
Simultaneous encodings for range and next/previous larger/smaller

value queries∗

Seungbum Jo and Srinivasa Rao Satti
Seoul National University, South Korea

sbcho,ssrao@tcs.snu.ac.kr

Abstract

Given an array of n elements from a total order, we propose encodings that support various range
queries (range minimum, range maximum and their variants), and previous and next smaller/larger value
queries. When query time is not of concern, we obtain a 4.088n+o(n)-bit encoding that supports all these
queries. For the case when we need to support all these queries in constant time, we give an encoding
that takes 4.585n + o(n) bits, where n is the length of input array. This improves the 5.08n + o(n)-bit
encoding obtained by encoding the colored 2d-Min and Max heaps proposed by Fischer [TCS, 2011].
We first extend the original DFUDS [Algorithmica, 2005] encoding of the colored 2d-Min (Max) heap
that supports the queries in constant time. Then, we combine the extended DFUDS of 2d-Min heap and
2d-Max heap using the Min-Max encoding of Gawrychowski and Nicholson [ICALP, 2015] with some
modifications. We also obtain encodings that take lesser space and support a subset of these queries.

1 Introduction

Given an array A[1 . . . n] of n elements from a total order. For 1 ≤ i ≤ j ≤ n, suppose that there are m
(l) positions i ≤ p1 ≤ · · · ≤ pm ≤ j (i ≤ q1 ≤ · · · ≤ ql ≤ j) in A which are the positions of minimum
(maximum) values between A[i] and A[j]. Then we can define various range minimum (maximum) queries
as follows.

• Range Minimum Query (RMinQA(i, j)) : Return an arbitrary position among p1, . . . , pm.

• Range Leftmost Minimum Query (RLMinQA(i, j)) : Return p1.

• Range Rightmost Minimum Query (RRMinQA(i, j)) : Return pj .

• Range k-th Minimum Query (RkMinQA(i, j)) : Return pk (for 1 ≤ k ≤ m).

• Range Maximum Query (RMaxQA(i, j)) : Return an arbitrary position among q1, . . . , ql.

• Range Leftmost Maximum Query (RLMaxQA(i, j)) : Return q1.

• Range Rightmost Maximum Query (RRMaxQA(i, j)) : Return ql.

• Range k-th Maximum Query (RkMaxQA(i, j)) : Return qk (for 1 ≤ k ≤ l).

Also for 1 ≤ i ≤ n, we consider following additional queries on A.

• Previous Smaller Value (PSVA(i)) : max (j : j < i,A[j] < A[i]).

∗Preliminary version of these results have appeared in the proceedings of the 21st International Computing and Combinatorics
Conference (COCOON-2015) [1]

1

ar
X

iv
:1

61
2.

07
49

3v
1

 [
cs

.D
S]

 2
2

D
ec

 2
01

6

• Next Smaller Value (NSVA(i)) : min (j : j > i,A[j] < A[i]).

• Previous Larger Value (PLVA(i)) : max (j : j < i,A[j] > A[i]).

• Next Larger Value (NLVA(i)) : min (j : j > i,A[j] > A[i]).

For define above four queries formally, we assume that A[0] = A[n + 1] = −∞ for PSVA(i) and NSVA(i).
Similarly we assume that A[0] = A[n+ 1] =∞ for PLVA(i) and NLVA(i).

Our aim is to obtain space-efficient encodings that support these queries efficiently. An encoding should
support the queries without accessing the input array (at query time). The minimum size of an encoding is
also referred to as the effective entropy of the input data (with respect to the queries) [2]. We assume the
standard word-RAM model [3] with word size Θ(lg n).

Previous Work The range minimum/maximum problem has been well-studied in the literature. It is well-
known [4] that finding RMinQA can be transformed to the problem of finding the LCA (Lowest Common
Ancestor) between (the nodes corresponding to) the two query positions in the Cartesian tree constructed
on A. Furthermore, since different topological structures of the Cartesian tree on A give rise to different
set of answers for RMinQA on A, one can obtain an information-theoretic lower bound of 2n−Θ(lg n)1 bits
on the encoding of A that answers RMinQ queries. Sadakane [5] proposed the 4n + o(n)-bit encoding with
constant query time for RMinQA problem using the balanced parentheses (BP) [6] of the Cartesian tree of
A with some additional nodes. Fischer and Heun [7] introduced the 2d-Min heap, which is a variant of
the Cartesian tree, and showed how to encode it using the Depth first unary degree sequence (DFUDS) [8]
representation in 2n+ o(n) bits which supports RMinQA queries in constant time. Davoodi et al. show that
same 2n+ o(n)-bit encoding with constant query time can be obtained by encoding the Cartesian trees [9].
For RkMinQA, Fischer and Heun [10] defined the approximate range median of minima query problem which
returns a position RkMinQA for some 1

16m ≤ k ≤ 15
16m, and proposed an encoding that uses 2.54n + o(n)

bits and supports the approximate RMinQA queries in constant time, using a Super Cartesian tree.
For PSVA and NSVA, if all elements in A are distinct, then 2n + o(n) bits are enough to answer the

queries in constant time, by using the 2d-Min heap of Fischer and Heun [7]. For the general case, Fischer [11]
proposed the colored 2d-Min heap, and proposed an optimal 2.54n + o(n)-bit encoding which can answer
PSVA and NSVA in constant time. As the extension of the PSVA and NSVA, one can define the Nearest Larger
Neighbor(NLN(i)) on A which returns PSVA(i) if i−PSVA(i) ≤ NSVA(i)− i and returns NSVA(i) otherwise.
This problem was first discussed by Berkman et al. [12] and they proposed a parallel algorithm to answer
NLN queries for all positions on the array (this problem is defined as All-Nearest Larger Neighbor (ANLN)
problem.) and Asano and Kirkpatrick [13] proposed time-space tradeoff algorithms for ANLN problem.
Jayapaul et al. [14] proposed 2n+ o(n)-bit encoding which supports an NLN(i) on A in constant time if all
elements in A are distinct.

One can support both RMinQA and RMaxQA in constant time trivially using the encodings for RMinQA

and RMaxQA queries, using a total of 4n + o(n) bits. Gawrychowski and Nicholson reduce this space to
3n + o(n) bits while maintaining constant time query time [15]. Their scheme also can support PSVA and
PLVA in constant time when there are no consecutive equal elements in A.

Our results In this paper, we first extend the original DFUDS [8] for colored 2d-Min(Max) heap that
supports the queries in constant time. Then, we combine the extended DFUDS of 2d-Min heap and 2d-Max
heap using Gawrychowski and Nicholson’s Min-Max encoding [15] with some modifications. As a result, we
obtain the following non-trivial encodings that support a wide range of queries.

Theorem 1. An array A[1 . . . n] containing n elements from a total order can be encoded using

(a) at most 3.17n + o(n) bits to support RMinQA, RMaxQA, RRMinQA, RRMaxQA, PSVA, and PLVA
queries;

1We use lgn to denote log2 n

2

(b) at most 3.322n+ o(n) bits to support the queries in (a) in constant time;

(c) at most 4.088n + o(n) bits to support RMinQA, RRMinQA, RLMinQA, RkMinQA, PSVA, NSVA,
RMaxQA, RRMaxQA, RLMaxQA, RkMaxQA, PLVA and NLVA queries; and

(d) at most 4.585n+ o(n) bits to support the queries in (c) in constant time.

If the array contains no two consecutive equal elements, then (a) and (b) take 3n + o(n) bits, and (c) and
(d) take 4n+ o(n) bits.

This paper organized as follows. Section 2 introduces various data structures that we use later in our
encodings. In Section 3, we describe the encoding of colored 2d-Min heap by extending the DFUDS of
2d-Min heap. This encoding uses a distinct approach from the encoding of the colored 2d-Min heap by
Fischer [11]. Finally, in Section 4, we combine the encoding of this colored 2d-Min heap and Gawrychowski
and Nicholson’s Min-Max encoding [15] with some modifications, to obtain our main result (Theorem 1).

2 Preliminaries

We first introduce some useful data structures that we use to encode various bit vectors and balanced
parenthesis sequences.

Bit strings (parenthesis sequences) Given a string S[1 . . . n] over the alphabet Σ = {(,)}, rankS(i, x)
returns the number of occurrence of the pattern x ∈ Σ∗ in S[1 . . . i] and selectS(i, x) returns the first position
of i-th occurrence of x ∈ Σ∗ in S. Combining the results from [16] and [17], one can show the following.

Lemma 2.1 ([16], [17]). Let S be a string of length n over the alphabet Σ = {′(′,′)′} containing m closing
parentheses. One can encode S using lg

(
n
m

)
+ o(n) bits to support both rankS(i, x) and selectS(i, x) in

constant time, for any pattern x with length |x| ≤ 1/2 lg n. Also, we can decode any lg n consecutive bits in
S in constant time.

Balanced parenthesis sequences Given a string S[1 . . . n] over the alphabet Σ = {′(′,′)′}, if S is balanced
and S[i] is an open (close) parenthesis, then we can define findopenS(i) (findcloseS(i)) which returns the
position of the matching close (open) parenthesis to S[i]. Now we introduce the lemma from Munro and
Raman [6].

Lemma 2.2 ([6]). Let S be a balanced parenthesis sequence of length n. If one can access any lg n-bit
subsequence of S in constant time, Then both findopenS(i) and findcloseS(i) can be supported in constant
time with o(n)-bit additional space.

Depth first unary degree sequence Depth first unary degree sequence (DFUDS) is one of the well-
known methods for representing ordinal trees [8]. It consists of a balanced sequence of open and closed
parentheses, which can be defined inductively as follows. If the tree consists of the single node, its DFUDS
is ‘()’. Otherwise, if the ordinal tree T has k subtrees T1 . . . Tk, then its DFUDS, DT is the sequence
(k+1)dT1 . . . dTk

(i.e., k+ 1 open parentheses followed by a close parenthesis concatenated with the ‘partial’
DFUDS sequences dT1 . . . dTk

) where dTi , for 1 ≤ i ≤ k, is the DFUDS of the subtree Ti (i.e., DTi) with the
first open parenthesis removed. From the above construction, it is easy to prove by induction that if T has
n nodes, then the size of DT is 2n bits. The following lemma shows that DFUDS representation can be used
to support various navigational operations on the tree efficiently.

Lemma 2.3 ([18], [8], [19]). Given an ordinal tree T on n nodes with DFUDS sequence DT , one can
construct an auxiliary structure of size o(n) bits to support the following operations in constant time: for
any two nodes x and y in T ,

3

- parentT (x) : Label of the parent node of node x.
- degreeT (x) : Degree of node x.
- depthT (x) : Depth of node x (The depth of the root node is 0).
- subtree sizeT (x) : Size of the subtree of T which has the x as the root node.
- next siblingT (x) : The label of the next sibling of the node x.
- childT (x, i) : Label of the i-th child of the node x.
- child rankT (x) : Number of siblings left to the node x.
- laT (x, i) : Label of the level ancestor of node x at depth i.
- lcaT (x, y) : Label of the least common ancestor of node x and y.
- pre rankT (i) : The preorder rank of the node in T corresponding to DT [i].
- pre selectT (x) : The first position of node with preorder rank x in DT .

We use the following lemma to bound the space usage of the data structures described in Section 4.

Lemma 2.4. Given two positive integers a and n, and a nonnegative integer k ≤ n, lg
(
n
k

)
+ a(n − k) ≤

n lg (2a + 1).

Proof. By raising both sides to the power of 2, it is enough to prove that
(
n
k

)
2(a(n−k)) ≤ (2a + 1)n. We

prove the lemma by induction on n and k. In the base case, when n = 1 and k = 0, the claim holds since

2a < (2a + 1). Now suppose that
(
n′

k′

)
2a(n

′−k′) ≤ (2a + 1)n
′

for all 0 < n′ ≤ n and 0 ≤ k′ ≤ k. Then(
n+ 1

k

)
2a(n+1−k) =

((
n

k

)
+

(
n

k − 1

))
2a(n+1−k) ≤ 2a(2a + 1)n + (2a + 1)n

= (2a + 1)n+1 by induction hypothesis.

Also by induction hypothesis,(
n

k + 1

)
2a(n−(k+1)) =

((
n− 1

k

)
+

(
n− 1

k + 1

))
2a(n−(k+1)) ≤ (2a + 1)n−1

(
1 +

(
n−1
k+1

)
(2a(n−1−k))

(2a + 1)n−1

)

Since
(
n−1
k+1

)
2a(n−1−k) < 2a(2a + 1)n−1(∵ (2a + 1)n−1 =

∑n−1
m=0

(
n−1
m

)
2a(n−1−m)),

(2a + 1)n−1

(
1 +

(
n−1
k+1

)
(2a(n−1−k))

(2a + 1)n−1

)
< (2a + 1)n−1(1 + 2a) = (2a + 1)n.

Therefore the above inequality still holds when n′ = n+ 1 or k′ = k + 1, which proves the lemma.

2.1 2d-Min heap

The 2d-Min heap [7] on A, denoted by Min(A), is designed to encode the answers of RMinQA(i, j) efficiently.
We can also define the 2d-Max heap on A (Max(A)) analogously. Min(A) is an ordered labeled tree with n+1
nodes labeled with 0 . . . n. Each node in Min(A) is labeled by its preorder rank and each label corresponds
to a position in A. We extend the array A[1 . . . n] to A[0 . . . n] with A[0] = −∞. In the labeled tree, the
node x denotes the node labeled x. For every vertex i, except for the root node, its parent node is (labeled
with) PSVA(i).

Using the operations in Lemma 2.3, Fischer and Heun [7] showed that RMinQA(i, j) can be answered in
constant time using DMin(A). If the elements in A are not distinct, RMinQA(i, j) returns the RRMinQA(i, j).

Fischer and Heun [7] also proposed a linear-time stack-based algorithm to construct DMin(A). Their
algorithm maintains a min-stack consisting of a decreasing sequence of elements from top to the bottom.
The elements of A are pushed into the min-stack from right to left and before pushing the element A[i],
all the elements from the stack that are larger than A[i] are popped. Starting with an empty string, the
algorithm constructs a sequence S as described below. Whenever k elements are popped from the stack and

4

then an element is pushed into the stack, (k) is prepended to S. Finally, after pushing A[1] into the stack,
if the stack contains m elements, then (m+1) is prepended to S. One can show that this sequence S is the
same as the DFUDS sequence DMin(A). Analogously, one can construct DMax(A) using a similar stack-based
algorithm.

i 0 1 2 3 4 5 6 7 8 9 10 11 12
A[i] -∞ 3 8 5 6 6 6 3 2 2 7 10 9

0

1

3 10

4 11 12

9

5 6

8 7

2

Figure 1: Colored 2d-Min heap of A

Colored 2d-Min heap From the definition of 2d-Min heap, it is easy show that PSVA(i), for 1 ≤ i ≤ n,
is the label corresponding to the parent of the node labeled i in Min(A). Thus, using the encoding of Lemma
2.3 using 2n + o(n) bits, one can support the PSVA(i) queries in constant time. A straightforward way to
support NSVA(i) is to construct the 2d-Min heap structure for the reverse of the array A, and encode it
using an additional 2n+ o(n) bits. Therefore one can encode all answers of PSVA and NSVA using 4n+ o(n)
bits with constant query time. To reduce this size, Fischer proposed the colored 2d-Min heap [11]. This
has the same structure as normal 2d-Min heap, and in addition, the vertices are colored either red or blue.
Suppose there is a parent node x in the colored 2d-Min heap with its children x1 . . . xk. Then for 1 < i ≤ k,
node xi is colored red if A[xi] < A[xi−1], and all the other nodes are colored blue (see Figure 1). We define
the operation NRS(xi) which returns the leftmost red sibling to the right (i.e., next red sibling) of xi.

The following lemma can be used to support NSVA(i) efficiently using the colored 2d-Min heap represen-
tation.

Lemma 2.5 ([11]). Let CMin(A) be the colored 2d-Min heap on A. Suppose there is a parent node x in
CMin(A) with its children x1 . . . xk. Then for 1 ≤ i ≤ k,

NSVA(xi) =

{
NRS(xi) if NRS(xi) exists,
xk + subtree size(xk) otherwise.

If all the elements in A are distinct, then a 2n+o(n)-bit encoding of Min(A) is enough to support RMinQA,
PSVA and NSVA with constant query time. In the general case, Fischer proposed an optimal 2.54n+o(n)-bit
encoding of colored 2d-Min heap on A using TC-encoding [20]. This encoding also supports two additional
operations, namely modified childCMin(A)(x, i) and child rankCMin(A)(x), which answer the i-th red child of
node x and the number of red siblings to the left of node x, respectively, in constant time. Using these
operations, one can also support RLMinQA and RkMinQA in constant time.

2.2 Encoding range min-max queries

One can support both RMinQA and RMaxQA in constant time by encoding both Min(A) and Max(A) sep-
arately using 4n + o(n) bits. Gawrychowski and Nicholson [15] described an alternate encoding that uses
only 3n + o(n) bits while still supporting the queries in O(1) time. There are two key observations which
are used in obtaining this structure:

5

0

1 5

2 3 7

4 8 9

6

0

1 5

2 3 7

6

3

3

Min(A) Max(A)

i 0 1 2 3 4 5 6 7 8 9
A[i] -∞(∞) 3 8 5 6 3 2 7 10 9

DMin(A) (((() (()) ())) () (()))
DMax(A) (((()) ((()) () ())) ())

T () (())))) ())
U 0 1 0 1 1 0 0 1

Figure 2: Encoding of 2d-Min heap and 2d-Max heap of A

1. If we can access any lg n-bit substring of DMin(A) and DMax(A) on O(1) time, we can still support both
queries in O(1) time, using an additional o(n) bits;

2. To generate DMin(A) and DMax(A) using Fischer and Heun’s stack-based algorithm, in each step we push
an element into both the min-stack and max-stack, and pop a certain number of elements from exactly
one of the stacks (assuming that A[i] 6= A[i+ 1], for all i, where 1 ≤ i < n).

Now we describe the overall encoding in [15] briefly. The structure consists of two bit strings T and U
along with various auxiliary structures. For 1 ≤ i < n, if k elements are popped from the min (max)-stack
when we push A[i](1 ≤ i < n) into both the stacks (from right to left), we prepend (k−1) and 0(1) to the
currently generated T and U respectively. Initially, when i = n, both min and max stacks push ‘)’ so we do
not prepend anything to both strings. But we can recover it easily because this is the last ‘)’ in common.
Finally, after pushing A[1] into both the stacks, we pop the remaining elements from them, and store the
number of these popped elements in min and max stack explicitly using lg n bits. One can show that the
size of T is at most 2n bits, and that of U is n− 1 bits. Thus the total space usage is at most 3n bits. See
Algorithm 1 for the pseudocode, and Figure 2 for an example.

To recover any lg n-bit substring, DMin(A)[d1 . . . dlgn], in constant time we construct the following auxiliary
structures. We first divide DMin(A) into blocks of size lg n, and for the starting position of each block, store its
corresponding position in T . For this purpose, we construct a bit string Bmin of length at most 2n such that
Bmin[i] = 1 if and only if T [i] corresponds to the start position of the ith-block in DMin(A). We encode Bmin
using the representation of Lemma 2.1 which takes o(n) bits since the number of ones in Bmin is 2n/ lg n.
Then if d1 belongs to the i-th block, it is enough to recover the i-th and the (i + 1)-st blocks in the worst
case.

Now, to recover the i-th block of DMin(A), we first compute the distance between i-th and (i + 1)-st
1’s in Bmin. If this distance is less than c lg n for some fixed constant c > 9, we call it a min-good block,
otherwise, we call it a min-bad block. We can recover a min-good block in DMin(A) in O(c) time using a
o(n)-bit pre-computed table indexed by all possible strings of length lg n/4 bits for T and U (we can find the
position corresponding to the i-th block in U in constant time), which stores the appropriate O(lg n) bits of
DMin(A) obtained from them (see [15] for details). For min-bad blocks, we store the answers explicitly. This
takes (2n/(c lg n)) · lg n = 2n/c additional bits. To save this additional space, we store the min-bad blocks
in compressed form using the property that any min-bad block in DMin(A) and DMax(A) cannot overlap more
than 4 lg n bits in T , (since any 2 lg n consecutive bits in T consist of at least lg n bits from either DMin(A) or
DMax(A)). So, for c > 9 we can save more than lg n bits by compressing the remaining (c− 4) lg n bits in T
corresponding to each min-bad block in DMin(A). Thus, we can reconstruct any lg n-bit substring of DMin(A)

(and DMax(A)) in constant time, using a total of 3n+ o(n) bits.

6

Algorithm 1 Construction algorithm for T and U

1: Initialize T to ‘)’, and U to ε.
2: Initialize Min-stack and Max-stack as empty stacks
3: Push A[n] into Min-stack and Max-stack.
4: for i := n− 1 to 1 do
5: counter = 0
6: if A[i] < A[i− 1] then
7: Push A[i] into Max-stack
8: while ((Min-stack is not empty) & (Top of Min-stack > A[i])) do
9: Pop Min-stack

10: counter = counter + 1
11: end while
12: Push A[i] into Min-stack
13: Prepend (counter−1) to T and 0 to U
14: else // A[i] > A[i− 1]
15: Push A[i] into Min-stack
16: while ((Max-stack is not empty) & (Top of Max-stack < A[i])) do
17: Pop Max-stack
18: counter = counter + 1
19: end while
20: Push A[i] into Max-stack
21: Prepend (counter−1) to T and 1 to U
22: end if
23: end for

We first observe that if there is a position i, for 1 ≤ i < n such that A[i] = A[i + 1], we cannot decode
the ‘)′ in T which corresponds to A[i] only using T and U since we do not pop any elements from both min
and max stacks when we push A[i] into both stacks. Gawrychowski and Nicholson [15] handle this case by
defining an ordering between equal elements (for example, by breaking the ties based on their positions).
But this ordering does not help us in supporting the PSV and PLV queries. We describe how to handle the
case when there are repeated (consecutive) elements in A, to answer the PSV and PLV queries.

Gawrychowski and Nicholson [15] also show that any encoding that supports both RMinQA and RMaxQA

cannot use less than 3n−Θ(lg n) bits for sufficiently large n (even if all elements in A are distinct).

3 Extended DFUDS for colored 2d-Min heap

In this section, we describe an encoding of colored 2d-Min heap on A (CMin(A)) using at most 3n + o(n)
bits while supporting RMinQA, RRMinQA, RLMinQA, RkMinQA, PSVA and NSVA in constant time. This is
done by storing the color information of the nodes using a bit string of length at most n, in addition to the
DFUDS representation of CMin(A). We can also encode the colored 2d-Max heap in a similar way. In the
worst case, this representation uses more space than the colored 2d-Min heap encoding of Fischer [11], but
the advantage is that it separates the tree encoding from the color information. We later describe how to
combine the tree encodings of the 2d-Min heap and 2d-Max heap, and (separately) also combine the color
information of the two trees, to reduce the overall space.

Now we describe the main encoding of CMin(A). The encoding consists of two parts: DCMin(A) and Vmin.
The sequence DCMin(A) is same as DMin(A), the DFUDS representation of CMin(A), which takes 2n+o(n) bits
and supports the operations in Lemma 2.3 in constant time.

The bit string Vmin stores the color information of all nodes in CMin(A), except the nodes which are the
leftmost children of their parents (the color of these nodes is always blue), as follows. Suppose there are p
nodes in CMin(A), for 1 ≤ p ≤ n, which are the leftmost children of their parents. Then we define the bit

7

string Vmin[0 . . . n− p] as follows. For 1 ≤ i ≤ n− p, Vmin[i] stores 0 if the color of the node

nodeVmin
(i) = pre rankCMin(A)(findcloseDCMin(A)

(selectDCMin(A)
(i+ 1, ‘((′)) + 1)

in CMin(A) is red, and 1 otherwise. This follows from the observation that if there is an i, 1 ≤ i < 2n − 1
such that DCMin(A)[i] = ‘(′ and DCMin(A)[i+ 1] = ‘)′, then DCMin(A)[i+ 2] corresponds to the node which is the
leftmost child of the node pre rankCMin(A)(DCMin(A)[i]), so we skip these nodes by counting the pattern ‘((′ in
DCMin(A). Also, we set Vmin[0] = 1, which corresponds to the first open parenthesis in DCMin(A). For example,
for CMin(A) in Figure 1, we store the node 3’s color in Vmin[4]. This is becuase selectDCMin(A)

(5, ‘((′) = 7,
findcloseDCMin(A)

(7) + 1 = 11 and pre rankCMin(A)(11) = 3 (see Figure 3). We define the bit string Vmax in a
similar way.

i 0 1 2 3 4 5 6 7 8 9 10 11 12
A[i] -∞ 3 8 5 6 6 6 3 2 2 7 10 9

0

1

3 10

4 11 12

9

5 6

8 7

2

DCMin(A) ((((() (()) ((()))))) () (()))
pre rankCMin(A) 0 0 0 0 0 0 1 1 1 2 3 3 3 3 4 5 6 7 8 9 9 10 10 10 11 12

Vmin 1 1 0 1 0 1 1 0
nodeVmin - 9 8 7 3 6 5 12

pre selectCMin(A) 1 7 10 11 15 16 17 18 19 20 22 25 26
node colorCMin(A) - - - 4 - 6 5 3 2 1 - - 7

Figure 3: DCMin(A), pre rankCMin(A), Vmin[i], nodeVmin
, pre selectCMin(A) and node colorCMin(A) for colored

2d-Min heap

The following lemma shows that encoding Min(A) and Vmin separately, using at most 3n+ o(n) bits, has
the same functionality as the CMin(A) encoding of Fischer [11], which only takes 2.54n+ o(n) bits.

Lemma 3.1. For an array A[1 . . . n] of length n, there is an encoding for A which takes at most 3n+ o(n)
bits and supports RMinQA, RRMinQA, RLMinQA, RkMinQA, PSVA and NSVA in constant time.

Proof. The encoding consists of the 2n + o(n)-bit encoding of Min(A) encoded using structure of Lemma
2.3, together with the bit string Vmin that stores the color information of the nodes in CMin(A). We use a
o(n)-bit auxiliary structure to support the rank/select queries on Vmin in constant time. Since the size of
Vmin is at most n bits, the total space of the encoding is at most 3n+ o(n) bits.

To define the correspondence between the nodes in CMin(A) and the positions in the bit string Vmin, we
define the following operation. For 0 ≤ i ≤ n, we define node colorCMin(A)(i) as the position of Vmin that
stores the color of the node i in CMin(A). This can be computed in constant time, using o(n) bits, by

node colorCMin(A)(i) =

{
undefined if child rankCMin(A)(i) = 0
rankDCMin(A)

(c, ‘((′)− 1 otherwise

where c = findopenDCMin(A)
(pre selectCMin(A)(i) − 1) (note that node colorCMin(A) is the inverse operation of

nodeVmin
, i.e, if nodeVmin

(k) = i, then node colorCMin(A)(i) = k).

8

Now we describe how to support the queries in constant time. Fischer and Heun [7] showed that
RMinQA(i, j) can be answered in constant time using DCMin(A). In fact, they return the position
RRMinQA(i, j) as the answer to RMinQA(i, j). Also, as mentioned earlier, PSVA(i) = parentCMin(A)(i), and
hence can be answered in constant time. Therefore, it is enough to describe how to find RLMinQA(i, j),
RkMinQA(i, j) and NSVA(i) in constant time.

RLMinQA(i, j): As shown by Fischer and Huen [7], all corresponding values of left siblings of the
node RRMinQA(i, j) in A are at least A[RRMinQA(i, j)] (i.e., the values of the siblings are in the non-
increasing order, from left to right). Also, for a child node m of any of the left siblings of the node
RRMinQA(i, j), A[m] > A[RRMinQA(i, j)]. Therefore, the position RLMinQA(i, j) corresponds to one of the
left siblings of the node whose position corresponds to RRMinQA(i, j).

We first check whether the color of the node RRMinQA(i, j) is red or not using Vmin. If

Vmin[node colorCMin(A)(RRMinQA(i, j))] = 0

then RLMinQA(i, j) = RRMinQA(i, j). If not, we find the node leftmost(i, j) which is the leftmost sibling
of the node RRMinQA(i, j) between the nodes in [i . . . j]. leftmost(i, j) can be found in constant time by
computing the depth of node i and comparing this value with dright, the depth of the node RRMinQA(i, j).
More specifically,

leftmost(i, j) =

{
i if depthCMin(A)(i) = dright.
next siblingCMin(A)(laCMin(A)(i, dright)) otherwise.

In the next step, find the leftmost blue sibling nv such that there is no red sibling between nv and
RRMinQA(i, j). This can be found in constant time by first finding the index v using the equation

v = selectVmin
(rankVmin

(node colorCMin(A)(RRMinQA(i, j)), 0) + 1, 0)− 1

and then finding the node nv using nv = nodeVmin
(v). If child rankCMin(A)(nv) ≤

child rankCMin(A)(leftmost(i, j)) or child rankCMin(A)(nv) = 1 (this is the case that leftmost(i, j) can
be the the lestmost sibling), then RLMinQA(i, j) = leftmost(i, j). Otherwise, RLMinQA(i, j) = nv.

RkMinQA(i, j): This query can be answered in constant time by returning the k-th sibling (in the
left-to-right order) of RLMinQA(i, j), if it exists. More formally, if child rankCMin(A)(RRMinQA(i, j)) −
child rankCMin(A)(RLMinQA(i, j)) is at least k−1, then RkMinQA(i, j) exists; and in this case, RkMinQA(i, j)
can be computed in constant time by computing

childCMin(A)(parentCMin(A)(RRMinQA(i, j)),RLMinQA(i, j) + k − 1).

NSVA(i): By Lemma 2.5, it is enough to show how to support NRS(i) in constant time (note that we can
support subtree size in constant time using Lemma 2.3). If node i is the rightmost sibling, then NRS(i)
does not exist. Otherwise we define v′ as selectVmin

(rankVmin
(node colorCMin(A)(next sibling(i)), 0), 0). Let

nv′ = nodeVmin
(v′). If the parent of nv′ is same as the parent of i, then NRS(i) = nv′ ; otherwise NRS(i)

does not exist. Finally, if NRS(i) does not exist, we compute the node r which is the rightmost sibling of
the node i can be found by

childCMin(A)(parentCMin(A)(i), degreeCMin(A)(parentCMin(A)(i))− 1).

Then NSVA(i) = r + subtree sizeCMin(A)(r). All these operations can be done in constant time.

4 Encoding colored 2d-Min and 2d-Max heaps

In this section, we describe our encodings for supporting various subsets of operations, proving the results
stated in Theorem 1. As mentioned in Section 2.1, the TC-encoding of the colored 2d-Min heap of Fischer [11]

9

can answer RMinQA, RRMinQA, PSVA and NSVA queries in O(1) time, using 2.54n+o(n) bits. The following
lemma shows that we can also support the queries RLMinQA and RkMinQA using the same structure.

Lemma 4.1. For an array A[1 . . . n] of length n, RLMinQA, RkMinQA can be answered in constant time by
the TC-encoding of colored 2d-Min heap.

Proof. Fischer [11] defined two operations, which are modifications of the child and child rank, as follows:

• mchildCMin(A)(x, i) - returns the i-th red child of node x in CMin(A), and

• mchild rankCMin(A)(x) - returns the number of red siblings to the left of node x in CMin(A).

He showed that the TC-encoding of the colored 2d-Min heap can support mchildCMin(A)(x, i)
and mchild rankCMin(A)(x) in constant time. Also, since the TC-encoding supports depthCMin(A),
next siblingCMin(A), laCMin(A), childCMin(A) and child rankCMin(A) in constant time on ordinal trees [21], we can
support leftmost(i, j) (defined in the proof of the Lemma 3.1) in constant time. For answering RLMinQA(i, j),
we first find the previous red sibling l of RRMinQA(i, j) using mchildCMin(A) and mchild rankCMin(A). If such
a node l exists, we compare the child ranks of next siblingCMin(A)(l) and leftmost(i, j), and return the node
with the larger rank value as the answer. RkMinQA(i, j) can be answered by returning the k-th sibling (in
the left-to-right order) of RLMinQA(i, j) using childCMin(A) and child rankCMin(A), if it exists.

By storing a similar TC-encoding of colored 2d-Max heap, in addition to the structure of Lemma 4.1,
we can support all the operations mentioned in Theorem 1(c) in O(1) time. This uses a total space of
5.08n+ o(n) bits. We now describe alternative encodings to reduce the overall space usage.

More specifically, we show that a combined encoding of DCMin(A) and DCMax(A), using at most 3.17n+o(n)
bits, can be used to answer RMinQA, RMaxQA, RRMinQA, RRMaxQA, PSVA, and PLVA queries (Theo-
rem 1(a)). To support the queries in constant time, we use a less space-efficient data structure that encodes
the same structures, using at most 3.322n + o(n) bits (Theorem 1(b)). Similarly, a combined encoding
of DCMin(A), DCMax(A), Vmin and Vmax using at most 4.088n + o(n) bits can be used to answer RLMinQA,
RkMinQA, NSVA, RLMaxQA, RkMaxQA, and NLVA queries in addition (Theorem 1(c)). Again, to support
the queries in constant time, we design a less space-efficient data structure using at most 4.58n + o(n) bits
(Theorem 1(d)).

In the following, we first describe the data structure of Theorem 1(b) followed by the structure for
Theorem 1(d). Next we describe the encodings of Theorem 1(a) and Theorem 1(c).

4.1 Combined data structure for DCMin(A) and DCMax(A)

As mentioned in Section 2.2, the encoding of Gawrychowski and Nicholson [15] consists of two bit strings U
and T of total length at most 3n, along with the encodings of Bmin, Bmax and a few additional auxiliary
structures of total size o(n) bits. In this section, we denote this encoding by E. To encode the DFUDS
sequences of CMin(A) and CMax(A) in a single structure, we use E with some modifications, which we denote
by E′. As described in Section 2.2, encoding scheme of Gawrychowski and Nicholson cannot be used (as it
is) to support the PSV and PLV queries if there is a position i, for 1 ≤ i < n such that A[i] = A[i + 1]. To
support these queries, we define an additional bit string C[1 . . . n] such that C[1] = 0, and for 1 < i ≤ n,
C[i] = 1 iff A[i − 1] = A[i]. If the bit string C has k ones in it, then we represent C using lg

(
n
k

)
+ o(n)

bits while supporting rank, select queries and decoding any lg n consecutive bits in C in constant time, using
Lemma 2.1. We also define a new array A′[0 . . . n − k] by setting A′[0] = A[0], and for 0 < i ≤ n − k,
A′[i] = A[selectC(i, 0)]. (Note that A′ has no consecutive repeated elements.) In addition, we define another
sequence D′CMin(A) of size 2n−k as follows. Suppose DCMin(A’) = (δ1) . . . (δn−k), for some 0 ≤ δ1 . . . δn ≤ n−k,

then we set D′CMin(A) = (δ1+ε1) . . . (δn−k+εn−k), where δi + εi is the number of elements popped when A[i] is

pushed into the min-stack of A, for 1 ≤ i ≤ n− k. (Analogously, we define D′CMax(A).)

The encoding E′ defined on A consists of two bit strings U ′ and T ′, along with C, B′min, B′max and
additional auxiliary structures (as in E). Let U and T be the bit strings in E defined on A′. Then U ′ is

10

same as U in E, and size of U ′ is n − k − 1 bits. To obtain T ′, we add some additional open parentheses
to T as follows. Suppose T = (δ1)(δ2) . . . (δn−k), where 0 ≤ δi ≤ n − k for 1 ≤ i ≤ n − k. Then
T ′ = (δ1+ε1) . . . (δn−k+εn−k), where δi + εi is the number of elements are popped when A[i] is pushed into
the min or max stack of A, for 1 ≤ i ≤ n− k (see Figure 4 for an example). Since the length of T is at most

2(n−k), and |T ′|−|T | =
∑n−k
i=1 εi ≤ k, the size of T ′ is at most 2n−k bits. The encodings of B′min and B′max

are defined on D′CMin(A), D
′
CMax(A) and T ′, similar to Bmin and Bmax in E. The total size of the encodings of

the modified B′min and B′max is o(n) bits. All the other auxiliary structures use o(n) bits. Although we use
E′ instead of E, we can use the decoding algorithm in E without any modifications because all the properties
used in the algorithm still hold even though T ′ has additional open parentheses compared to T . Therefore
from E′ we can reconstruct any lg n consecutive bits of D′CMin(A) or D′CMax(A) in constant time, and thus we

can support rank and select on these strings in constant time with o(n) additional structures by Lemma 2.1.

i 0 1 2 3 4 5 6 7 8 9 10 11 12
A[i] -∞(∞) 3 8 5 6 6 6 3 2 2 7 10 9

D’Min(A) ((((() (()) ((())) () (()))
D’Max(A) (((()) ((((()) () (())) ())

T’ () (((() (()) ()) ())
U’ 0 1 0 1 1 0 0 1

C(uncompressed) 0 0 0 0 0 1 1 0 0 1 0 0 0
Vmin 1101 0 11 0
Vmax 100 0110 1
V 1 1 0 1 0 1 1 0 1 0 0 0 1 1 0 1

CMin(A) CMax(A)

12

0

1 2

3

7

10

8

11

4 5 6

9

0

1

3 10

4 11 12

9

5 6

8 7

2

Figure 4: Data structure combining the colored 2d-Min heap and colored 2d-Max heap of A. C is represented
in uncompressed form.

4.1.1 Decoding DCMin(A) and DCMax(A)

We use the following auxiliary structures to decode DCMin(A) from D′CMin(A) and C. For this, we first define

a correspondence between DCMin(A) and D′CMin(A) as follows. Note that both DCMin(A) and D′CMin(A) have the

same number of open parentheses, but D′CMin(A) has fewer close parentheses than DCMin(A). The ith open

parenthesis in DCMin(A) corresponds to the ith open parenthesis in D′CMin(A). Suppose there are ` and `′ (≤ `)
close parentheses between the ith and the (i+ 1)st open parentheses in DCMin(A) and D′CMin(A), respectively.

Then the last `′ close parentheses in DCMin(A) correspond, in that order, to the `′ close parentheses in D′CMin(A);

the remaining close parentheses in DCMin(A) do not have a corresponding position in D′CMin(A).

We construct three bit strings Pmin, Qmin and Rmin of lengths 2n − k, d2n/ lg ne and d2n/ lg ne, re-
spectively, as follows. For 1 ≤ i ≤ d2n/ lg ne, if the position i lg n in DCMin(A) has its corresponding position
j in D′CMin(A), then we set Pmin[j] = 1, Qmin[i] = 0 and Rmin[i] = 0. If position i lg n in DCMin(A) has no

corresponding position in D′CMin(A) but for some ki where 1 ≤ ki < lg n, suppose there is a leftmost position

11

q = i lg n + ki which has its corresponding position j in D′CMin(A). Then we set Pmin[j] = 1, Qmin[i] = 1

and Rmin[i] = 0. Finally, if all positions between i lg n and (i + 1) lg n in DCMin(A) have no corresponding
position in D′CMin(A), then we set Qmin[i] = 1 and Rmin[i] = 1. In remaining positions for Pmin, Qmin and

Rmin, we set their values as 0. We also store the values, ki explicitly, for 1 ≤ i ≤ d2n/ lg ne, whenever they
are defined (as in the second case). Since ki < lg n, we can store all the ki values explicitly using at most
2n lg lg n/ lg n = o(n) bits.

Since the bit strings Pmin, Qmin and Rmin have at most 2n/ lg n 1’s each, they can be represented using
the structure of Lemma 2.1, taking o(n) bits while supporting rank and select queries in constant time. We
define Pmax, Qmax, Rmax in the same way, and represent them analogously.

In addition to these bit strings, we construct two pre-computed tables. In the rest of this section, we
refer to the parenthesis strings (such as DCMin(A) and D′CMin(A)) also as bit strings. To describe these tables,

we first define two functions f and f ′, each of which takes two bit strings s and c as parameters, and returns
a bit string of length at most |s|+ |c|, as follows.

f(s, ε) = s
f(ε, c) = ε
f(s, 1 · c1) =) · f(s, c1)
f((δ) · s1, 0 · c1) = (δ·) · f(s1, c1)

f ′(s, ε) = s
f ′(ε, c) = ε
f ′(s, c1 · 1) = f ′(s, c1)·)
f ′(s1 · (δ), c1 · 0) = f ′(s1, c1) · (δ·)

One can easily show that if s is a substring of D′CMin(A) and c is a substring of C whose starting (ending)

position corresponds to the starting (ending) position in s, then f(s, c) (f ′(s, c)) returns the substring of
DCMin(A) whose starting (ending) position corresponds to the starting (ending) position in s,

We construct a pre-computed table Tf that, for each possible choice of bit strings s and c of length
(1/4) lg n, stores the bit string f(s, c). These pre-computed tables can be used to decode a substring of
DCMin(A) given a substring of D′CMin(A) (denoted s) and a substring of C whose bits correspond to s. The

total space usage of Tf is 2(1/4) lgn · 2(1/4) lgn · ((1/2) lg n) = o(n) bits. We can also construct Tf ′ defined
analogous to Tf using o(n) bits.

Now we describe how to decode lg n consecutive bits of DCMin(A) in constant time. (We can decode
lg n consecutive bits of DCMax(A) in a similar way.) Suppose we divide DCMin(A) into blocks of size lg n. As
described in Section 2.2, it is enough to show that for 1 ≤ i ≤ d2n/ lg ne, we can decode i-th block of DCMin(A)

in constant time. First, we check the value of the Rmin[i]. If Rmin[i] = 1, then the i-th block in DCMin(A)

consists of a sequence of lg n consecutive close parentheses. Otherwise, there are two cases depending on the
value of Qmin[i]. We compute the position p which is a position in D′CMin(A) (it’s exact correspondence in

DCMin(A) depends on the value of the bit Qmin[i]), and then compute the position cp in C which corresponds
to p in D′CMin(A), using the following equations:

p = selectPmin
(i− rankRmin

(i, 1), 1)

cp =

{
selectC(rankD′

CMin(A)
(p, ′)′), 0) if D′CMin(A)[p] =′)′

selectC(rankD′
CMin(A)

(p, ′)′) + 1, 0) otherwise

Case (1) Qmin[i] = 0. In this case, we take the lg n consecutive bits of D′CMin(A) starting from p,

and the lg n consecutive bits of C starting from the position cp (padding at the end with zeros if necessary).
Using these bit strings, we can decode the i-block in DCMin(A) by looking up Tf with these substrings (a
constant number of times, until the pre-computed table generates the required lg n bits). Since the position
p corresponds to the starting position of the i-th block in DCMin(A) in this case, we can decode the i-th block
of DCMin(A) in constant time.

Case (2) Qmin[i] = 1. First we decode lg n consecutive bits of DCMin(A) whose starting position
corresponds to the position p using the same procedure as in Case (1). Let S1 be this bit string. Next, we
take the lg n consecutive bits of D′CMin(A) ending with position p, and the lg n consecutive bits of C ending

12

with position cp (padding at the beginning with zeros if necessary). Then we can decode the lg n consecutive
bits of DCMin(A) whose ending position corresponds to the p by looking up Tf ′ (a constant number of times)
with these substrings. Let S2 be this bit string. By concatenating S1 and S2, we obtain a 2 lg n-bit substring
of DCMin(A) which contains the starting position of the i-th block of DCMin(A) (since the starting position of
the i-th block in DCMin(A), and the position which corresponds to p differ by at most lg n). Finally, we can
obtain the i-th block in DCMin(A) by skipping the first lg n − ki bits in S1 · S2, and taking lg n consecutive
bits from there.

From the encoding described above, we can decode any lg n consecutive bits of DCMin(A) and DCMax(A)

in constant time. Therefore by Lemma 3.1, we can answer all queries supported by CMin(A) and CMax(A)
(without using the color information) in constant time. If there are k elements such that A[i − 1] = A[i]
for 1 ≤ i ≤ n, then the size of C is lg

(
n
k

)
+ o(n) bits, and the size of E′ on A is 3n − 2k + o(n) bits. All

other auxiliary bit strings and tables take o(n) bits. Therefore, by the Lemma 2.4, we can encode A using
3n− 2k+ lg

(
n
k

)
+ o(n) ≤ ((1 + lg 5)n+ o(n) < 3.322n+ o(n) bits. Also, this encoding supports the queries in

Theorem 1(b) (namely RMinQA, RMaxQA, RRMinQA, RRMaxQA, PSVA and PLVA, which do not need the
color information) in constant time. This proves Theorem 1(b).

Note that if k = 0 (i.e, there are no consecutive equal elements), E′ on A is same as E on A. Therefore,
we can support all the queries in Theorem 1(b) using 3n+ o(n) bits with constant query time.

4.1.2 Encoding Vmin and Vmax

We simply concatenate Vmax and Vmin on A and store it as bitstring V , and store the length of Vmin using
lg n bits (see V in Figure 4). If there are k elements such that A[i − 1] = A[i] for 1 ≤ i ≤ n, Fischer and
Heun’s stack based algorithm [7] does not pop any elements from both stacks when these k elements and
A[n] are pushed into them. Before pushing any of the remaining elements into the min- and max-stacks, we
pop some elements from exactly one of the stacks. Also after pushing A[1] into both the stacks, we pop the
remaining elements from the stacks in the final step. Suppose the n elements are popped from the min-stack
during p runs of pop operations. Then, it is easy show that the elements are popped from the max-stack
during n− k − p runs of pop operations. Also, p (n− k − p) is the number of leftmost children in CMin(A)
(CMax(A)) since each run of pop operations generates exactly one open parenthesis whose matched closing
parenthesis corresponds to the leftmost child in CMin(A) (CMax(A)). As described in Section 3, the size of
Vmin is n− p+ 1 bits, and that of Vmax is p+ k + 1 bits. Thus, the total size of V is n+ k + 2 bits.

Therefore, we can decode any lg n-bit substring of Vmin or Vmax in constant time using V and the length
of Vmin. By combining these structures with the encoding of Theorem 1(b), we can support the queries
in Theorem 1(d) (namely, the queries RMinQA, RRMinQA, RLMinQA, RkMinQA, PSVA, NSVA RMaxQA,
RRMaxQA, RLMaxQA, RkMaxQA, PLVA and NLVA) in constant time. By Lemma 2.4, the total space of these
structures is 4n− k + lg

(
n
k

)
+ o(n) ≤ ((3 + lg 3)n+ o(n) < 4.585n+ o(n) bits. This proves Theorem 1(d).

Note that if k = 0 (i.e, there are no consecutive equal elements), E′ on A is same as E on A, and the
size of V is n+ 2 bits. Therefore we can support all the queries in Theorem 1(d) using 4n+ o(n) bits with
constant query time.

4.2 Encoding colored 2d-Min and 2d-Max heaps using less space

In this section, we give new encodings that prove Theorem 1(a) and Theorem 1(c), which use less space
but take more query time than the previous encodings. To prove Theorem 1(a), we maintain the encoding
E′ on A, with the modification that instead of T ′ (which takes at most 2n − k bits), we store the bit
string T (which takes at most 2(n − k) bits) which is obtained by constructing the encoding E on A′.
Note that f(s, c) is well-defined when s and c are substrings of DCMin(A’) and C, respectively. If there
are k elements such that A[i − 1] = A[i] for 1 ≤ i ≤ n, then the total size of the encoding is at most
3(n − k) + lg

(
n
k

)
+ o(n) ≤ n lg 9 + o(n) < 3.17n + o(n) bits. If we can reconstruct the sequences DCMin(A)

and DCMax(A), by Lemma 3.1, we can support all the required queries. We now describe how to decode the
entire DCMin(A) using this encoding. (Decoding DCMax(A) can be done analogously.)

13

Once we decode the sequence DCMin(A’), we reconstruct the sequence DCMin(A) by scanning the sequences
DCMin(A’) and C from left to right, and using the lookup table Tf . Note that f(DCMin(A’), C) looses some
open parentheses in DCMin(A) whose matched close parentheses are not in DCMin(A’) but in f(DCMin(A’), C).
So when we add m consecutive close parentheses from the r-th position in DCMin(A’) in decoding with Tf , we
add m more open parentheses before the position pos = findopenDMin(A’)

(r − 1). This proves Theorem 1(a).

To prove Theorem 1(c), we combine the concatenated sequence of Vmin and Vmax on A′ whose total size
is n − k + 2 bits to the above encoding. Then we can reconstruct Vmin on A by adding m extra 1’s before
Vmin[rankDMin(A’)

(pos, ‘((′)] when m consecutive close parentheses are added from the r-th position in DCMin(A’)

while decoding with Tf . (Reconstructing Vmax on A can be done in a similar way.) The space usage of this
encoding is 4(n− k) + lg

(
n
k

)
+ o(n) ≤ n lg 17 + o(n) < 4.088n+ o(n) bits. This proves Theorem 1(c).

5 Conclusion

We obtained space-efficient encodings that support a large set of range and previous/next smaller/larger
value queries. The encodings that support the queries in constant time take more space than the ones that
do not support the queries in constant time.

We conclude with the following open problems.

• Can we support the queries in the Theorem 1(c) in O(1) time using at most 4.088n+ o(n) bits?

• As described in Section 2, Gawrychowski and Nicholson [15] show that any encoding that supports
both RMinQA and RMaxQA requires at least 3n−Θ(lg n) bits. Can we obtain an improved lower bound
in the case when we need to support the queries in Theorem 1(a)?

• Can we prove a lower bound that is strictly more than 3n bits for any encoding that supports the
queries in Theorem 1(c)?

Acknowledgments. We thank Ian Munro and Meng He for helpful discussions, and Patrick Nicholson
and Pawel Gawrychowski for pointing out mistakes in an earlier version.

References

[1] S. Jo, S. R. Satti, Simultaneous encodings for range and next/previous larger/smaller value queries, in:
Computing and Combinatorics - 21st International Conference, COCOON 2015, Proceedings, 2015, pp.
648–660.

[2] M. J. Golin, J. Iacono, D. Krizanc, R. Raman, S. S. Rao, Encoding 2d range maximum queries, in:
ISAAC, Vol. 7074 of LNCS, Springer, 2011, pp. 180–189.

[3] P. B. Miltersen, Cell probe complexity - a survey, FSTTCS.

[4] M. A. Bender, M. Farach-Colton, The LCA problem revisited, in: LATIN 2000, Proceedings, 2000, pp.
88–94.

[5] K. Sadakane, Succinct data structures for flexible text retrieval systems, Journal of Discrete Algorithms
5 (1) (2007) 12–22.

[6] J. I. Munro, V. Raman, Succinct representation of balanced parentheses and static trees, SIAM Journal
on Computing 31 (3) (2001) 762–776.

[7] J. Fischer, V. Heun, Space-efficient preprocessing schemes for range minimum queries on static arrays,
SIAM Journal on Computing 40 (2) (2011) 465–492.

14

[8] D. Benoit, E. D. Demaine, J. I. Munro, R. Raman, V. Raman, S. S. Rao, Representing trees of higher
degree, Algorithmica 43 (4) (2005) 275–292.

[9] P. Davoodi, R. Raman, S. R. Satti, Succinct representations of binary trees for range minimum queries,
in: COCOON 2012, Proceedings, 2012, pp. 396–407.

[10] J. Fischer, V. Heun, Finding range minima in the middle: Approximations and applications, Mathe-
matics in Computer Science 3 (1) (2010) 17–30.

[11] J. Fischer, Combined data structure for previous- and next-smaller-values, Theor. Comput. Sci. 412 (22)
(2011) 2451–2456.

[12] O. Berkman, B. Schieber, U. Vishkin, Optimal doubly logarithmic parallel algorithms based on finding
all nearest smaller values, J. Algorithms 14 (3) (1993) 344–370.

[13] T. Asano, D. G. Kirkpatrick, Time-space tradeoffs for all-nearest-larger-neighbors problems, in: WADS,
Vol. 8037 of Lecture Notes in Computer Science, Springer, 2013, pp. 61–72.

[14] V. Jayapaul, S. Jo, V. Raman, S. R. Satti, Space efficient data structures for nearest larger neighbor,
in: IWOCA Revised Selected Papers, 2014, pp. 176–187.

[15] P. Gawrychowski, P. K. Nicholson, Optimal encodings for range top- k k , selection, and min-max, in:
Automata, Languages, and Programming - 42nd International Colloquium, ICALP 2015, Proceedings,
Part I, 2015, pp. 593–604.

[16] J. I. Munro, V. Raman, S. S. Rao, Space efficient suffix trees, J. Algorithms 39 (2) (2001) 205–222.

[17] R. Raman, V. Raman, S. R. Satti, Succinct indexable dictionaries with applications to encoding k-ary
trees, prefix sums and multisets, ACM Transactions on Algorithms 3 (4) (2007) Article 43.

[18] D. Arroyuelo, R. Cánovas, G. Navarro, K. Sadakane, Succinct trees in practice, in: ALENEX 2010,
Austin, Texas, USA, January 16, 2010, 2010, pp. 84–97.

[19] J. Jansson, K. Sadakane, W.-K. Sung, Ultra-succinct representation of ordered trees with applications,
J. Comput. Syst. Sci. 78 (2) (2012) 619–631.

[20] A. Farzan, J. I. Munro, A uniform paradigm to succinctly encode various families of trees, Algorithmica
68 (1) (2014) 16–40.

[21] M. He, J. I. Munro, S. R. Satti, Succinct ordinal trees based on tree covering, ACM Transactions on
Algorithms 8 (4) (2012) 42.

15

	1 Introduction
	2 Preliminaries
	2.1 2d-Min heap
	2.2 Encoding range min-max queries

	3 Extended DFUDS for colored 2d-Min heap
	4 Encoding colored 2d-Min and 2d-Max heaps
	4.1 Combined data structure for DCMin(A) and DCMax(A)
	4.1.1 Decoding DCMin(A) and DCMax(A)
	4.1.2 Encoding Vmin and Vmax

	4.2 Encoding colored 2d-Min and 2d-Max heaps using less space

	5 Conclusion

