemma 2. Suppose x ∈ {0, 1}rt−1 and y ∈ {0, 1}rt−rt−1 . Then, ft(yx) is either ft−1(x) or Ot or ⊥.

Proof. Let x and y be as above. Suppose x ∈ Ht−1
i (and so, ft−1(x) = i). After the Double(t)

function call, yx ∈ Ht
i . Now consider the function Chop(t). After Step 1, if yx /∈ Ht

i , then it must
be the case that yx gets added to the set T . Now, notice that the strings in T get added to either
Ht
t or Ht

⊥. This proves the lemma. ut

The lemma above implies that we can execute the algorithm by storing only one object at any time.
Now, we show that the number of random bits used by the algorithm is small.

Lemma 3. The total number of random bits used by the algorithm till time n is O(log n
ε ).

Proof. Till time n, the algorithm uses at most rn bits. Now, by definition, 2rn ≤ 2(n+1)2

ε . This proves
the lemma. ut

Now, we prove the correctness of the algorithm.

Lemma 4. For all time t, and i ∈ {1, . . . , t}, |Ht
i | =

⌊
2rt
t

⌋
, and |Ht

⊥| ≤ ε · 2rt.

Proof. The proof is by induction on t. The base case (t = 0) is true vacuously. Now suppose the
lemma is true for t− 1. At time t, we first call Double(t). For each x ∈ Ht−1

i , we just append all
bit strings of length rt − rt−1 to it and this set of strings to Ht

i . Therefore, when this procedure
ends, |Ht

i | = 2rt−rt−1 · b2rt−1

t−1 c, for i = 1, . . . , t− 1 (using induction hypothesis) and we have

|Ht
i | = 2rt−rt−1 ·

⌊
2rt−1

t− 1

⌋
≥ 2rt−rt−1 ·

(
2rt−1

t− 1
− 1

)
≥ 2rt

t
(since 2rt−1 ≥ t2/ε)

In Step 1 of the procedure Chop(t), we ensure that |Ht
i | becomes b2rt

t c (this step can be done,
because the |Ht

i | was at least b2rt
t c). After this step, we do not change Ht

i for i = 1, . . . , t− 1, and
hence, the induction hypothesis is true for these sets. It remains to check the size of Ht

t and Ht
⊥.

First assume that |T | ≥ b2rt
t c. In this case, Ht

t gets exactly b2rt
t c elements. Now suppose |T | < b2rt

t c.
First observe that Ht

⊥ and T are disjoint. Since all strings not in Ht
i , i = 1, . . . , t− 1 belong to either

Ht
⊥ or T , it follows that

|Ht
⊥|+ |T | = 2rt − (t− 1) ·

⌊
2rt

t

⌋
≥
⌊

2rt

t

⌋
.



Therefore, |Ht
⊥| is at least b2rt

t c − |T |, and Step 4(i) in this case can be executed. Clearly, |Ht
t |

becomes b2rt
t c as well. Finally,

|Ht
⊥| = 2rt − t ·

⌊
2rt

t

⌋
≤ 2rt − t

(
2rt

t
− 1

)
= t ≤ ε · 2rt ,

where the last inequality follows from the definition of rt. ut

Space Complexity Note that the use of the sets Ht
i in our algorithm was just for sake of clarity.

We need not maintain these sets explicitly. For the current random string x (at time t), we just
need to keep track of the set Ht

i to which it belongs – call this set L(x) (the location of x). In fact,
not only we will keep track of L(x), but we will also keep track of the rank of x in the set L(x) –
recall that the sets Ht

i are ordered lists, and so, the rank of an element is its position in this order.
In addition, we will also keep track of |Ht

i | for i ∈ {1, ..., t} ∪ {⊥}. Note that this includes saving
only two numbers since |Ht

1| = ... = |Ht
t |. The pseudocodes of our algorithms for implementation

purposes are given in the Appendix.

Lemma 5. For every time t, the location and the rank of the current random string xt can be
maintained using O(log t

ε) space.

Proof. Suppose the statement is true for t− 1, and say, xt−1 ∈ Ht−1
i . During Double(t), we will

append a random string y ∈ {0, 1}rt−rt−1 to xt−1, i.e., xt = yxt−1. For every string preceding xt−1

in Ht−1
i , we will add 2rt−rt−1 strings to Ht

i . Hence, one can easily determine the rank of xt in Ht
i .

Using this fact, we can check whether xt gets transferred to T or not during Step 1 of Chop(t).
Moreover, since we know the size of the sets Ht

i (at the beginning of Step 1), we can even calculate
the rank of t in T . Since we also know the size of Ht

⊥, we can check if xt gets transferred to Ht
t or

Ht
⊥ in Step 4 (and its rank in this set). The space needed by the algorithm is proportional to rt,

which is O(log t
ε). ut

Running time Finally, we analyse the running time of the algorithm after n time steps. The total
number of iterations of While loop in Double(n) is at most rn, i.e., O(log n

ε ). The time taken by
Chop(n) is constant number of arithmetic operations – Step 1 is constant number of operations. If
the string happens to be in T , its rank can be computed in constant number of operations, and
similarly for Step 4. Therefore, the total running time till time n is O(n + log n

ε ). However, the
running time of Double per unit time step can be more than a constant. It is not difficult to see that
except for the first time step (when we need to make r1 = dlog 4

εe), rt+1 is at most rt + 2. Therefore,
except for the first two time steps, the running time per time step is constant number of arithmetic
operations. Figure 2 show the operations performed by the sampling algorithm after the arrival of
the second item.

Note that in the above analysis, the running time is in terms of the number of arithmetic operations.
However, as n grows, the number of bit operations is a more relevant measure. Since at each time
step, the arithmetic operations are over numbers of size O(log n

ε )-bits, the total running time in

terms of bit operations will be O
((

log n
ε

)2 · (n+ log n
ε )
)

and the per item running time will be

O
((

log i
ε

)2)
(w.r.t. the ith item).



Fig. 2. The figure shows simulation of the doubling-chopping algorithm at time t = 2 when the value of ε = 1/2.

2.3 Weighted sampling

So far we have discussed uniform sampling. We can now talk about a more general setting where
items in the stream come along with an associated integer weight wi and after seeing n elements
the sampling algorithm should be prepared to output the ith item with probability proportional to
wi. Further, as in the uniform sampling case, the algorithm is allowed to output ⊥ with probability
at most ε. More specifically, let the algorithm output ⊥ with probability p. Then p ≤ ε and the
probability that it outputs item i is given by (1− p) · wi∑

i wi
. The simplest solution is to consider wi

copies of item i and simulate our sampling algorithm. The number of random bits that are required

is log
(∑

i wi
ε

)
. Given that each of the weights w1, ... is a w-bit integer, we get that the upper bound

is O(log n·2w
ε ) = O(w + log n

ε ). From Lemma 1, we know that the lower bound is Ω(log n
ε ) when

w1 = w2 = ... = 1. Furthermore, given that w1 = 1 and w2 = 2w − 1, any sampling algorithm would
need at least w bits for uniform sampling. This gives another lower bound of Ω(w). From the last
two statements, we get that the lower bound on the number of random bits required for weighted
sampling is Ω(w + log n

ε ) which matches with our upper bound. In this setting, simple space/time
optimisations lead to a sampling algorithm with running time O(n+w+ log 1

ε ) (with per item time
O(w)) and space O(w + log n

ε ).

3 Succinct (approximate) Sampling

In this section, we consider approximate sampling in the succinct data-structure model. Recall that
we are given a set of n elements, labelled 1, . . . , n, and weights x1, . . . , xn associated with these n
elements respectively. Each weight xi is a w-bit integer. We will assume throughout the discussion
that w = o(n) which is a reasonable assumption since w is typically a single precision (w = 32) or
double precision (w = 64) number. We are allowed to store a suitable representation of these weights
such that we can perform sampling efficiently. More formally, let pi denote xi/(

∑
j xj). Given an

error parameter ε, we consider two notions of approximate sampling – multiplicative and additive.



In the multiplicative model, we are required to output a random element such that the probability
that i is output lies in the range [pi(1 − ε), pi(1 + ε)]. In the additive model, the corresponding
probability of i lies in the range [pi − ε, pi + ε].

3.1 Approximate sampling: multiplicative model

In this section, we give upper and lower bounds on the amount of space needed to perform
approximate sampling with (multiplicative) error ε. We first discuss the upper bound by giving our
sampling algorithm and then give matching lower bounds. For simplicity, we assume that ε is a
power of 2 (this only affects the bounds by a constant factor).

Upper Bound: For each i, let fi denote the location of the most significant bit (MSB) in xi which
is 1 (i.e., the first fi − 1 bits of xi are 0). Let x′i denote the number obtained by taking the first
fi + log 2

ε bits of xi followed by
(
w − fi − log 2

ε

)
0’s. It is easy to check that exact sampling with

respect to the weights x′i leads to approximate sampling with respect to xi with error at most ε.

Lemma 6. For all i, (1− ε) · pi ≤
x′i∑
j x
′
j
≤ (1 + ε) · pi.

Proof. Observe that for all i, xi − x′i ≤ ε
2 · xi, which implies that xi ≥ x′i ≥ (1− ε/2) · xi. Using this

fact, we get (1− ε)pi ≤ xi(1−ε/2)∑
j xj

≤ x′i∑
j xj
≤ x′i∑

j x
′
j
≤ xi

(1−ε/2)
∑
j xj
≤ (1 + ε)pi. ut

Therefore, it is enough to run an exact sampling algorithm with weights x′i for all i. For this, we
use the algorithm of Bringmann and Larsen [BL13] with respect to x′i. The space needed by this
algorithm is O(n+ w′), where w′ is the number of bits needed to store any of the weights. In our
case, w′ can be as high as w, and so the space needed by their algorithm is O(n+ w). There is one
catch though: we need to store all the x′i using the same number of bits, and using w bits would be
a waste of space. Instead we store each x′i as a tuple – we first store the value of fi and then the
value of the next log 2

ε bits. Note that this representation uses (logw + log 2
ε ) bits for each of the

x′i. It is not difficult to check that the algorithm of Bringmann and Larsen [BL13] works with this
representation as well. Thus, the total space needed by our algorithm is O(n logw + n log 2

ε ).

Lower bound: In this section, we give lower bound on the amount of space needed for approximately
sampling the elements with error ε. We say that a distribution given by (y1, ..., yn) is ε-close to
a distribution given by (x1, . . . , xn) if ∀i, (1 − ε) · xi∑

j xj
≤ yi∑

j yj
≤ (1 + ε) · xi∑

j xj
. In such a case,

(y1, . . . , yn) may be used to represent the distribution (x1, ..., xn). To get a lower bound on the space,
we will estimate the size of a set of tuples S ⊆ [{0, 1}w]n such that for any tuple x̄ ∈ [{0, 1}w]n there
exist at least one element ȳ in S such that ȳ is ε-close to x̄. Let S denote the minimum amount of
space needed. We get a lower bound on S using the next two lemmas. The proofs of these lemmas
are given in the appendix.

Lemma 7. S ≥ n log 1
ε − w − log n− n.

Lemma 8. S ≥ n logw − n log 4(1 + 2ε)− w
2 log (e2n).

Comparing upper bounds with lower bounds The upper bound that we obtained on the
space requirement was (n log 2

ε + n logw). We break the comparison into the following two parts:



1. 1
ε > w: In this case, the upper bound is O(n log 1

ε ). Using Lemma 7, we get that the lower bound
is Ω(log 1

ε ) assuming w = o(n) and ε ≤ 1/2.

2. 1
ε ≤ w: In this case, the upper bound is O(n logw). Using Lemma 8, we get that the lower bound
is Ω(n logw) assuming w = o(n) and ε ≤ 1/8.

So, we obtain matching lower and upper bounds assuming w = o(n) and ε ≤ 1/8.

3.2 Approximate sampling: Additive model

Now we consider the case of additive error. Given a parameter ε, we would like to sample element i
with probability lying in the range [pi − ε, pi + ε]. We first discuss the upper bound by giving our
sampling algorithm and then give matching lower bounds. Again, assume wlog that 1

ε is an integer.
Let S denote

∑
j xj .

Upper bound: We maintain a sorted array A of size 1
ε which stores copies of numbers from 1 to n.

For each i, it stores either b1
ε ·

xi
S c or

⌊
1
ε ·

xi
S

⌋
+ 1 copies of i. Note that this can be done because

∑
i

⌊
1

ε
· xi
S

⌋
≤
∑
i

1

ε
· xi
S

=
1

ε
≤
∑
i

(⌊
1

ε
· xi
S

⌋
+ 1

)
.

To generate a random element, the algorithm picks a uniformly random location in A and outputs
the number stored in that location in A. Clearly, the probability of sampling i lies in the range[

ε

⌊
1

ε
· xi
S

⌋
, ε

(⌊
1

ε
· xi
S

⌋
+ 1

)]
⊆
[
ε

(
1

ε
· xi
S
− 1

)
, ε

(
1

ε
· xi
S

+ 1

)]
= [pi − ε, pi + ε] ,

which is what we need. Clearly, the total space needed is the space to store A, i.e., O
(

1
ε log n

)
.

Lower bound We now prove the lower bound result. We come up with a set of distributions such
that for each pair of them, they differ by more than ε on at least one coordinate. Consider the
following set of n-tuples: (x1 · ε, x2 · ε, . . . , xn · ε) where x1, ..., xn are non-negative integers such that∑

i xi = 1
ε . If we pick any two such distinct vectors, they will differ on at least one coordinate by

at least ε. Clearly, the size of the set of such possible vectors (or distributions) is at least
( 1
ε

+n−1
n

)
.

Therefore, the space needed for sampling with ε additive error is at least log
( 1
ε

+n−1
n

)
≥ Ω

(
1
ε log n

)
,

provided ε is some constant independent of n. Lower bound for smaller ε is discussed in the Appendix.
Matching these lower bounds for small ε is left as an open problem.

Acknowledgement

RJ and AK would like to thank Karl Bringmann for discussions on Succinct Sampling.

References

BDM02. Brian Babcock, Mayur Datar, and Rajeev Motwani. Sampling from a moving window over streaming data.
In Proceedings of the Thirteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’02, pages
633–634, Philadelphia, PA, USA, 2002. Society for Industrial and Applied Mathematics.



BL13. Karl Bringmann and Kasper Green Larsen. Succinct sampling from discrete distributions. In Proceedings of
the Forty-fifth Annual ACM Symposium on Theory of Computing, STOC ’13, pages 775–782, New York, NY,
USA, 2013. ACM.

BP12. Karl Bringmann and Konstantinos Panagiotou. Efficient sampling methods for discrete distributions. In
Artur Czumaj, Kurt Mehlhorn, Andrew Pitts, and Roger Wattenhofer, editors, Automata, Languages, and
Programming, volume 7391 of Lecture Notes in Computer Science, pages 133–144. Springer Berlin Heidelberg,
2012.

ES06. Pavlos S. Efraimidis and Paul G. Spirakis. Weighted random sampling with a reservoir. Information
Processing Letters, 97(5):181 – 185, 2006.

JKS13. Ragesh Jaiswal, Amit Kumar, and Sandeep Sen. A simple D2-sampling based PTAS for k-means and other
clustering problems. Algorithmica, 2013.

Knu81. D E Knuth. The Art of Computer Programming, volume 2. Addison-Wesley, 1981.
KP79. Richard A. Kronmal and Jr. Peterson, Arthur V. On the alias method for generating random variables from

a discrete distribution. The American Statistician, 33(4):pp. 214–218, 1979.
Li94. Kim-Hung Li. Reservoir-sampling algorithms of time complexity o(n(1 + logN/n)). ACM Trans. Math.

Software, 20(4):481 – 493, 1994.
POS07. Byung-Hoon Park, George Ostrouchov, and Nagiza F. Samatova. Sampling streaming data with replacement.

Computational Statistics and Data Analysis, 52(2):750 – 762, 2007.
Vit84. J S Vitter. Faster methods for random sampling. Comm. ACM, 27(7):703 – 718, 1984.
Vit85. J S Vitter. Random sampling with a reservoir. ACM Trans. Math. Software, 11(1):37 – 57, 1985.
Wal74. A.J. Walker. New fast method for generating discrete random numbers with arbitrary frequency distributions.

Electronics Letters, 10(8):127–128, April 1974.

A Proof of Lemma 1

Proof. Let r be the smallest integer such that 2r ≥ n/ε, and let k denote
⌊

2r

n

⌋
. Now we consider a

sequence x of r random bits, and interpret this as a number between 0 and 2r − 1. If this number
is at least nk, we output ⊥. Otherwise x is less than nk. Let i be the (unique) integer between
1 and n such that x ∈ [(i − 1)k, ik). In this case, the algorithm outputs the object Oi. Clearly,
the probability that the algorithm outputs Oi is k

2r , which is the same for all the n objects. The
probability that it outputs ⊥ is

2r − nk
2r

≤
2r − n

(
2r

n − 1
)

2r
=

n

2r
≤ ε.

Since r is O(log n
ε ), we have shown the first part of the lemma.

Now we prove the lower bound result. Let R denote the minimum number of bits required. Clearly,
2R ≥ n, because there are at least n possible outcomes. Assuming there is one sequence of random
bits for which the algorithm outputs ⊥ (recall that for a general n, this will be the case), we get
ε ≥ 1

2R
, which implies 2R ≥ 1

ε . Thus, R ≥ 1
2 log n

ε . ut

B Pseudocode for our Sampling Algorithms in the Streaming Setting

Given below are the pseudocodes for the doubling and chopping algorithms. For each time t, we
first call Double(t) and then call Chop(t). We maintain the variables h, h⊥, s, l and rank as global
variables. After calling Double(t) and Chop(t) for any t, the following properties will be satisfied:

1. h = |Ht
1| = |Ht

2| = · · · = |Ht
t |,

2. h⊥ = |Ht
⊥|,

3. s = 2rt ,



4. l is equal to the location of the current random string (also the index of the current stored item),

5. rank is equal to the position of the current random string.

We assume that the function random(y) returns a random integer between 1 and y and the function
random bit() returns a random bit. random(y) may be easily implemented using random bit() when
y is a power of 2 which is indeed the case below.

Double(t)
1. If (t = 1)

• Set s← 2dlog
4
ε e

• Set h← s
• Set h⊥ ← 0
• Set l← 1
• Set rank ← random(1, s)

2. While (s < (t+1)2

ε
)

• Set b← random bit()
• If (b = 1) and (l = ⊥)

� Set rank ← rank + h⊥
• If (b = 1) and (l 6= ⊥)

� Set rank ← rank + h
• Set h← 2h
• Set h⊥ ← 2h⊥
• Set s← 2s

Chop(t)
1. If (t = 1)
• Exit

2. Set h′ ←
⌊
s
t

⌋
3. Set ht ← (t− 1)(h− h′)
4. If (l 6= ⊥) and (rank > h′)
• Set rank ← (l − 1)(h− h′) + (rank− h′)
• Set l← t

5. If (ht > h′)
• Set h⊥′ ← h⊥ + ht − h′
• If (l = t) and (rank > h′)
� Set l← ⊥
� Set rank ← h⊥ + rank− h′

6. If (ht ≤ h′)
• Set h⊥′ ← h⊥ + ht − h′
• If (l = ⊥) and (rank > h⊥′)
� Set l← t
� Set rank ← ht + rank− h⊥′

7. Set h← h′

8. Set h⊥ ← h⊥′

Fig. 3. The doubling and chopping methods

Users interested in the implementation of our algorithms may find a python code at the following
link useful: http://www.cse.iitd.ac.in/ rjaiswal/Research/Sampling/sampling.py.

C Proof of Lemma 7

Proof. Let U ⊆ [{0, 1}w]n denote a universe of n tuples of w-bit numbers such that for any
(u1, ..., un) ∈ U,

∑
i ui = T , where T will be specified later. Given a tuple x̄ = (x1, . . . , xn) ∈ U ,

Ball(x̄) denotes the set of all tuples ȳ ∈ U such that ȳ is ε-close to x̄. Recall that this implies that
for all i = 1, . . . , n,

(1− ε)xi ≤ yi ≤ (1 + ε)xi.

So, yi can have at most 2εxi different values around xi. This gives the following:

|Ball(x̄)| ≤ (2ε)n · x1 · x2 · · ·xn ≤ 2wn · (2ε)n, (1)

where the last inequality follows from the fact that each xi is a w-bit number. For any tuple
t̄ ∈ [{0, 1}w]n, the sum of elements in the tuple belongs to the set {0, 1, . . . , n · (2w − 1)}. This
means that there is one value T ′ ∈ {0, 1, . . . , n · (2w − 1)} such that the number of tuples whose

http://www.cse.iitd.ac.in/~rjaiswal/Research/Sampling/sampling.py


sum is equal to T ′ is at least 2nw

n·(2w−1)+1 ≥
2nw

n·2w . We will use T = T ′. This implies that |U | ≥ 2nw

n·2w .

Combining this fact with inequality (1), we get

2S ≥ |U |
2wn · (2ε)n

≥ 1

n · 2w · (2ε)n

This gives S ≥ n log 1
ε − w − n− log n. ut

D Proof of Lemma 8

Proof. Let U ⊆ ([{0, 1}w])n denote the subset of n-tuples of w-bit numbers x̄ of the following form:
it should be possible to divide the n coordinates in x̄ into w blocks, each block consisting of n/w
coordinates (note that these coordinates need not be consecutive). Let Bl denote the set of indices
corresponding to block l. For any index i ∈ Bl, the first (l − 1) bits are 0, and the lth bit is 1 (the
remaining bits can be arbitrary). Consider any tuple x̄ = (x1, . . . , xn) ∈ U . Define Ball(x̄) as the
set of all tuples ȳ ∈ U which are ε-close to x̄, i.e., for all i = 1, . . . , n,

(1− ε) · xi
S
≤ yi
S′
≤ (1 + ε) · xi

S
, (2)

where S =
∑

j xj and S′ =
∑

j yj . Let Smin = minȳ∈Ball(x̄)

∑
i yi and Smax = maxȳ∈Ball(x̄)

∑
i yi.

Then for all i we have
Smin

S
· (1− ε) · xi ≤ yi ≤

Smax

S
· (1 + ε) · xi.

Therefore, number of possible values of yi is upper bounded by

xi
S
· ((Smax − Smin) + ε(Smax + Smin)) ≤ (1 + 2ε) · xi · Smax

S
.

Using this, we get that

|Ball(x̄)| ≤
(
Smax

S

)n
· (x1 · · ·xn) · (1 + 2ε)n (3)

We will now try to get an upper bound on |Ball(x̄)| by obtaining suitable bounds on the quantities on
the RHS of the above inequality. First, note that due to the nature of the tuples under consideration,
we have:

S ≥
w∑
i=1

n

w
· 2w−i =

n

w
· (1 + 2 + ...+ 2w−1) =

n

w
· (2w − 1).

Furthermore, for any ȳ ∈ U , we have

Smax ≤
w∑
i=1

n

w
(2w−i+1 − 1) =

n

w
(2w+1 − 2− w) ≤ 2 · n

w
· (2w − 1)

Next we upper bound the product of x1, . . . , xn. Since, each number in ith group is < 2w−i+1, we
can write,

x1 · · ·xn <
w∏
i=1

(2w−i+1)n/w = 2n(w+1)/2



Putting these bounds in inequality (3), we get that

|Ball(x̄)| ≤ 2n · 2n(w+1)/2 · (1 + 2ε)n

Now, we try to get an estimate on |U |. The number of ways w blocks can be arranged is n!
( n
w

!)w . We

now use the following Stirling’s approximation of a! for any positive integer a:

√
2πaa+1/2e−a ≤ a! ≤ eaa+1/2e−a,

to get
n!

( nw !)w
≥
√

2π
( w

e2n

)w
2
n1/2wn.

So, we get

|U | ≥
(√

2π
( w

e2n

)w
2
n1/2wn

)
·
w∏
i=1

(2w−i)
n
w =

(√
2π
( w

e2n

)w
2
n1/2wn

)
· 2n(w−1)/2

Using this bound, we have

2S ≥ |U |
2n · 2n(w+1)/2 · (1 + 2ε)n

≥

(√
2π
(
w
e2n

)w
2 n1/2wn

)
· 2n(w−1)/2

2n · 2n(w+1)/2 · (1 + 2ε)n

=
1

22n
·
√

2πn · wn ·
( w

e2n

)w/2
·
(

1

1 + 2ε

)n
which implies that

S ≥ n logw + log
√

2πn+
w

2
log

w

e2n
+ n log

1

4(1 + 2ε)

≥ n logw − n log 4(1 + 2ε)− w

2
log (e2n)

This concludes the proof of the lemma. ut

E Additive model: Lower bounds

As shown in Section 3.2, the lower bound on space is given by the expression:

S ≥ log

(
1/ε+ n− 1

n

)
= Ω

(
1

ε
· log (1 + εn) + n log

(
1 +

1

εn

))
.

So, we get the following lower bounds in the following two cases:

1. ε ≥ 1/n: In this case, we get that S = Ω
(

1
ε · log εn

)
.

2. ε < 1/n: In this case, we get that S = Ω
(
n · log 1

εn

)
.


	Sampling in Space Restricted Settings

