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Abstract

We study the problem of finding a maximal transitive relation contained in a
given binary relation. Given a binary relation of size m defined on a set of
size n, we present a polynomial time algorithm that finds a maximal transitive
sub-relation in time O(n2 + nm).

We also study the problem of finding a maximum transitive relation con-
tained in a binary relation. This is the problem of computing a maximum
transitive subgraph in a given digraph. For the class of directed graphs with
the underlying graph being triangle-free, we present a 0.874-approximation al-
gorithm. This is achieved via a simple connection to the problem of maximum
directed cut. Further, we give an upper bound for the size of any maximum
transitive relation to be m/4+cm4/5, where c > 0 and m is the number of edges
in the digraph.
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1. Introduction

All relations considered in this study are binary relations. We represent a re-
lation alternately as a digraph to simplify the presentation at places (see Section
2 for definitions). Transitivity is a fundamental property of relations. Given the
importance of relations and the transitivity property, it is not surprising that
various related problems have been studied in detail and have found widespread
application in different fields of study.

Some of the fundamental problems related to transitivity that have been
long studied are - given a relation ρ, checking whether ρ is transitive, finding
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the transitive closure of ρ, finding the maximum transitive relation contained in
ρ, partitioning ρ into smallest number of transitive relations. Various algorithms
have been proposed for these problems and some hardness results have also been
proved.

In this article, we study two related problems on transitivity. First - given
a relation, obtain a maximal transitive relation contained in it. It is straight-
forward to see that this can be solved in poly-time, hence our goal is to do this
as efficiently as possible. Second - given a relation, obtain a maximum transitive
relation contained it. This problem was proven to be NP-complete in [1]. Here
our approach is to find approximate solutions.

The problem of finding a maximum transitive relation contained in a given
relation is a generalisation of well-studied hard problems. For the class of di-
graphs such that the underlying graph is triangle-free, the problem of computing
a maximum transitive subgraph is the same problem as the MAX-DICUT prob-
lem (see Section 4). MAX-DICUT has well known inapproximability results.

We can also relate it to a problem of optimisation on a 3SAT instance. We
look at the relation as a directed graph G = (V,E), where |V | = n. For every
pair for distinct vertices (i, j) in V , create a boolean variable xij . Consider the
following 3SAT formula.

C =
∧

16i<j<k6n

(xij ∨ xik ∨ xkj)

Let C ′ be a formula derived from C such that any literal with variable xij is
removed if (i, j) /∈ E. It is easy to see that a solution to C ′ represents a subgraph
of G. Specifically, a solution to C ′ is also transitive. To see this, observe that
for every triplet (i, j, k), if a clause (xij ∨ xik ∨ xkj) is satisfied, then either the
edge (i, j) is included or at least one of the edges (i, k) or (k, j) is excluded. To
get the maximum transitive subgraph, the solution must maximize the number
of variables set to 1. To conclude, the maximum transitive subgraph problem
is same as the problem of finding a satisfying solution to a 3SAT formula that
also maximizes the number of variables assigned the value ‘true’.

1.1. Our Results

The usual greedy algorithm for finding a maximal substructure - satisfying
a given property P - starts with the empty set and incrementally grows the
substructure while maintaining the property P. Finally it ends when the set
becomes maximal. Thus checking for maximality is a subroutine for the usual
greedy algorithm.

Maximal Transitive Subgraph

We consider the problem of maximal transitive subgraph – output a transitive
subgraph of maximal size (in terms of number of edges) contained in a given
directed graph. Let’s consider two related problems first. Let G be a directed
graph with n vertices and m edges. Given a transitive subgraph S of G, can
we add any more edges to S and still maintain transitivity? We can check the
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maximality of S in time O(nw+1) using a standard algorithm (where O(nw) is
the complexity of multiplying two n×n matrices.) A related problem is – given
a transitive subgraph S of G, compute a maximal transitive subgraph of G that
contains S. The naive algorithm takes O(nw+2) time.

We give an algorithm that computes a maximal transitive subgraph inO(n2+
nm) time. The interesting part of our algorithm is that we avoid checking for
maximality explicitly but output is still maximal. This is the first such algo-
rithm that improves upon the standard techniques which have a complexity of
O(nw+1).

Theorem 1.1. Let D be a digraph with n vertices and m edges. Then there is
an algorithm that given D, outputs a maximal transitive subgraph contained in
D, in time O(n2 + nm).

We present the algorithms and the proof of correctness related to the fol-
lowing theorem in Section 3.

Maximum Transitive Subgraph

We then study the maximum transitive subgraph (MTS) problem – compute
a transitive subgraph of largest size contained in a given directed graph. This
problem was proven to be NP-complete by Yannakakis in [1]. We start by
studying approximation algorithms for this problem.

The MTS problem is a generalization of well-studied hard problems. For
the class of triangle-free graphs, the problem of finding a maximum transitive
subgraph in a directed graph is the same problem as the MAX-DICUT problem.
MAX-DICUT has well known hardness and inapproximability results.

Approximation: We give a simple 0.25-approximation algorithm of obtaining
an MTS in a general graph.

Theorem 1.2. There exists a poly-time algorithm to obtain an m/4 sized
transitive subgraph in any directed graph D with m edges. This gives a 1/4-
approximation algorithm for maximum transitive subgraph problem.

For the case where the underlying undirected graph is triangle free, we give
a 0.874-approximation for the MTS problem. The idea there is to look at the
related problem of directed maximum cuts in the same graph. To the best of
our knowledge, no approximation algorithms are present in the literature which
present any ratio better than 0.25.

Let UG(D) represents the underlying undirected graph of digraph D.

Theorem 1.3. There exists a 0.874-approximation algorithm for finding the
maximum transitive subgraph in a digraph D such that UG(D) is triangle-free.

Upper Bound: Another interesting questions is how large the MTS can the-
oretically be. In a triangle-free (underlying undirected) graph, we know that
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there is a one-to-one correspondence between directed-cuts and transitive sub-
graphs. We prove that in triangle free graphs with m edges, any directed cut
is of size at most m/4 + cm4/5 for some c > 0. This gives the same bound for
the size of an MTS. This also shows that the approach of finding MTS approxi-
mations via bipartite subgraphs can’t have better constant approximation ratio
than 1/4.

Theorem 1.4. For every m, there exists a digraph D with m edges such that
UG(D) is triangle-free and the size of any directed cut in D is at most m/4 +
cm4/5 for some c > 0.

These results are described in Section 4.

1.2. Related Results

The transitive property is a fundamental property of binary relations. Var-
ious important algorithmic problems with respect to transitive property has
been studied and used. One very important and well studied problem is finding
the transitive closure of a binary relation ρ (that is the smallest binary relation
which contains ρ and is transitive). This problem of finding transitive closure
has been studied way back in 1960s. Warshall [2] gave an algorithm to find
the transitive closure is time O(n3), where n is the size of the set on which the
binary relation is defined. Using different techniques [3] gave an O(n2 + nm)
algorithms, where m is the number of elements in ρ. Modifying the algorithm
of Warshall, Nuutila [4] connected the problem of finding transitive closure with
matrix multiplication. With the latest knowledge of matrix multiplication ( [5]
and [6]) we can compute the transitive closure of a binary relation on n elements
using O(n2.37) time complexity.

Another important problem connected to transitive property is the finding
the transitive reduction of a binary relation. Transitive reduction of a binary
relation ρ is the minimal sub-relation whose transitive closure is same as the
transitive closure of ρ. This was introduce by Aho et al [7] and they also gave the
tight complexity bounds. A closely related concept to the transitive reduction
is the maximal equivalent graph, introduced by Moyles [8].

Given a binary relation, partitioning it as a union of transitive relations is
another very important related problem (see [9]). A plethora of work has been
done on this problem in recent times as this problem has found application in
biomedical studies.

The Maximum Transitive Subgraph (MTS) problem has been studied in the
field of parameterization. Arnborg et al. [10] showed that the problem of MTS is
fixed parameter tractable. They give an alternate proof of Courcelle’s theorem
[11] and express the MTS problem in Extended Monadic Second Order, thus
giving a meta-algorithm for the problem. This algorithm is not explicit and f
is known to be only a computable function.

The MTS problem has been studied in a more general setting as the Tran-
sitivity Editing problem where the goal is to compute the minimum number
of edge insertions or deletions in order to make the input digraph transitive.
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Weller et al [12] prove its NP-hardness and give a fixed-parameter algorithm
that runs in time O(2.57k + n3) for an n-vertex digraph if k edge modifications
are sufficient to make the digraph transitive. This result also applies to the case
where only edge deletions are allowed – the MTS problem.

2. Notations

Let S = {1, 2, . . . , n}, where n is a natural number. A binary relation ρ on S
is a subset of the cross product S×S. We only consider binary relations in this
study. Any relation ρ on S can be represented by a (0, 1) matrix A = (aij)n×n
of size n× n, where

aij =

{
1, if (i, j) ∈ ρ
0, otherwise.

Similarly, a relation ρ on S can represented by a directed graph with S as the
vertex set and elements of ρ as the arcs of the directed graph.

In this paper we do not distinguish between a relation and its matrix rep-
resentation or its directed graph representation. So for a given relation ρ, if
(i, j) ∈ ρ, we sometimes refer to it as the arc (i, j) being present and sometimes
as the adjacency matrix entry ρij = 1.

If ρ is a binary relation on S then the size of ρ (denoted by m) is the number
of arcs in the directed graph corresponding to ρ. In other words, it is the number
of pairs (i, j) ∈ S × S such that (i, j) ∈ ρ.

If ρ is a binary relation on S we say ρ′ is contained in ρ (or is a sub-relation)
if for all i, j ∈ S, (i, j) ∈ ρ′ implies (i, j) ∈ ρ.

Definition 2.1. A binary relation ρ on S is called transitive if for all a, b, c ∈ S,
(a, b) ∈ ρ, (b, c) ∈ ρ implies (a, c) ∈ ρ.

For a binary relation ρ on S a sub-relation α is said to be a maximal transitive
relation contained in ρ if there does not exist any transitive relation β such that
α is strictly contained in β and β is contained in ρ. A maximum transitive
relation contained in ρ is a largest relation contained in ρ.

3. Maximal transitive relation finding algorithms

We first present an algorithm which finds a maximal transitive relation con-
tained in a given binary relation in O(n3) and then we improve it to obtain
another algorithm for this with time complexity O(n2 +mn).

3.1. O(n3) algorithm for finding maximal transitive sub-relation

Theorem 3.1. Algorithm 1 correctly finds a maximal transitive sub-relation
in a given relation in time O(n3).

Proof. It is easy to see that the time complexity of the algorithm is O(n3).
For the proof of correctness, all we need to prove is that the output T of the
algorithm is transitive and maximal. The transitivity of the output T is proved
in Lemma 3.5 and the maximality of T is proved in Lemma 3.6.
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Algorithm 1: Finding a maximal transitive sub-relation

Input : An n× n matrix A = (aij) representing a relation.
Output: A matrix T = (tij) which is a maximal transitive sub-relation

contained in A.

1 for i← 1 to n do
2 for j ← 1 to n, j 6= i do
3 if aij = 1 then
4 for k = 1 to n do
5 if k 6= j and aik = 0 then
6 set ajk = 0
7 end
8 if k 6= i and akj = 0 then
9 set aki = 0

10 end

11 end

12 end

13 end

14 end
15 return A

3.2. Proof of Correctness of Algorithm 1

Before we prove the correctness of Algorithm 1, let us make some simple
observations about the algorithm. In this section we will treat the binary re-
lation on a set S as a directed graph with vertex set S. So the Algorithm 1
takes a directed graph A on n vertices (labelled 1 to n) and outputs a directed
transitive subgraph T that is maximal, that is, one cannot add arcs from G to
T to obtain a bigger transitive graph. In the algorithm, note that changing an
entry aij from 1 to 0 implies deletion of the arc (i, j).

Definition 3.2. At any stage of the Algorithm 1 we say the arc (a, b) is visited
if at some earlier stage of the algorithm when i = a in Line 1 and j = b in Line
2 we had aij = 1.

Remark 3.3. We first note the following obvious but important facts of the
Algorithm 1:

(1) No new arc is created during the algorithm because it never changes an
entry aij in the matrix A from 0 to 1. It only deletes arcs.

(2) Line 1, 2 and 3 of the algorithm implies that the algorithm visits the arcs
one by one (in a particular order). And while visiting an arc it decides
whether or not to delete some arcs.

(3) Since in Line 1 the i increases from 1 to n so the algorithm first visits the
arcs starting from vertex 1 and then the arcs starting from vertex 2 and
then the arcs starting from vertex 3 and so on.
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(4) Arcs are deleted only in Line 6 and Line 9 in the algorithm.

(5) While the for loop in Line 1 is in the i-th iteration (that is when the
algorithm is visiting an arc starting at i) no arc starting from the i is
deleted. In Line 6 only arcs starting from j are deleted and j 6= i from
Line 2. And in Line 9 only arcs ending in i are deleted.

(6) In Line 2 the condition j 6= i is given just for ease of understanding the
algorithm. As such even if the condition was not there the algorithm would
have the same output because if j = i in Line 2 and the algorithm pass line
3 (that is aii = 1) then Line 6 would read as “if aik = 0 write aik = 0”
and Line 9 would read as “if aki = 0 write aki = 0”, both of which are no
action statement.

(7) Similarly, in Line 5 the condition k 6= j is given just for ease of under-
standing of the algorithm. If the condition was not there even then the
algorithm would have produced the same result because from Line 3 we
already have aij = 1 and thus if k = j then aik = aij 6= 0.

(8) Similarly, the condition k 6= i in Line 9 has no particular role in the
algorithm.

One of the most important lemma for the proof of correctness is the following:

Lemma 3.4. An arc once visited in Algorithm 1 cannot be deleted later on.

Proof. Let us prove by contradiction.
Suppose at a certain point in the algorithm’s run the arc (i, j) has already

been visited, and then when the algorithm is visiting some other arc starting
from vertex r the algorithm decides to delete the arc (i, j).

If such an arc (i, j) which is deleted after being visited exists then there must
a first one also. Without loss of generality we can assume that the arc (i, j) is
the first such arc: that is when the algorithm decides to delete the arc (i, j) no
other arc that has been visited by the algorithm has been deleted.

By point number 3 in Remark 3.3, r ≥ i. From point number 5 in Remark 3.3
we can say that r 6= i. So we have r > i.

We now consider two cases depending on whether the algorithm decides to
delete the arc (i, j) is Line 6 or Line 9.

r

i

j i

j

k

Case I Case II

Figure 1: Diagrams of the two cases for Lemma 3.4
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Case I. Suppose (i, j) is deleted in Line 6, when the algorithm was visiting
an arc starting from vertex r. Since the algorithm is deleting (i, j) in Line 6 so
from Line 3 and Line 5 we have, at that stage, ari = 1 and arj = 0 (just like in
Figure 1(left)).

Since no arc is ever created by the algorithm (point 1 in Remark 3.3), ari
was 1 when the arc (i, j) was visited. So at the stage when the algorithm was
visiting arc (i, j), arj must be 1, otherwise (r, i) would be deleted by Line 9.
Thus (r, j) was deleted after visiting the arc (i, j) and but before time (i, j) is
being deleted.

By Remark 3.3(5), (r, j) cannot be deleted when visiting an arc starting from
r. So (r, j) must have been deleted when visiting an arc starting from vertex r1
and r1 < r.

We now split this case into two cases depending on whether r1 = j or r1 6= j.

r

i

j

r1

r

i

j

k

Case Ia Case Ib

Figure 2: Diagram for subcases of Case 1 for Lemma 3.4

Case Ia: (r1 6= j)
By Remark 3.3(5) we know at the set of arcs starting from vertex r1 must

have remained unchanged during the r1-th iteration of Line 1.
But since in the r1-th iteration of Line 1 the arc (r, j) was deleted so (r1, r)

must have been present while (r1, j) was absent. Also if ar1i = 0 when visiting
the arc (r1, r), the algorithm would have found ar1r = 1 and ar1i = 0 and in
that case would have deleted (r, i) is Line 6. That would contradict that fact
the the arc (r, i) was present when the arc (i, j) was being deleted. Thus at
the start of the r1-th iteration of Line 1 the situation would have been like in
Figure 2(left)).

But in that case, when visiting (r1, i) the algorithm would have found ar1i =
1 and ar1j = 0 and then would have deleted the arc (i, j). But by assumption
the arc (i, j) is deleted when visiting arc (r, i) and not an arc starting at r1. So
we get a contradiction. And thus if s 6= j we have a contradiction.

Case Ib: (r1 = j)
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Let the arc (r, j) be deleted when the algorithm was visiting the arc (r1, k)
(that is (j, k)) for some k. Since the arc (j, k) is deleted after the arc (i, j) is
visited and before the arc (r, i) is visited, so i < j < r.

Now consider the stage when the arc (j, k) is visited by the algorithm. If
arc (i, j) is not present at that time then the arc (i, j) would have been deleted
which would contradict the assumption that the arc (i, j) is deleted when the
algorithm was visiting (r, i). So just before the stage when the algorithm was
visiting arc (j, k) the situation would have been like in Figure 2(right)).

So the arc (i, k) was present when the algorithm was visiting the arc (j, k).
But since i < j so the arc (i, k) must have been visited already. By the mini-
mality condition that (i, j) is the first arc that is visited and then deleted and
since the arc (i, j) is deleted when visiting arc (r, i), so when the algorithm just
started visiting the arc (r, i) the arc (i, k) must be present. Also at that stage
the arc (r, k) was absent as it was absent when visiting the arc (j, k) and j < r.
So when the algorithm just started to visit (r, i) the situation would have been
like in Figure 2(right)) except the arc (r, j) would also have been missing.

When the algorithm was visiting the arc (j, k) the arc (r, k) was not there.
But when the algorithm visited the arc (i, j) the arc (r, k) must have been there,
else the arc (r, i) would have been deleted at that stage, which would contradict
our assumption that (i, j) was deleted when visiting (r, i). So the arc (r, k) must
have been deleted after the arc (i, k) was visited but before the arc (j, k) was
visited.

If the arc is deleted when visiting some arc starting with k then it means that
i < k < j. Now consider the stage when the algorithm was visiting (r, i). As
described earlier the situation would have been like in Figure 2(right)) except
the arc (r, j) would also have been missing. Since k < j so the algorithm would
have deleted (i, k) before it deleted (i, j). And since the algorithm has also
visited (i, k) earlier so this contradicts the the minimality condition of (i, j)
being the first visited arc to be deleted.

The other case being the arc deleted when visiting the some arc ending in
r, say (t, r), where i < t < j. Thus during the t-th iteration of Line 1 the arcs
(t, r) is present while the arc (t, k) is absent. Now, since in the t-th iteration the
arc (r, j) is not deleted thus it means that the arc (t, j) was present during the
t-th iteration of Line 1. But in that case since arcs (t, j) and (j, k) are present
while (t, k) is not present the algorithm would have deleted the arc (j, k) in the
t-th iteration of Line 1, this contradicts the assumption that the arc (r, j) is
deleted in the j-th iteration of Line 1 when visiting the arc (j, k).

Thus the arc (i, j) cannot be deleted by the algorithm in Line 6 when visiting
an arc starting from r.

Case II. Suppose (i, j) is deleted in Line 9, when the algorithm was visiting
an arc starting from vertex r. In this case j = r. And since r > i so j > i.
Say the arc (i, j) is deleted when visiting arc (j, k), for some vertex k. Since the
algorithm is deleting (i, j) in Line 9 so from Line 3 and Line 8 we have, at that
stage, ajk = 1 and aik = 0 (cf. Figure 1(left)).
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Now if aik was 0 when the algorithm visited the arc (i, j) then the algorithm
would have found aik = 0 and ai,j = 1 and in that case would have deleted the
arc (j, k) in Line 6. That would give a contradiction as in a later stage of the
algorithm (in particular in the j-th iteration of Line 1, with j > i) the arc (j, k)
is present. So when the arc (i, j) was visited the arc (i, k) was present.

Since by Remark 3.3(5) the arc (i, k) cannot be deleted in the ith iteration
of Line 1, so the arc (i, j) must have been visited in the i-th iteration of Line 1
and must have been deleted by the algorithm at a later time but before the arc
(i, j) is deleted. But this would contradict the minimality of the arc (i, j).

Hence even in this case also we get a contradiction. So this completes the
proof.

Next we prove that the output is transitive.

Lemma 3.5. The matrix T output by the Algorithm 1 is transitive.

Proof. Suppose tij = 1 = tjk. By Remark 3.3(1) no arc is created. So at all
stages and in particular, at the initial stage aij = ajk = 1. Suppose aik = 0
at the initial stage. Then when the algorithm visited (i, j) or (j, i) (whichever
comes first), the arc (j, k) or (i, j) (respectively) will be deleted for the lack of
the arc (i, k), as aij = ajk = 1 throughout (cf. Figure 3).

Thus suppose the arc (i, k) is deleted at some stage, say, r-th iteration of
Line 1. Now r > i, j for otherwise the arc (i, k) would be deleted before the
i-th or j-th iteration of Line 1. And in that case in the i-th or j-th iteration of
Line 1 (depending on which of i and j is smaller) of Line 1 either (j, k) or (i, j)
would be deleted. And then at the end at least one of tij and tik must be 0.

But then the arc (i, k) is deleted during the i-th iteration of Line 1 (as
i < r). Since no arc is deleted once it is visited by Lemma 3.4, we have tik = 1.
Therefore T is transitive.

i

j

k

Figure 3: Diagram for Lemma 3.5

Using Lemma 3.5 and Lemma 3.4 we can finally prove the correctness of the
algorithm.

Lemma 3.6. The matrix T output by the Algorithm 1 is a maximal transitive
relation contained in A.
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Proof. T is transitive by Lemma 3.5. Also by Remark 3.3(1) the output matrix
is contained in A. So the only thing remaining to prove is that the output
matrix T is maximal.

Now if T is not a maximal transitive sub-relation then there must be some
arc (say (a, b)) such that the transitive closure of T ∪ {(a, b)} is also contained
in A.

Now by Lemma 3.4, an arc once visited can never be deleted. Also the
algorithm is visiting every undeleted arc. Thus T is the collection of visited arcs
and these arcs are present at every stage of the algorithm.

Thus, every arc in the transitive closure of T ∪{(a, b)} that is not in T must
have been deleted in some iteration of Line 1. Let (i, j) be the first arc to be
deleted among all the arcs that are in the of transitive closure of T ∪ {(a, b)}
but not in T .

Clearly the transitive closure of T ∪ {(i, j)} is also contained in A, and all
the arcs in the transitive closure of T ∪ {(i, j)} either is never deleted or is
deleted after the arc (i, j) is deleted. Suppose the arc (i, j) is deleted in the r-th
iteration of Line 1. We have r 6= i by Remark 3.3(5) and by Lemma 3.4 we have
r < i.

We now consider two cases depending on whether r is j or not.

r

i

j i

j

k

Case I Case II

Figure 4: Diagrams of the two cases for Lemma 3.6

Case I: r 6= j
In this case, since the arc (i, j) was deleted in the r-iteration of Line 1, the

arc (i, j) must have been deleted when the algorithm was visiting the arc (r, i).
So at the stage when the arc (i, j) was deleted, the arc (r, j) must not have been
there (else the algorithm wouldn’t have deleted the arc (i, j)).

If arj = 0 in A, then trj = 0 (by Remark 3.3(1)). But by Lemma 3.4 tri = 1
as the arc (r, i) is being visited. So T ∪ {(i, j)} is not transitive (cf. Figure
4(left)), and the transitive closure of T ∪ {(i, j)} must contain the arc (r, j).
Thus arj = 1 in A, but the arc (r, j) is deleted in some stage of the algorithm
but before the visit of the r-th iteration of Line 1, say, at r1-th iteration of Line
1, with r1 < r.

Thus the arc (r, j) is in the transitive closure of T ∪{(i, j)} and it got deleted
before the deletion of arc (i, j). This is a contradiction to the fact that the arc
(i, j) was the first arc to be deleted. So when r 6= j we have a contradiction.
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Case II: r = j
In this case, since the arc (i, j) was deleted in the j-iteration of Line 1,

the arc (i, j) must have been deleted when the algorithm was visiting some arc
(j, k), for some vertex k. So at the stage when the arc (i, j) was deleted, the arc
(i, k) must not have been there (else the algorithm wouldn’t have deleted the
arc (i, j)).

If aik = 0 in A, then tik = 0 (by Remark 3.3(1)). But by Lemma 3.4 tjk = 1
as the arc (j, k) is being visited. So T ∪ {(i, j)} is not transitive (cf. Figure
4(right)), and the transitive closure of T ∪ {(i, j)} must contain the arc (i, k).
Thus aik = 1 in A, but the arc (i, k) is deleted in some stage of the algorithm
but before the visit of the j-th iteration of Line 1, say, at r1-th iteration of Line
1, with r1 < j.

Thus the arc (i, k) is in the transitive closure of T ∪{(i, j)} and it got deleted
before the deletion of arc (i, j). This is a contradiction to the fact that the arc
(i, j) was the first arc to be deleted. So when r = j we have a contradiction.

Since in both the case we face a contradiction so we have that the output T
is a maximal transitive relation contained in A.

3.3. Better running time analysis of Algorithm 1

If we do a better analysis of the running time of the Algorithm 1 we can
see that the algorithm has running time O(n2 + nm). To see it more formally
consider a new pseudocode of the algorithm that we present as Algorithm 2. It
is not hard to see that both the algorithms are basically same.

Theorem 3.7. Algorithm 2 correctly finds a maximal transitive relation con-
tained in a given binary relation in O(n2 +mn), where m is the number of 1’s
in A.

Proof. The proof for correctness is same as in Theorem 3.1. We calculate only
the time complexity of the algorithm and it is given by

n∑
i=1

(n+ kin), (where ki is the number of 1’s in the ith row)

= n2 + n

n∑
i=1

ki = n2 +mn.

4. Maximum Transitive Relation

In this section, we study the problem of obtaining a maximum transitive
relation contained in a binary relation. We will be using the notation of directed
graphs for binary relations. As before, let’s assume that input directed graph
has m edges. Denote by UG(D) the underlying graph of digraph D.

First, we state a well known result from graph theory.

12



Algorithm 2: Finding a maximal transitive sub-relation

Input : An n× n matrix A = (aij) representing a binary relation.
Output: A matrix T = (tij) which is a maximal transitive relation

contained in the given binary relation A.

1 for i← 1 to n do
2 Initialize Bi = ∅
3 for each s← 1 to n, j 6= i do
4 if aij = 1 then
5 Include j in Bi

6 end

7 end
8 for each j ∈ Bi do
9 for each k = 1 to n do

10 if k 6= j and aik = 0 then
11 Make ajk = 0
12 end
13 if k 6= i and akj = 0 then
14 Make aki = 0
15 end

16 end

17 end

18 end

13



Lemma 4.1. There exists a bipartite subgraph of size m/2 in any graph with
m edges.

Obtaining such a bipartite graph deterministically in poly-time is a folklore
result. This gives the following.

Theorem 4.2. There exists a poly-time algorithm to obtain an m/4 sized
transitive subgraph in any directed graph D with m edges. This gives a 1/4-
approximation algorithm for maximum transitive subgraph problem.

Proof. From Lemma 4.1, we get a bipartite subgraph of UG(D) of size at least
m/2. Now consider the original orientations on this bipartite subgraph. We
collect all the edges in the direction that has more number of edges. This set
of arcs is of size at least m/4 and is transitive as there are no directed paths of
length two in the set.

The obvious question is – given a digraph with m edges, is there a transitive
subgraph of size tm such that t > 1/4? We claim that this is not possible. We
start by proving the following theorem.

Theorem 4.3. For every m, there exists a digraph D with m edges such that
UG(D) is triangle-free and the size of any directed cut in D is at most m/4 +
cm4/5 for some c > 0.

We later observe that there is a one-to-one correspondence between directed
cuts and transitive subgraphs in a digraph. Hence, obtaining a transitive sub-
graph of size better than m/4 (in the constant multiple) would contradict this
theorem - since this would break the upper bound on the size of any directed
cut.

The max-cut problem is an extensively well studied problem both in terms of
finding good approximation algorithms and estimating its bounds combinatori-
ally. Both its undirected and directed versions are NP-complete. Here we give
an upper bound on the size of directed max-cut using probabilistic arguments.

The following notation is borrowed from [13]. Let G be an undirected graph
and U, V be a partition of the vertex set of G. A cut (U, V ) is the set of edges
with one endpoint in U and other endpoint in V . Call e(U, V ) the size of cut
(U, V ). Define

f(G) = max
(U,V )

e(U, V ) and, f(m) = min
G:|E(G)|=m

f(G)

Finding a max-cut was proved to be NP-complete in [14]. Goemans and
Williamson give a semidefinite programming based algorithm in [15] to achieve
an approximation ratio of 0.878. Under the Unique Games Conjecture, this is
the best possible [16]. But a 0.5-approximation algorithm is straight forward -
randomly put each vertex in U or V , leading to an expected cut size of m/2.
Hence, f(m) ≥ m/2. Various bounds have been proposed for f(m), most no-
tably in [17, 18]. Following is an upper bound for f(m) in triangle free graph.
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Theorem 4.4 (Alon [18]). There exists a constant c′ > 0 such that for every m
there exists a triangle-free graph G with m edges satisfying f(G) ≤ m/2+c′m4/5.

Let H be a directed graph and U, V be a partition of vertex set of H. A cut
of H is similarly defined as before. A directed cut (U, V ) is the set of edges with
starting point in U and ending point in V . Call e(U, V ) the size of cut (U, V ).
Define

g(H) = max
(U,V )

e(U, V ) and, g(m) = min
H:|E(H)|=m

g(H)

Finding a directed cut of maximum size is NP-complete (via a simple re-
duction from the max-cut problem). [15] gave a 0.796 approximation for this
problem. Again, a 0.25 approximation is simple, given the 0.5-approximation
of max-cut. Since it is easy to find a cut of size m/2 in undirected graphs and
a directed cut of size m/4 in directed graphs, an obvious question is how much
better one can do as a fraction of m. Alon proved in [18] that the factor 1/2 can
not be improved for max-cuts. We prove that the factor 1/4 can’t be improved
for directed max-cuts.

We now prove the following bound. For any m, there exists a directed graph
with m edges such that for some c > 0,

g(H) ≤ m/4 + cm4/5

The proof idea is as follows. From Theorem 4.4, we know that for every m
there exists an undirected graph with m edges, all whose cuts are bounded by
m/2 + o(m) in size. For any given m in our case, we start with the undirected
graph of Theorem 4.4 satisfying the above bound. We orient this graph uni-
formly at random. We then prove that every cut of size more than m/4 will be
highly balanced, in the sense that - the cut will have almost the same number of
edges going from left to right and right to left. We formalise these ideas below.

We define a notion of balanced cuts of a directed graph and balanced directed
graphs.

Definition 4.5 (δ-balanced cut). For a directed graph, consider a cut (U, V ).
The cut is δ-balanced if

|e(U, V )− e(V,U)| ≤ δ
(
e(U, V ) + e(V,U)

2

)
Definition 4.6 ((k, δ)-balanced graph). A directed graph H is (k, δ)-balanced
if every cut of H of size at least k is δ-balanced.

Lemma 4.7. For any m, δ > 0 and k ≤ m, there exists a directed graph H on
n vertices and m edges such that H is (k, δ)-balanced if n < kδ2/6.

Proof. For the given m, we start with an undirected graph G satisfying the
condition in Theorem 4.4. We orient the edges of G uniformly at random and
independently and call it H.

15



Let C = (U, V ) be a cut in the undirected graph G of size at least k. We
first calculate the probability (over the random orientations of G) that C is not
δ-balanced in H.

P [C is not δ-balanced] = P [|e(U, V )− e(V,U)| > δ(e(U, V ) + e(V,U))/2] (1)

= 2P [e(U, V ) > (1 + δ)|C|/2] (2)

For each edge ei in the cut (U, V ), define a random variable Xi as follows,

Xi =

{
1 if ei is directed from U to V

0 otherwise

Xi’s are i.i.d. random variables with probability 1/2. Then, e(U, V ) =
∑

ei∈(U,V )Xi

with mean |C|/2. We apply the standard Chernoff bound to get an upper bound
for the probability in Equation (2),

P [C is not δ-balanced] ≤ 2 exp(−δ2|C|/6)

≤ 2 exp(−δ2k/6)

We now calculate the probability that the graph H is (k, δ)-balanced.

P [H is (k, δ)-balanced]

= 1− P [there exists a cut C in H of size at least k which is not δ balanced]

= 1− P

 ⋃
cut C,|C|≥k

C is not δ-balanced


≥ 1− 2n(2 exp(−δ2k/6))

> 0, if n < kδ2/6

The following lemma gives us a directed graph H, such that any cut of size
at least m/4 in H is ‘well’ balanced. This result is used in proving the final
theorem.

Lemma 4.8. For any m, there exists a directed graph H with m edges such
that H is (m/4, α/m1/5)-balanced for some α > 0.

Proof. By choosing k = m/4 and δ = α/m1/5 in Lemma 4.7, we get H if

n ≤ (m/4)(α/m1/5)2/6

or, m ≥ (24/α2)5/3n5/3

The counterexample in Theorem 4.4 requires that m = (1/8 + o(1))n5/3. Hence
we need α ≥

√
24/(1/8 + o(1))3/10.

We now prove our main claim.
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Proof of Theorem 4.3. For the given m, Lemma 4.8 gives a digraph H that
is (m/4, α/m1/5)–balanced, which would imply that every cut of size at least
m/4 is α/m1/5–balanced. Consider any cut (U, V ) in H. We have,

|e(U, V )− e(V,U)| ≤ α/m1/5|(U, V )|
|e(U, V )|, |e(V,U)| ≤ |(U, V )|/2 + (α/m1/5)|(U, V )|/4

≤ (m/2 + c′m4/5)/2 + (α/4m1/5)m

≤ m/4 + (c′/2 + α/4)m4/5

In the second last inequality we use the fact that |(U, V )| ≤ m/2 + c′m4/5

from Theorem 4.4. This completes the proof with the choice of c = (c′/2+α/4).

In order to improve upon the approximation factor, we focus on the class
of triangle-free directed graphs. First we make the following simple observation
about triangle-free directed graphs.

Lemma 4.9. Given a digraph D such that UG(D) is triangle-free; any transitive
subgraph of D has no directed paths of length two.

Let G be a digraph and U , V be a partition of the vertex set of H. A
directed cut (U, V ) is the set of edges with a starting in U and ending point in
V . The MAX-DICUT problem is the problem of obtaining a largest directed
cut in a graph. This is NP-hard. [19] gives an approximation algorithm for the
MAX-DICUT problem.

Theorem 4.10 (see [19]). There exists a 0.874-approximation algorithm for
the MAX-DICUT problem.

As a corollary of Lemma 4.9, we have the following.

Lemma 4.11. In a digraph D such that UG(D) is triangle-free, every directed
cut of D is also a transitive subgraph of D.

This implies that finding the maximum transitive subgraph is same as the
MAX-DICUT problem for digraphs D with UG(D) being triangle free.

Theorem 4.12. There exists a 0.874-approximation algorithm for finding the
maximum transitive subgraph in a digraph D such that UG(D) is triangle-free.

5. Conclusion

We have presented an algorithm that given a directed graph on n vertices
and m arcs outputs a maximal transitive subgraph is time O(n2 + nm). This
is the first algorithm for finding maximal transitive subgraph that we know of,
that does better than the usual greedy algorithm. Although it might be the
case that this is an optimal algorithm, we are unable to prove a lower bound
for this problem.

There are many related problems for which one might expect similar kind of
algorithm - that is O(n3) time algorithm that does better than the usual greedy
algorithm. We would like to present them as open problems:
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1. Given a directed graph G on n vertices and a transitive subgraph H of G,
check if H is a maximal transitive subgraph of G.

2. Given a directed graph G on n vertices and a subgraph H of G, find a
maximal transitive subgraph of G that also contains H.

Obviously an algorithm for the second problem would also give an algorithm
for the first problem.

In the case of maximum transitive subgraph, the central question is obtaining
a better approximation ratio than 1/4 in a general digraph.
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