
A Uniform Substitution Calculus
for Differential Dynamic Logic

André Platzer∗

October 2, 2018

Abstract

This paper introduces a new proof calculus for differential dynamic logic (dL) that is en-
tirely based on uniform substitution, a proof rule that substitutes a formula for a predicate
symbol everywhere. Uniform substitutions make it possible to rely on axioms rather than ax-
iom schemata, substantially simplifying implementations. Instead of subtle schema variables
and soundness-critical side conditions on the occurrence patterns of variables, the resulting cal-
culus adopts only a finite number of ordinary dL formulas as axioms. The static semantics of
differential dynamic logic is captured exclusively in uniform substitutions and bound variable
renamings as opposed to being spread in delicate ways across the prover implementation. In
addition to sound uniform substitutions, this paper introduces differential forms for differential
dynamic logic that make it possible to internalize differential invariants, differential substitu-
tions, and derivations as first-class axioms in dL.

Keywords: differential dynamic logic, uniform substitution, axioms, differentials, static se-
mantics

1 Introduction
Differential dynamic logic (dL) [5, 7] is a logic for proving correctness properties of hybrid sys-
tems. It has a sound and complete proof calculus relative to differential equations [5, 7] and a
sound and complete proof calculus relative to discrete systems [7]. Both sequent calculi [5] and
Hilbert-type axiomatizations [7] have been presented for dL but only the former has been imple-
mented. The implementation of dL’s sequent calculus in KeYmaera [11]makes it straightforward
for users to prove properties of hybrid systems, because it provides rules performing natural de-
compositions for each operator. The downside is that the implementation of the rule schemata and
their side conditions on occurrence constraints and relations of reading and writing of variables as
well as rule applications in context is nontrivial and inflexible in KeYmaera.

∗Computer Science Department, Carnegie Mellon University, Pittsburgh, USA aplatzer@cs.cmu.edu

ar
X

iv
:1

50
3.

01
98

1v
5

 [
cs

.L
O

]
 3

0
Ju

l 2
01

5

A. Platzer A Uniform Substitution Calculus for Differential Dynamic Logic

The goal of this paper is to identify how to make it straightforward to implement the axioms
and proof rules of differential dynamic logic by writing down a finite list of axioms (concrete
formulas, not axiom schemata that represent an infinite list of axioms subject to sophisticated
soundness-critical schema variable matching implementations). They require multiple axioms to
be combined with one another to obtain the effect that a user would want for proving a hybrid
system conjecture. This paper argues that this is still a net win for hybrid systems, because a
substantially simpler prover core is easier to implement correctly, and the need to combine multiple
axioms to obtain user-level proof steps can be achieved equally well by appropriate tactics, which
are not soundness-critical.

To achieve this goal, this paper follows observations for differential game logic [9] that high-
light the significance and elegance of uniform substitutions, a classical proof rule for first-order
logic [2, §35,40]. Uniform substitutions uniformly instantiate predicate and function symbols with
formulas and terms, respectively, as functions of their arguments. In the presence of the nontrivial
binding structure that nondeterminism and differential equations of hybrid programs induce for the
dynamic modalities of differential dynamic logic, flexible but sound uniform substitutions become
more complex for dL, but can still be read off elegantly from its static semantics. In fact, dL’s static
semantics is solely captured1 in the implementation of uniform substitution (and bound variable
renaming), thereby leading to a completely modular proof calculus.

This paper introduces a static and dynamic semantics for differential-form dL, proves coin-
cidence lemmas and uniform substitution lemmas, culminating in a soundness proof for uniform
substitutions (Section 3). It exploits the new differential forms that this paper adds to dL for in-
ternalizing differential invariants [6], differential cuts [6, 8], differential ghosts [8], differential
substitutions, total differentials and Lie-derivations [6, 8] as first-class citizens in dL, culminat-
ing in entirely modular axioms for differential equations and a superbly modular soundness proof
(Section 4). This approach is to be contrasted with earlier approaches for differential invariants
that were based on complex built-in rules [6, 8]. The relationship to related work from previous
presentations of differential dynamic logic [5, 7] continues to apply except that dL now internalizes
differential equation reasoning axiomatically via differential forms.

2 Differential-Form Differential Dynamic Logic

2.1 Syntax
Formulas and hybrid programs (HPs) of dL are defined by simultaneous induction based on the
following definition of terms. Similar simultaneous inductions are used throughout the proofs for
dL. The set of all variables is V . For any V ⊆ V is V ′ def

= {x′ : x ∈ V } the set of differential
symbols x′ for the variables in V . Function symbols are written f, g, h, predicate symbols p, q, r,
and variables x, y, z ∈ V with differential symbols x′, y′, z′ ∈ V ′. Program constants are a, b, c.

1 This approach is dual to other successful ways of solving the intricacies and subtleties of substitutions [1, 3] by
imposing occurrence side conditions on axiom schemata and proof rules, which is what uniform substitutions can get
rid of.

2

A. Platzer A Uniform Substitution Calculus for Differential Dynamic Logic

Definition 1 (Terms). Terms are defined by this grammar (with θ, η, θ1, . . . , θk as terms, x ∈ V as
variable, x′ ∈ V ′ differential symbol, and f function symbol):

θ, η ::= x | x′ | f(θ1, . . . , θk) | θ + η | θ · η | (θ)′

Number literals such as 0,1 are allowed as function symbols without arguments that are always
interpreted as the numbers they denote. Beyond differential symbols x′, differential-form dL allows
differentials (θ)′ of terms θ as terms for the purpose of axiomatically internalizing reasoning about
differential equations.

Definition 2 (Hybrid program). Hybrid programs (HPs) are defined by the following grammar
(with α, β as HPs, program constant a, variable x, term θ possibly containing x, and formula ψ of
first-order logic of real arithmetic):

α, β ::= a | x := θ | x′ := θ | ?ψ | x′ = θ&ψ | α ∪ β | α; β | α∗

Assignments x := θ of θ to variable x, tests ?ψ of the formula ψ in the current state, differential
equations x′ = θ&ψ restricted to the evolution domain constraint ψ, nondeterministic choices
α ∪ β, sequential compositions α; β, and nondeterministic repetition α∗ are as usual in dL [5, 7].
The effect of the differential assignment x′ := θ to differential symbol x′ is similar to the effect
of the assignment x := θ to variable x, except that it changes the value of the differential symbol
x′ around instead of the value of x. It is not to be confused with the differential equation x′ = θ,
which will follow said differential equation continuously for an arbitrary amount of time. The
differential assignment x′ := θ, instead, only assigns the value of θ to the differential symbol x′

discretely once at an instant of time. Program constants a are uninterpreted, i.e. their behavior
depends on the interpretation in the same way that the values of function symbols f and predicate
symbols p depends on their interpretation.

Definition 3 (dL formula). The formulas of (differential-form) differential dynamic logic (dL)
are defined by the grammar (with dL formulas φ, ψ, terms θ, η, θ1, . . . , θk, predicate symbol p,
quantifier symbol C, variable x, HP α):

φ, ψ ::= θ ≥ η | p(θ1, . . . , θk) | C(φ) | ¬φ | φ ∧ ψ | ∀xφ | ∃xφ | [α]φ | 〈α〉φ

Operators >,≤, <,∨,→,↔ are definable, e.g., φ→ ψ as ¬(φ ∧ ¬ψ). Likewise [α]φ is equiv-
alent to ¬〈α〉¬φ and ∀xφ equivalent to ¬∃x¬φ. The modal formula [α]φ expresses that φ holds
after all runs of α, while the dual 〈α〉φ expresses that there is a run of α after which φ holds.
Quantifier symbols C (with formula φ as argument), i.e. higher-order predicate symbols that bind
all variables of φ, are unnecessary but internalize contextual congruence reasoning efficiently.

2.2 Dynamic Semantics
A state is a mapping from variables V and differential symbols V ′ to R. The set of states is denoted
S. Let νrx denote the state that agrees with state ν except for the value of variable x, which is
changed to r ∈ R, and accordingly for νrx′ . The interpretation of a function symbol f with arity n
(i.e. with n arguments) is a smooth function I(f) : Rn → R of n arguments.

3

A. Platzer A Uniform Substitution Calculus for Differential Dynamic Logic

Definition 4 (Semantics of terms). For each interpretation I , the semantics of a term θ in a state
ν ∈ S is its value in R. It is defined inductively as follows

1. [[x]]Iν = ν(x) for variable x ∈ V

2. [[x′]]Iν = ν(x′) for differential symbol x′ ∈ V ′

3. [[f(θ1, . . . , θk)]]
Iν = I(f)

(
[[θ1]]Iν, . . . , [[θk]]

Iν
)

for function symbol f

4. [[θ + η]]Iν = [[θ]]Iν + [[η]]Iν

5. [[θ · η]]Iν = [[θ]]Iν · [[η]]Iν

6. [[(θ)′]]Iν =
∑
x

ν(x′)
∂[[θ]]I

∂x
(ν) =

∑
x

ν(x′)
∂[[θ]]IνXx
∂X

Time-derivatives are undefined in an isolated state ν. The clou is that differentials can still be given
a local semantics: [[(θ)′]]Iν is the sum of all (analytic) spatial partial derivatives of the value of θ by
all variables x (or rather their values X) multiplied by the corresponding tangent described by the
value ν(x′) of differential symbol x′. That sum over all variables x ∈ V has finite support, because
θ only mentions finitely many variables x and the partial derivative by variables x that do not occur
in θ is 0. The spatial derivatives exist since [[θ]]Iν is a composition of smooth functions, so smooth.
Thus, the semantics of [[(θ)′]]Iν is the differential2 of (the value of) θ, hence a differential one-
form giving a real value for each tangent vector (i.e. vector field) described by the values ν(x′).
The values ν(x′) of the differential symbols x′ describe an arbitrary tangent vector or vector field.
Along the flow of (the vector field of a) differential equation, though, the value of the differential
(θ)′ coincides with the analytic time-derivative of θ (Lemma 11). The interpretation of predicate
symbol p with arity n is an n-ary relation I(p) ⊆ Rn. The interpretation of quantifier symbol C is
a functional I(C) mapping subsets M ⊆ S to subsets I(C)(M) ⊆ S.

Definition 5 (dL semantics). The semantics of a dL formula φ, for each interpretation I with a
corresponding set of states S, is the subset [[φ]]I ⊆ S of states in which φ is true. It is defined
inductively as follows

1. [[θ ≥ η]]I = {ν ∈ S : [[θ]]Iν ≥ [[η]]Iν}

2. [[p(θ1, . . . , θk)]]
I = {ν ∈ S : ([[θ1]]Iν, . . . , [[θk]]

Iν) ∈ I(p)}

3. [[C(φ)]]I = I(C)
(
[[φ]]I

)
for quantifier symbol C

4. [[¬φ]]I = ([[φ]]I){ = S \ [[φ]]I

5. [[φ ∧ ψ]]I = [[φ]]I ∩ [[ψ]]I

2A slight abuse of notation rewrites the differential as [[(θ)′]]
I

= d[[θ]]
I

=
∑n
i=1

∂[[θ]]I

∂xi dx
i when x1, . . . , xn are the

variables in θ and their differentials dxi form the basis of the cotangent space, which, when evaluated at a point ν
whose values ν(x′) determine the tangent vector alias vector field, coincides with Def. 4.

4

A. Platzer A Uniform Substitution Calculus for Differential Dynamic Logic

6. [[∃xφ]]I = {ν ∈ S : νrx ∈ [[φ]]I for some r ∈ R}

7. [[〈α〉φ]]I = [[α]]I ◦ [[φ]]I = {ν : ω ∈ [[φ]]I for some ω such that (ν, ω) ∈ [[α]]I}

8. [[[α]φ]]I = [[¬〈α〉¬φ]]I = {ν : ω ∈ [[φ]]I for all ω such that (ν, ω) ∈ [[α]]I}

A dL formula φ is valid in I , written I |= φ, iff [[φ]]I = S, i.e. ν ∈ [[φ]]I for all ν. Formula φ is
valid, written � φ, iff I |= φ for all interpretations I .

The interpretation of a program constant a is a state-transition relation I(a) ⊆ S × S, where
(ν, ω) ∈ I(a) iff a can run from initial state ν to final state ω.

Definition 6 (Transition semantics of HPs). For each interpretation I , each HP α is interpreted
semantically as a binary transition relation [[α]]I ⊆ S × S on states, defined inductively by

1. [[a]]I = I(a) for program constants a

2. [[x := θ]]I = {(ν, νrx) : r = [[θ]]Iν} = {(ν, ω) : ω = ν except [[x]]Iω = [[θ]]Iν}

3. [[x′ := θ]]I = {(ν, νrx′) : r = [[θ]]Iν} = {(ν, ω) : ω = ν except [[x′]]Iω = [[θ]]Iν}

4. [[?ψ]]I = {(ν, ν) : ν ∈ [[ψ]]I}

5. [[x′ = θ&ψ]]I = {(ν, ω) : I, ϕ |= x′ = θ ∧ ψ, i.e. ϕ(ζ) ∈ [[x′ = θ ∧ ψ]]I for all 0 ≤ ζ ≤ r,
for some function ϕ : [0, r]→ S of some duration r for which all ϕ(ζ)(x′) = dϕ(t)(x)

dt (ζ) exist
and ν = ϕ(0) on {x′}{ and ω = ϕ(r)}; i.e., ϕ solves the differential equation and satisfies ψ
at all times. In case r = 0, the only condition is that ν = ω on {x′}{ and ω(x′) = [[θ]]Iω and
ω ∈ [[ψ]]I .

6. [[α ∪ β]]I = [[α]]I ∪ [[β]]I

7. [[α; β]]I = [[α]]I ◦ [[β]]I = {(ν, ω) : (ν, µ) ∈ [[α]]I , (µ, ω) ∈ [[β]]I}

8. [[α∗]]I =
(
[[α]]I

)∗
=
⋃
n∈N

[[αn]]I with αn+1 ≡ αn;α and α0 ≡ ?true

where ρ∗ denotes the reflexive transitive closure of relation ρ.

The initial values ν(x′) of differential symbols x′ do not influence the behavior of
(ν, ω) ∈ [[x′ = θ&ψ]]I , because they may not be compatible with the time-derivatives for the dif-
ferential equation, e.g. in x′ := 1;x′ = 2, with a x′ mismatch. The final values ω(x′) will coincide
with the derivatives, though.

Functions and predicates are interpreted by I and are only influenced indirectly by ν through
the values of their arguments. So p(e)→ [x := x+ 1]p(e) is valid if x is not in e since the change
in x does not change whether p(e) is true (Lemma 2). By contrast p(x) → [x := x+ 1]p(x) is
invalid, since it is false when I(p) = {d : d ≤ 5} and ν(x) = 4.5. If the semantics of p were to
depend on the state ν, then there would be no discernible relationship between the truth-values of
p in different states, so not even p→ [x := x+ 1]p would be valid.

5

A. Platzer A Uniform Substitution Calculus for Differential Dynamic Logic

2.3 Static Semantics
The static semantics of dL and HPs defines some aspects of their behavior that can be read off
directly from their syntactic structure without running their programs or evaluating their dynamical
effects. The most important aspects of the static semantics concern free or bound occurrences
of variables(which are closely related to the notions of scope and definitions/uses in compilers).
Bound variables x are those that are bound by ∀x or ∃x , but also those that are bound by modalities
such as [x := 5y] or 〈x′ = 1〉 or [x := 1 ∪ x′ = 1] or [x := 1 ∪ ?true].

The notions of free and bound variables are defined by simultaneous induction in the subse-
quent definitions: free variables for terms (FV(θ)), formulas (FV(φ)), and HPs (FV(α)), as well
as bound variables for formulas (BV(φ)) and for HPs (BV(α)). For HPs, there will be a need to
distinguish must-bound variables (MBV(α)) that are bound/written to on all executions of α from
(may-)bound variables (BV(α)) which are bound on some (not necessarily all) execution paths
of α, such as in [x := 1 ∪ (x := 0; y := x+ 1)], which has bound variables {x, y} but must-bound
variables only {x}, because y is not written to in the first choice.

Definition 7 (Bound variable). The set BV(φ) ⊆ V ∪ V ′ of bound variables of dL formula φ is
defined inductively as

BV(θ ≥ η) = BV(p(θ1, . . . , θk)) = ∅
BV(C(φ)) = V ∪ V ′

BV(¬φ) = BV(φ)

BV(φ ∧ ψ) = BV(φ) ∪ BV(ψ)

BV(∀xφ) = BV(∃xφ) = {x} ∪ BV(φ)

BV([α]φ) = BV(〈α〉φ) = BV(α) ∪ BV(φ)

Definition 8 (Free variable). The set FV(θ) ⊆ V ∪ V ′ of free variables of term θ, i.e. those that
occur in θ, is defined inductively as

FV(x) = {x}
FV(x′) = {x′}

FV(f(θ1, . . . , θk)) = FV(θ1) ∪ · · · ∪ FV(θk)

FV(θ + η) = FV(θ · η) = FV(θ) ∪ FV(η)

FV((θ)′) = FV(θ) ∪ FV(θ)′

The set FV(φ) of free variables of dL formula φ, i.e. all those that occur in φ outside the scope of
quantifiers or modalities binding it, is defined inductively as

FV(θ ≥ η) = FV(θ) ∪ FV(η)

FV(p(θ1, . . . , θk)) = FV(θ1) ∪ · · · ∪ FV(θk)

FV(C(φ)) = V ∪ V ′
FV(¬φ) = FV(φ)

6

A. Platzer A Uniform Substitution Calculus for Differential Dynamic Logic

FV(φ ∧ ψ) = FV(φ) ∪ FV(ψ)

FV(∀xφ) = FV(∃xφ) = FV(φ) \ {x}
FV([α]φ) = FV(〈α〉φ) = FV(α) ∪ (FV(φ) \MBV(α))

Soundness requires that FV([α]φ) is not defined as FV(α) ∪ (FV(φ) \ BV(α)), otherwise
[x := 1 ∪ y := 2]x ≥ 1 would have no free variables, but its truth-value depends on the initial
value of x, demanding FV([x := 1 ∪ y := 2]x ≥ 1) = {x}. The simpler definition FV([α]φ) =
FV(α) ∪ FV(φ) would be correct, but the results would be less precise then. Likewise for 〈α〉φ.
Soundness requires FV((θ)′) not to be defined as FV(θ)′, because the value of (xy)′ depends on
{x, x′, y, y′}, since (xy)′ equals x′y + xy′ (Lemma 13).

The static semantics defines which variables are free so may be read (FV(α)), which are bound
(BV(α)) so may be written to somewhere in α, and which are must-bound (MBV(α)) so must be
written to on all execution paths of α.

Definition 9 (Bound variable). The set BV(α) ⊆ V ∪ V ′ of bound variables of HP α, i.e. all those
that may potentially be written to, is defined inductively:

BV(a) = V ∪ V ′ for program constant a
BV(x := θ) = {x}
BV(x′ := θ) = {x′}

BV(?ψ) = ∅
BV(x′ = θ&ψ) = {x, x′}

BV(α ∪ β) = BV(α; β) = BV(α) ∪ BV(β)

BV(α∗) = BV(α)

Definition 10 (Must-bound variable). The set MBV(α) ⊆ BV(α) ⊆ V ∪ V ′ of must-bound vari-
ables of HP α, i.e. all those that must be written to on all paths of α, is defined inductively as

MBV(a) = ∅ for program constant a
MBV(α) = BV(α) for other atomic HPs α

MBV(α ∪ β) = MBV(α) ∩MBV(β)

MBV(α; β) = MBV(α) ∪MBV(β)

MBV(α∗) = ∅

Obviously, MBV(α) ⊆ BV(α). If α is only built by sequential compositions from atomic
programs without program constants, then MBV(α) = BV(α).

Definition 11 (Free variable). The set FV(α) ⊆ V ∪V ′ of free variables of HP α, i.e. all those that
may potentially be read, is defined inductively as

FV(a) = V ∪ V ′ for program constant a
FV(x := θ) = FV(x′ := θ) = FV(θ)

7

A. Platzer A Uniform Substitution Calculus for Differential Dynamic Logic

FV(?ψ) = FV(ψ)

FV(x′ = θ&ψ) = {x} ∪ FV(θ) ∪ FV(ψ)

FV(α ∪ β) = FV(α) ∪ FV(β)

FV(α; β) = FV(α) ∪ (FV(β) \MBV(α))

FV(α∗) = FV(α)

The variables of HP α, whether free or bound, are V(α) = FV(α) ∪ BV(α).

The simpler definition FV(α ∪ β) = FV(α) ∪ FV(β) would be correct, but the results would
be less precise then. Unlike x, the left-hand side x′ of differential equations is not added to the
free variables of FV(x′ = θ&ψ), because its behavior does not depend on the initial value of
differential symbols x′, only the initial value of x. Free and bound variables are the set of all
variables V and differential symbols V ′ for program constants a, because their effect depends on
the interpretation I , so may read and write all FV(a) = BV(a) = V ∪ V ′ but not on all paths
MBV(a) = ∅. Subsequent results about free and bound variables are, thus, vacuously true when
program constants occur. Corresponding observations hold for quantifier symbols.

The static semantics defines which variables are readable or writable. There may not be any
run of α in which a variable is read or written to. If x 6∈ FV(α), though, then α cannot read the
value of x. If x 6∈ BV(α), it cannot write to x. Def. 11 is parsimonious. For example, x is not a
free variable of the following program

(x := 1 ∪ x := 2); z := x+ y

because x is never actually read, since x must have been defined on every execution path of the
first part before being read by the second part. No execution of the above program, thus, depends
on the initial value of x, which is why it is not a free variable. This would have been different for
the simpler definition

FV(α; β) = FV(α) ∪ FV(β)

There is a limit to the precision with which any static analysis can determine which variables are
really read or written [12]. The static semantics in Def. 11 will, e.g., call x a free variable of
the following program even though no execution could read it, because they fail test ?false when
running the branch reading x:

z := 0; (?false; z := z + x)∗

The signature, i.e. set of function, predicate, quantifier symbols, and program constants in φ
is denoted by Σ(φ) (accordingly for terms and programs). It is defined like FV(φ) except that all
occurrences are free. Variables in V ∪ V ′ are interpreted by state ν. The symbols in Σ(φ) are
interpreted by interpretation I .

2.4 Correctness of Static Semantics
The following result reflects that HPs have bounded effect: for a variable x to be modified during
a run of α, x needs the be a bound variable in HP α, i.e. x ∈ BV(α), so that α can write to x. The

8

A. Platzer A Uniform Substitution Calculus for Differential Dynamic Logic

converse is not true, because α may bind a variable x, e.g. by having an assignment to x, that never
actually changes the value of x, such as x := x or because the assignment can never be executed.
The following program, for example, binds x but will never change the value of x because there is
no way of satisfying the test ?false: (?false;x := 42) ∪ z := x+ 1.

Lemma 1 (Bound effect lemma). If (ν, ω) ∈ [[α]]I , then ν = ω on BV(α){.

Proof. The proof is by a straightforward structural induction on α.

• Since BV(a) = V ∪ V ′, the statement is vacuously true for program constant a, because
BV(a){ = ∅.

• (ν, ω) ∈ [[x := θ]]I = {(ν, ω) : ω = ν except that [[x]]Iω = [[θ]]Iν} implies that ν = ω except
for {x} = BV(x := θ).

• (ν, ω) ∈ [[x′ := θ]]I = {(ν, ω) : ω = ν except that [[x′]]Iω = [[θ]]Iν} implies that ν = ω ex-
cept for {x′} = BV(x′ := θ).

• (ν, ν) ∈ [[?ψ]]I = {(ν, ν) : ν ∈ [[ψ]]I i.e. ν ∈ [[ψ]]I} fits to BV(?ψ) = ∅

• (ν, ω) ∈ [[x′ = θ&ψ]]I implies that ν = ω except for the variables with differential equa-
tions, which are {x, x′} = BV(x′ = θ&ψ) observing that ν(x′) and ω(x′) may differ by
Def. 6.

• (ν, ω) ∈ [[α ∪ β]]I = [[α]]I ∪ [[β]]I implies (ν, ω) ∈ [[α]]I or (ν, ω) ∈ [[β]]I , which, by induction
hypothesis, implies ν = ω on BV(α){ or ν = ω on BV(β){, respectively. Either case implies
ν = ω on (BV(α) ∪ BV(β)){ = BV(α ∪ β){.

• (ν, ω) ∈ [[α; β]]I = [[α]]I ◦ [[β]]I , i.e. there is a µ such that (ν, µ) ∈ [[α]]I and (µ, ω) ∈ [[β]]. So,
by induction hypothesis, ν = µ on BV(α){ and µ = ω on BV(β){. By transitivity, ν = ω on
(BV(α) ∪ BV(β)){ = BV(α; β){.

• (ν, ω) ∈ [[α∗]]I =
⋃
n∈N

[[αn]]I , then there is an n ∈ N and a sequence ν0 = ν, ν1, . . . , νn = ω

such that (νi, νi+1) ∈ [[α]] for all i < n. By n uses of the induction hypothesis, νi = νi+1 on
BV(α){ for all i < n. Thus, ν = ν0 = νn = ω on BV(α){ = BV(α∗){.

Similarly, only BV(φ) change their value during the evaluation of formulas.
The value of a term only depends on the values of its free variables. When evaluating a term θ

in two states ν, ν̃ that differ widely but agree on the free variables FV(θ) of θ, the values of θ in
both states coincide. Accordingly for different interpretations I, J that agree on the symbols Σ(θ)
that occur in θ.

Lemma 2 (Coincidence lemma). If ν = ν̃ on FV(θ) and I = J on Σ(θ), then [[θ]]Iν = [[θ]]J ν̃.

Proof. The proof is by structural induction on θ.

9

A. Platzer A Uniform Substitution Calculus for Differential Dynamic Logic

• [[x]]Iν = ν(x) = ν̃(x) = [[x]]J ν̃ for variable x since ν = ν̃ on FV(x) = {x}.

• [[x′]]Iν = ν(x′) = ν̃(x′) = [[x′]]J ν̃ for differential symbol x′ since ν = ν̃ on FV(x′) = {x′}.

• [[f(θ1, . . . , θk)]]
Iν = I(f)([[θ1]]Iν, . . . , [[θk]]

Iν)
IH
= J(f)([[θ1]]J ν̃, . . . , [[θk]]

J ν̃) = [[f(θ1, . . . , θk)]]
J ν̃

by induction hypothesis, because FV(θi) ⊆ FV(f(θ1, . . . , θk)) and I and J were assumed to
agree on the function symbol f that occurs in the term.

• [[θ + η]]Iν = [[θ]]Iν + [[η]]Iν
IH
= [[θ]]J ν̃ + [[η]]J ν̃ = [[θ + η]]J ν̃ by induction hypothesis, because

FV(θ) ⊆ FV(θ + η) and FV(η) ⊆ FV(θ + η).

• [[θ · η]]Iν = [[θ]]Iν · [[η]]Iν
IH
= [[θ]]J ν̃ · [[η]]J ν̃ = [[θ · η]]J ν̃ by induction hypothesis, because

FV(θ) ⊆ FV(θ · η) and FV(η) ⊆ FV(θ · η).

• [[(θ)′]]Iν =
∑
x

ν(x′)
∂[[θ]]IνXx
∂X

=
∑
x

ν̃(x′)
∂[[θ]]IνXx
∂X

IH
=
∑
x

ν̃(x′)
∂[[θ]]J ν̃Xx
∂X

since ν = ν̃ on

FV((θ)′), which includes all differential symbols x′ for all x ∈ FV(θ) (the others have
partial derivative 0 so do not contribute to the sum), and by induction hypothesis on the
simpler term θ, because FV(θ) ⊆ FV((θ)′). Note that partial derivatives are functional, i.e.
the partial derivatives by X of [[θ]]IνXx and [[θ]]J ν̃Xx agree since, by induction hypothesis,
[[θ]]IνXx = [[θ]]J ν̃Xx for all X since νXx = ν̃Xx on {x} ∪ FV(θ) since x is interpreted to be X in
both states and ν = ν̃ on FV(θ) already.

By a more subtle argument, the values of dL formulas also only depend on the values of their
free variables. When evaluating dL formula φ in two states ν, ν̃ that differ but agree on the free
variables FV(φ) of φ, the (truth) values of φ in both states coincide. Lemma 3 and 4 are proved by
simultaneous induction.

Lemma 3 (Coincidence lemma). If ν = ν̃ on FV(φ) and I = J on Σ(φ), then ν ∈ [[φ]]I iff
ν̃ ∈ [[φ]]J .

Proof. The proof is by structural induction on φ.

1. ν ∈ [[p(θ1, . . . , θk)]]
I iff ([[θ1]]Iν, . . . , [[θk]]

Iν) ∈ I(p) iff ([[θ1]]J ν̃, . . . , [[θk]]
J ν̃) ∈ J(p) iff

ν̃ ∈ [[p(θ1, . . . , θk)]]
J by Lemma 2 since FV(θi) ⊆ FV(p(θ1, . . . , θk)) and I and J were as-

sumed to agree on the function symbol p that occurs in the formula.

2. ν ∈ [[θ ≥ η]]I iff [[θ]]Iν ≥ [[η]]Iν iff [[θ]]J ν̃ ≥ [[η]]J ν̃ iff ν̃ ∈ [[θ ≥ η]]J by Lemma 2 since
FV(θ) ∪ FV(η) ⊆ FV(θ ≥ η) and the interpretation of ≥ is fixed.

3. ν ∈ [[C(φ)]]I = I(C)
(
[[φ]]I

)
iff(IH) ν̃ ∈ [[C(φ)]]J = J(C)

(
[[φ]]J

)
since ν = ν̃ on FV(C(φ)) =

V ∪V ′, so ν = ν̃, and I = J on Σ(C(φ)) = {C}∪Σ(φ), so I(C) = J(C) and, by induction
hypothesis, [[φ]]I = [[φ]]J .

10

A. Platzer A Uniform Substitution Calculus for Differential Dynamic Logic

4. ν ∈ [[¬φ]]I iff ν 6∈ [[φ]]I iff(IH) ν̃ 6∈ [[φ]]J iff ν̃ ∈ [[¬φ]]J by induction hypothesis as FV(¬φ) =
FV(φ).

5. ν ∈ [[φ ∧ ψ]]I iff ν ∈ [[φ]]I ∩ [[ψ]]I iff(IH) ν̃ ∈ [[φ]]J ∩ [[ψ]]J iff ν̃ ∈ [[φ ∧ ψ]]J by induction hy-
pothesis using FV(φ ∧ ψ) = FV(φ) ∪ FV(ψ).

6. ν ∈ [[∃xφ]]I iff νrx ∈ [[φ]]I for some r ∈ R iff ν̃rx ∈ [[φ]]I for some r ∈ R iff(H) ν̃ ∈ [[∃xφ]]J

for the same r by induction hypothesis using that νrx = ν̃rx on FV(φ) ⊆ {x} ∪ FV(∃xφ).

7. The case ∀xφ follows from the equivalence ∀xφ ≡ ¬∃x¬φ using FV(¬∃x¬φ) = FV(∀xφ).

8. ν ∈ [[〈α〉φ]]I iff there is a ω such that (ν, ω) ∈ [[α]]I and ω ∈ [[φ]]I . Since ν = ν̃ on FV(〈α〉φ) ⊇
FV(α) and (ν, ω) ∈ [[α]]I , Lemma 4 implies with I = J on Σ(α) that there is an ω̃ such that
(ν̃, ω̃) ∈ [[α]]J and ω = ω̃ on FV(〈α〉φ) ∪ MBV(α) = FV(α) ∪ (FV(φ) \ MBV(α)) ∪
MBV(α) = FV(α) ∪ FV(φ) ∪MBV(α) ⊇ FV(φ).

ν ω

ν̃ ω̃

on FV(〈α〉φ)
⊇ FV(α)

α

α

∃

on FV(〈α〉φ) ∪MBV(α) ⊇ FV(φ)

Since, ω = ω̃ on FV(φ) and I = J on Σ(φ), the induction hypothesis implies that ω̃ ∈ [[φ]]J

since ω ∈ [[φ]]I . Since (ν̃, ω̃) ∈ [[α]]J , this implies ν̃ ∈ [[〈α〉φ]]J .

9. ν ∈ [[[α]φ]]I = [[¬〈α〉¬φ]]I iff ν 6∈ [[〈α〉¬φ]]I iff ν̃ 6∈ [[〈α〉¬φ]]J iff ν̃ ∈ [[[α]φ]]J by induction
hypothesis using FV(〈α〉¬φ) = FV([α]φ).

In a sense, the runs of an HP α also only depend on the values of its free variables, because its
behavior cannot depend on the values of variables that it never reads. That is, if ν = ν̃ on FV(α)
and (ν, ω) ∈ [[α]]I , then there is an ω̃ such that (ν̃, ω̃) ∈ [[α]]J and ω and ω̃ agree in some sense.
There is a subtlety, though. The resulting states ω and ω̃ will only continue to agree on FV(α) and
the variables that are bound on the particular path that α took for the transition (ν, ω) ∈ [[α]]I . On
variables z that are neither free (so the initial states ν and ν̃ have not been assumed to coincide)
nor bound on the particular path that α took, ω and ω̃ may continue to disagree, because z has not
been written to.

Example 1. Let (ν, ω) ∈ [[α]]I . It is not enough to assume ν = ν̃ only on FV(α) in order to
guarantee ω = ω̃ on V(α) for some ω̃ such that (ν̃, ω̃) ∈ [[α]]J , because

α
def≡ x := 1 ∪ y := 2

will force the final states to agree only on either x or on y, whichever one was assigned to during
the respective run of α, not on both BV(α) = {x, y}, even though any initial states ν, ν̃ agree on
FV(α) = ∅. Note that this can only happen because MBV(α) = ∅ 6= BV(α) = {x, y}.

11

A. Platzer A Uniform Substitution Calculus for Differential Dynamic Logic

Yet, ω and ω̃ agree on the variables that are bound on all paths of α, rather than somewhere in
α. That is on the must-bound variables of α. If initial states agree on (at least) all free variables
FV(α) that HP α may read, then the final states agree on those as well as on all variables that α
must write, i.e. on MBV(α).

Lemma 4 (Coincidence lemma). If ν = ν̃ on V ⊇ FV(α) and I = J on Σ(α) and (ν, ω) ∈ [[α]]I ,
then there is an ω̃ such that (ν̃, ω̃) ∈ [[α]]J and ω = ω̃ on V ∪MBV(α).

ν ω

ν̃ ω̃

on V ⊇ FV(α)

α

α

∃

on V ∪MBV(α)

on BV(α){

on BV(α){

Proof. The proof is by induction on the structural complexity of α, where α∗ is considered to be
structurally more complex than HPs of any length but with less nested repetitions, which induces
a well-founded order on HPs. For atomic programs α, for which BV(α) = MBV(α), it is enough
to conclude agreement on V(α)

def
= FV(α) ∪ BV(α) = FV(α) ∪MBV(α), because any variable in

V \ V(α) is in BV(α){, which remains unchanged by α according to Lemma 1.

• Since FV(a) = V ∪ V ′ so ν = ν̃, the statement is vacuously true for program constant a.

• (ν, ω) ∈ [[x := θ]]I = {(ν, ω) : ω = ν except that [[x]]Iω = [[θ]]Iν} then there is a transition
(ν̃, ω̃) ∈ [[x := θ]]J and ω̃(x) = [[x]]J ω̃ = [[θ]]J ν̃ = [[θ]]Iν = [[x]]Iω = ν(x) by Lemma 3, since
ν = ν̃ on FV(x := θ) = FV(θ) and I = J on Σ(θ). So, ω = ω̃ on BV(x := θ) = {x}. Also,
ν = ω on BV(x := θ){ and ν̃ = ω̃ on BV(x := θ){ by Lemma 1. Since ν = ν̃ on FV(x := θ),
these imply ω = ω̃ on FV(x := θ) \ BV(x := θ). Since ω = ω̃ on BV(x := θ) had been
shown already, this implies ω = ω̃ on V(x := θ).

• (ν, ω) ∈ [[x′ := θ]]I = {(ν, νrx′) : r = [[θ]]Iν}. As [[θ]]Iν = [[θ]]J ν̃ by Lemma 2 since FV(θ) ⊆
FV(x′ := θ), this implies (ν̃, ν̃rx′) ∈ [[x′ := θ]]J = {(ν̃, ν̃rx′) : r = [[θ]]J ν̃}. By construction
ω = ν̃rx′ on BV(x′ := θ) = {x′} and they continue to agree on FV(x′ := θ) \ BV(x′ := θ).

• (ν, ω) ∈ [[?ψ]]I = {(ν, ν) : ν ∈ [[ψ]]I i.e. ν ∈ [[ψ]]I} then ω = ν by Def. 6. Since, ν ∈ [[ψ]]I

and ν = ν̃ on FV(?ψ) and I = J on Σ(ψ), Lemma 3 implies that ν̃ ∈ [[ψ]]J , so (ν̃, ν̃) ∈ [[?ψ]]J .
So ν = ν̃ on V(?ψ) since BV(?ψ) = ∅.

• (ν, ω) ∈ [[x′ = θ&ψ]]I implies that there is an ω̃ reached from ν̃ by following the differ-
ential equation for the same amount it took to reach ω from ν. The solution will be the
same, because I = J on Σ(x′ = θ&ψ) and ν = ν̃ on FV(x′ = θ&ψ), which, using
Lemma 3, contains all the variables whose values the differential equation solution depends
on. Thus, both solutions agree on all variables that evolve during the continuous evolution,
i.e. BV(x′ = θ&ψ). Thus, (ν̃, ω̃) ∈ [[x′ = θ&ψ]]J and ω = ω̃ on V(x′ = θ&ψ).

12

A. Platzer A Uniform Substitution Calculus for Differential Dynamic Logic

• (ν, ω) ∈ [[α ∪ β]]I = [[α]]I ∪ [[β]]I implies (ν, ω) ∈ [[α]]I or (ν, ω) ∈ [[β]]I , which since V ⊇
FV(α ∪ β) ⊇ FV(α) and V ⊇ FV(α ∪ β) ⊇ FV(β) implies, by induction hypothesis, that
there is an ω̃ such that (ν̃, ω̃) ∈ [[α]]J and ω = ω̃ on V ∪MBV(α) or that there is an ω̃ such
that (ν̃, ω̃) ∈ [[β]]J and ω = ω̃ on V ∪ MBV(β), respectively. In either case, there is a ω̃
such that (ν̃, ω̃) ∈ [[α ∪ β]]J and ω = ω̃ on V ∪MBV(α ∪ β), because [[α]]J ⊆ [[α ∪ β]]J and
[[β]]J ⊆ [[α ∪ β]]J and MBV(α ∪ β) = MBV(α) ∩MBV(β).

ν ω

ν̃ ω̃

on V ⊇
FV(α ∪ β)
⊇ FV(α)

α

α

∃

on V ∪
MBV(α)

on BV(α){

on BV(α){

ν ω

ν̃ ω̃

on V ⊇
FV(α ∪ β)
⊇ FV(β)

β

β

∃

on V ∪
MBV(β)

on BV(β){

on BV(β){

• (ν, ω) ∈ [[α; β]]I = [[α]]I ◦ [[β]]I , i.e. there is a µ such that (ν, µ) ∈ [[α]]I and (µ, ω) ∈ [[β]]I .
Since V ⊇ FV(α; β) ⊇ FV(α), by induction hypothesis, there is a µ̃ such that (ν̃, µ̃) ∈ [[α]]J

and µ = µ̃ on V ∪MBV(α). Since V ⊇ FV(α; β), so V ∪MBV(α) ⊇ FV(α; β)∪MBV(α) =
FV(α) ∪ (FV(β) \ MBV(α)) ∪ MBV(α) = FV(α) ∪ FV(β) ∪ MBV(α) ⊇ FV(β) by
Def. 11, and since (µ, ω) ∈ [[β]]I , the induction hypothesis implies that there is an ω̃ such
that (µ̃, ω̃) ∈ [[β]]J and ω = ω̃ on (V ∪MBV(α)) ∪MBV(β) = V ∪MBV(α; β).

ν µ ω

ν̃ µ̃ ω̃

αon V ⊇
FV(α;β)
⊇ FV(α)

α

∃

β
on V ∪

MBV(α)

on V ∪MBV(α)
∪MBV(β)

β

∃

on BV(α){

on BV(α){

on BV(β){

on BV(β){

• (ν, ω) ∈ [[α∗]]I =
⋃
n∈N

[[αn]]I iff there is an n ∈ N such that (ν, ω) ∈ [[αn]]I . The case n = 0

follows from the assumption ν = ν̃ on V ⊇ FV(α), since ω = ν holds in that case and
MBV(α∗) = ∅. The case n > 0 proceeds as follows. Since FV(αn) = FV(α∗) = FV(α),
the induction hypothesis applied to the structurally simpler HP αn implies that there is an
ω̃ such that (ν̃, ω̃) ∈ [[αn]]J and ω = ω̃ on V ∪ MBV(αn) ⊇ V = V ∪ MBV(α∗), since
MBV(α∗) = ∅. Since [[αn]]J ⊆ [[α∗]]J , this concludes the proof.

When assuming ν and ν̃ to agree on all V(α), whether free or bound, ω and ω̃ will continue to
agree on V(α):

13

A. Platzer A Uniform Substitution Calculus for Differential Dynamic Logic

Corollary 5 (Coincidence lemma). If ν = ν̃ on V(α) and I = J on Σ(α) and (ν, ω) ∈ [[α]]I , then
there is an ω̃ such that (ν̃, ω̃) ∈ [[α]]J and ω = ω̃ on V(α). The same continues to hold if ν = ν̃
only on V(α) \MBV(α).

Proof. By Lemma 4 with V = V(α) ⊇ FV(α) or V = V(α) \MBV(α), respectively.

Remark 1. Using hybrid computation sequences, the agreement in Lemma 4 continues to hold for
ω = ω̃ on V ∪W , where W is the set of must-bound variables on the hybrid computation sequence
that α actually took for the transition (ν, ω) ∈ [[α]]I , which could be larger than MBV(α).

3 Uniform Substitutions
The uniform substitution rule US1 from first-order logic [2, §35,40] substitutes all occurrences of
predicate p(·) by a formula ψ(·), i.e. it replaces all occurrences of p(θ), for any (vectorial) term θ,
by the corresponding ψ(θ) simultaneously:

(US1)
φ

φ
ψ(·)
p(·)

(US)
φ

σ(φ)

Rule US1 [9] requires all relevant substitutions of ψ(θ) for p(θ) to be admissible and requires that
no p(θ) occurs in the scope of a quantifier or modality binding a variable of ψ(θ) other than the
occurrences in θ; see [2, §35,40].

This section considers a constructive definition of this proof rule that is more general: US. The
dL calculus uses uniform substitutions that affect terms, formulas, and programs. A uniform sub-
stitution σ is a mapping from expressions of the form f(·) to terms σf(·), from p(·) to formulas
σp(·), from C() to formulas σC(), and from program constants a to HPs σa. Vectorial extensions
are accordingly for uniform substitutions of other arities k ≥ 0. Here · is a reserved function
symbol of arity zero and a reserved quantifier symbol of arity zero. Figure 1 defines the result
σ(φ) of applying to a dL formula φ the uniform substitution σ that uniformly replaces all occur-
rences of function f by a (instantiated) term and all occurrences of predicate p or quantifier C by a
(instantiated) formula as well as of program constant a by a program. The notation σf(·) denotes
the replacement for f(·) according to σ, i.e. the value σf(·) of function σ at f(·). By contrast,
σ(φ) denotes the result of applying σ to φ according to Fig. 1 (likewise for σ(θ) and σ(α)). The
notation f ∈ σ signifies that σ replaces f , i.e. σf(·) 6= f(·). Finally, σ is a total function when
augmented with σg(·) = g(·) for all g 6∈ σ. Accordingly for predicate symbols, quantifiers, and
program constants.

Definition 12 (Admissible uniform substitution). The uniform substitution σ is U -admissible for
φ (or θ or α, respectively) with respect to the set U ⊆ V ∪V ′ iff FV(σ|Σ(φ))∩U = ∅, where σ|Σ(φ)

is the restriction of σ that only replaces symbols that occur in φ and FV(σ) =
⋃
f∈σ FV(σf(·)) ∪⋃

p∈σ FV(σp(·)) are the free variables that σ introduces. The uniform substitution σ is admissible
for φ (or θ or α, respectively) iff all admissibility conditions during its application according to
Fig. 1 hold, which check that the bound variables U of each operator are not free in the substitution

14

A. Platzer A Uniform Substitution Calculus for Differential Dynamic Logic

on its arguments, i.e. σ is U -admissible. Otherwise the substitution clashes so its result σ(φ) (σ(θ)
or σ(α)) is not defined.

US is only applicable if σ is admissible for φ. In all subsequent results, all applications of
uniform substitutions are required to be defined (no clash).

σ(x) = x for variable x ∈ V
σ(x′) = x′ for differential symbol x′ ∈ V ′

σ(f(θ)) = (σ(f))(σ(θ))
def
= {· 7→ σ(θ)}(σf(·)) for function symbol f ∈ σ

σ(g(θ)) = g(σ(θ)) for function symbol g 6∈ σ
σ(θ + η) = σ(θ) + σ(η)
σ(θ · η) = σ(θ) · σ(η)
σ((θ)′) = (σ(θ))′ if σ V ∪ V ′-admissible for θ

σ(θ ≥ η) ≡ σ(θ) ≥ σ(η)

σ(p(θ)) ≡ (σ(p))(σ(θ))
def≡ {· 7→ σ(θ)}(σp(·)) for predicate symbol p ∈ σ

σ(q(θ)) ≡ q(σ(θ)) for predicate symbol q 6∈ σ
σ(C(φ)) ≡ σ(C)(σ(φ))

def≡ { 7→ σ(φ)}(σC()) if σ V ∪ V ′-admissible for φ, C ∈ σ
σ(C(φ)) ≡ C(σ(φ)) if σ V ∪ V ′-admissible for φ, C 6∈ σ
σ(¬φ) ≡ ¬σ(φ)

σ(φ ∧ ψ) ≡ σ(φ) ∧ σ(ψ)
σ(∀xφ) = ∀x σ(φ) if σ {x}-admissible for φ
σ(∃xφ) = ∃x σ(φ) if σ {x}-admissible for φ
σ([α]φ) = [σ(α)]σ(φ) if σ BV(σ(α))-admissible for φ
σ(〈α〉φ) = 〈σ(α)〉σ(φ) if σ BV(σ(α))-admissible for φ

σ(a) ≡ σa for program constant a ∈ σ
σ(b) ≡ b for program constant b 6∈ σ

σ(x := θ) ≡ x := σ(θ)
σ(x′ := θ) ≡ x′ := σ(θ)

σ(x′ = θ&ψ) ≡ x′ = σ(θ) &σ(ψ) if σ {x, x′}-admissible for θ, ψ
σ(?ψ) ≡ ?σ(ψ)

σ(α ∪ β) ≡ σ(α) ∪ σ(β)
σ(α; β) ≡ σ(α);σ(β) if σ BV(σ(α))-admissible for β
σ(α∗) ≡ (σ(α))∗ if σ BV(σ(α))-admissible for α

Figure 1: Recursive application of uniform substitution σ

3.1 Correctness of Uniform Substitutions
Let IRp denote the interpretation that agrees with interpretation I except for the interpretation of
predicate symbol p, which is changed to R ⊆ R. Accordingly for predicate symbols of other
arities, for function symbols f , and quantifiers C.

15

A. Platzer A Uniform Substitution Calculus for Differential Dynamic Logic

Corollary 6 (Substitution adjoints). The adjoint interpretation σ∗νI to substitution σ for I, ν is the
interpretation that agrees with I except that for each function symbol f ∈ σ, predicate symbol
p ∈ σ, quantifier C ∈ σ, and program constant a ∈ σ:

σ∗νI(f) : R→ R; d 7→ [[σf(·)]]I
d·ν

σ∗νI(p) = {d ∈ R : ν ∈ [[σp(·)]]I
d·}

σ∗νI(C) : ℘(R)→ ℘(R); R 7→ [[σC()]]I
R

σ∗νI(a) = [[σa]]I

If ν = ω on FV(σ), then σ∗νI = σ∗ωI . If σ is U -admissible for φ (or θ or α, respectively) and ν = ω
on U {, then

[[θ]]σ
∗
νI = [[θ]]σ

∗
ωI i.e. [[θ]]σ

∗
νIµ = [[θ]]σ

∗
ωIµ for all µ

[[φ]]σ
∗
νI = [[φ]]σ

∗
ωI

[[α]]σ
∗
νI = [[α]]σ

∗
ωI

Proof. For well-definedness of σ∗νI , note that σ∗νI(f) is a smooth function since σf(·) has smooth
values. First, σ∗νI(a) = [[σa]]I = σ∗ωI(a) holds because the adjoint to σ for I, ν in the case of
programs is independent of ν (the program has access to its respective initial state at runtime).
Likewise σ∗νI(C) = σ∗ωI(C) for quantifiers. By Lemma 2, [[σf(·)]]I

d·ν = [[σf(·)]]I
d·ω when ν = ω

on FV(σf(·)). Also ν ∈ [[σp(·)]]I
d· iff ω ∈ [[σp(·)]]I

d· by Lemma 3 when ν = ω on FV(σp(·)).
Thus, σ∗νI = σ∗ωI when ν = ω on FV(σ).

If σ is U -admissible for φ (or θ or α), then FV(σf(·)) ∩ U = ∅ so FV(σf(·)) ⊆ U { for every
function symbol f ∈ Σ(φ) (or θ or α) and likewise for predicate symbols p ∈ Σ(φ). Since ν = ω
on U {, so σ∗ωI = σ∗νI on the function and predicate symbols in Σ(φ) (or θ or α). Finally σ∗ωI = σ∗νI
implies that ω ∈ [[φ]]σ

∗
ωI iff ν ∈ [[φ]]σ

∗
νI by Lemma 3 and that [[θ]]σ

∗
νI = [[θ]]σ

∗
ωI by Lemma 2 and that

[[α]]σ
∗
ωI = [[α]]σ

∗
νI by Lemma 4.

Substituting equals for equals is sound by the compositional semantics of dL. The more general
uniform substitutions are still sound, because interpretations of uniform substitutes correspond to
interpretations of their adjoints. The semantic modification of adjoint interpretations has the same
effect as the syntactic uniform substitution, proved by simultaneous induction. Recall that all
substitutions in the following are assumed to be defined (not clash), otherwise the lemmas make
no claim.

Lemma 7 (Uniform substitution lemma). The uniform substitution σ and its adjoint interpretation
σ∗νI, ν to σ for I, ν have the same term semantics:

[[σ(θ)]]Iν = [[θ]]σ
∗
νIν

Proof. The proof is by structural induction on θ.

• [[σ(x)]]Iν = [[x]]Iν = ν(x) = [[x]]σ
∗
νIν since x 6∈ σ for variable x ∈ V

16

A. Platzer A Uniform Substitution Calculus for Differential Dynamic Logic

• [[σ(x′)]]Iν = [[x′]]Iν = ν(x′) = [[x′]]σ
∗
νIν as x′ 6∈ σ for differential symbol x′ ∈ V ′

• [[σ(f(θ))]]Iν = [[(σ(f))
(
σ(θ)

)
]]Iν = [[{· 7→ σ(θ)}(σf(·))]]Iν IH

= [[σf(·)]]I
d·ν = (σ∗νI(f))(d)

= (σ∗νI(f))([[θ]]σ
∗
νIν) = [[f(θ)]]σ

∗
νIν with d def

= [[σ(θ)]]Iν
IH
= [[θ]]σ

∗
νIν by using the induction hy-

pothesis twice, once for σ(θ) on the smaller θ and once for {· 7→ σ(θ)}(σf(·)) on the possi-
bly bigger term σf(·) but the structurally simpler uniform substitution {· 7→ σ(θ)}(. . .) that
is a substitution on the symbol · of arity zero, not a substitution of functions with arguments.
For well-foundedness of the induction note that the · substitution only happens for function
symbols f with at least one argument θ (for f ∈ σ).

• [[σ(g(θ))]]Iν = [[g(σ(θ))]]Iν = I(g)
(
[[σ(θ)]]Iν

) IH
= I(g)

(
[[θ]]σ

∗
νIν
)

= σ∗νI(g)
(
[[θ]]σ

∗
νIν
)

=

[[g(θ)]]σ
∗
νIν by induction hypothesis and since I(g) = σ∗νI(g) as the interpretation of g does

not change in σ∗νI for g 6∈ σ.

• [[σ(θ + η)]]Iν = [[σ(θ) + σ(η)]]Iν = [[σ(θ)]]Iν+[[σ(η)]]Iν
IH
= [[θ]]σ

∗
νIν+[[η]]σ

∗
νIν = [[θ + η]]σ

∗
νIν

by induction hypothesis.

• [[σ(θ · η)]]Iν = [[σ(θ) · σ(η)]]Iν = [[σ(θ)]]Iν · [[σ(η)]]Iν
IH
= [[θ]]σ

∗
νIν · [[η]]σ

∗
νIν = [[θ · η]]σ

∗
νIν by

induction hypothesis.

• [[σ((θ)′)]]Iν = [[(σ(θ))′]]Iν =
∑

x ν(x′)∂[[σ(θ)]]IνXx
∂X

IH
=
∑

x ν(x′)∂[[θ]]
σ∗
νXx

I
νXx

∂X
=
∑

x ν(x′)∂[[θ]]σ
∗
νIνXx

∂X
=

[[(θ)′]]σ
∗
νIν by induction hypothesis, provided σ is V ∪ V ′-admissible for θ, i.e. does not in-

troduce any variables or differential symbols, so that Corollary 6 implies σ∗νI = σ∗ωI for all
ν, ω (that agree on (V ∪ V ′){ = ∅, which imposes no condition on ν, ω).

Lemma 8 (Uniform substitution lemma). The uniform substitution σ and its adjoint interpretation
σ∗νI, ν to σ for I, ν have the same formula semantics:

ν ∈ [[σ(φ)]]I iff ν ∈ [[φ]]σ
∗
νI

Proof. The proof is by structural induction on φ.

• ν ∈ [[σ(θ ≥ η)]]I iff ν ∈ [[σ(θ) ≥ σ(η)]]I iff [[σ(θ)]]Iν ≥ [[σ(η)]]Iν, by Lemma 7, iff [[θ]]σ
∗
νIν ≥

[[η]]σ
∗
νIν iff [[θ ≥ η]]σ

∗
νIν

• ν ∈ [[σ(p(θ))]]I iff ν ∈ [[(σ(p))
(
σ(θ)

)
]]I iff ν ∈ [[{· 7→ σ(θ)}(σp(·))]]I iff, by IH, ν ∈ [[σp(·)]]I

d·
iff d ∈ σ∗νI(p) iff ([[θ]]σ

∗
νIν) ∈ σ∗νI(p) iff ν ∈ [[p(θ)]]σ

∗
νI with d def

= [[σ(θ)]]Iν = [[θ]]σ
∗
νIν by us-

ing Lemma 7 for σ(θ) and by using the induction hypothesis for {· 7→ σ(θ)}(σp(·)) on
the possibly bigger formula σp(·) but the structurally simpler uniform substitution {· 7→
σ(θ)}(. . .) that is a mere substitution on symbol · of arity zero, not a substitution of predi-
cates (for p ∈ σ).

17

A. Platzer A Uniform Substitution Calculus for Differential Dynamic Logic

• ν ∈ [[σ(q(θ))]]I iff ν ∈ [[q(σ(θ))]]I iff
(
[[σ(θ)]]Iν

)
∈ I(q) so, by Lemma 7, iff

(
[[θ]]σ

∗
νIν
)
∈

I(q) iff
(
[[θ]]σ

∗
νIν
)
∈ σ∗νI(q) iff ν ∈ [[q(θ)]]σ

∗
νI since I(q) = σ∗νI(q) as the interpretation of q

does not change in σ∗νI (for q 6∈ σ)

• For the case σ(C(φ)), first show [[σ(φ)]]I = [[φ]]σ
∗
νI . By induction hypothesis for the smaller

φ: ω ∈ [[σ(φ)]]I iff ω ∈ [[φ]]σ
∗
ωI , where [[φ]]σ

∗
ωI = [[φ]]σ

∗
νI by Corollary 6 for all ν, ω (that agree

on (V ∪ V ′){ = ∅, which imposes no condition on ν, ω) since σ is V ∪ V ′-admissible for φ.
The proof then proceeds:

ν ∈ [[σ(C(φ))]]I = [[σ(C)(σ(φ))]]I = [[{ 7→ σ(φ)}(σC())]]I , so, by induction hypothesis
for the structurally simpler uniform substitution { 7→ σ(φ)} that is a mere substitution on
symbol of arity zero, iff ν ∈ [[σC()]]I

R

since the adjoint to { 7→ σ(φ)} is IR with R def
=

[[σ(φ)]]I .

Also ν ∈ [[C(φ)]]σ
∗
νI = σ∗νI(C)

(
[[φ]]σ

∗
νI
)

= [[σC()]]I
R

for R = [[φ]]σ
∗
νI = [[σ(φ)]]I by induction

hypothesis. Both sides are, thus, equivalent.

• The case σ(C(φ)) for C 6∈ σ again first shows [[σ(φ)]]I = [[φ]]σ
∗
νI for all ν using that σ is V ∪

V ′-admissible for φ. Then ν ∈ [[σ(C(φ))]]I = [[C(σ(φ))]]I = I(C)
(
[[σ(φ)]]I

)
= I(C)

(
[[φ]]σ

∗
νI
)

= σ∗νI(C)
(
[[φ]]σ

∗
νI
)

= [[C(φ)]]σ
∗
νI iff ν ∈ [[C(φ)]]σ

∗
νI

• ν ∈ [[σ(¬φ)]]I iff ν ∈ [[¬σ(φ)]]I iff ν 6∈ [[σ(φ)]]I , by induction hypothesis, iff ν 6∈ [[φ]]σ
∗
νI iff

ν ∈ [[¬φ]]σ
∗
νI

• ν ∈ [[σ(φ ∧ ψ)]]I iff ν ∈ [[σ(φ) ∧ σ(ψ)]]I iff ν ∈ [[σ(φ)]]I and ν ∈ [[σ(ψ)]]I , by induction hy-
pothesis, iff ν ∈ [[φ]]σ

∗
νI and ν ∈ [[ψ]]σ

∗
νI iff ν ∈ [[φ ∧ ψ]]σ

∗
νI

• ν ∈ [[σ(∃xφ)]]I iff ν ∈ [[∃x σ(φ)]]I (provided σ is {x}-admissible for φ) iff νdx ∈ [[σ(φ)]]I for
some d, so, by induction hypothesis, iff νdx ∈ [[φ]]

σ∗
νdx
I

for some d, which is equivalent to
νdx ∈ [[φ]]σ

∗
νI by Corollary 6 as σ is {x}-admissible for φ and ν = νdx on {x}{. Thus, this is

equivalent to ν ∈ [[∃xφ]]σ
∗
νI .

• The case ν ∈ [[σ(∀xφ)]]I follows by duality ∀xφ ≡ ¬∃x¬φ, which is respected in the defi-
nition of uniform substitutions.

• ν ∈ [[σ(〈α〉φ)]]I iff ν ∈ [[〈σ(α)〉σ(φ)]]I (provided σ is BV(σ(α))-admissible for φ) iff there
is a ω such that (ν, ω) ∈ [[σ(α)]]I and ω ∈ [[σ(φ)]]I , which, by Lemma 9 and induction hy-
pothesis, respectively, is equivalent to: there is a ω such that (ν, ω) ∈ [[α]]σ

∗
νI and ω ∈ [[φ]]σ

∗
ωI ,

which is equivalent to ν ∈ [[〈α〉φ]]σ
∗
νI , because ω ∈ [[φ]]σ

∗
ωI is equivalent to ω ∈ [[φ]]σ

∗
νI by

Corollary 6 as σ is BV(σ(α))-admissible for φ and ν = ω on BV(σ(α)){ by Lemma 1 since
(ν, ω) ∈ [[σ(α)]]I .

• The case ν ∈ [[σ([α]φ)]]I follows by duality [α]φ ≡ ¬〈α〉¬φ, which is respected in the defi-
nition of uniform substitutions.

18

A. Platzer A Uniform Substitution Calculus for Differential Dynamic Logic

Lemma 9 (Uniform substitution lemma). The uniform substitution σ and its adjoint interpretation
σ∗νI, ν to σ for I, ν have the same program semantics:

(ν, ω) ∈ [[σ(α)]]I iff (ν, ω) ∈ [[α]]σ
∗
νI

Proof. The proof is by structural induction on α.

• (ν, ω) ∈ [[σ(a)]]I = [[σa]]I = σ∗νI(a) = [[a]]σ
∗
νI for program constant a ∈ σ (the proof is

accordingly for a 6∈ σ).

• (ν, ω) ∈ [[σ(x := θ)]]I = [[x := σ(θ)]]I iff ω = ν
[[σ(θ)]]Iν
x = ν [[θ]]σ

∗
νIν

x by Lemma 8, which is, thus,
equivalent to (ν, ω) ∈ [[x := θ]]σ

∗
νI .

• (ν, ω) ∈ [[σ(x′ := θ)]]I = [[x′ := σ(θ)]]I iff ω = ν
[[σ(θ)]]Iν
x′ = ν

[[θ]]σ
∗
νIν

x′ by Lemma 8, which is,
thus, equivalent to (ν, ω) ∈ [[x′ := θ]]σ

∗
νI .

• (ν, ω) ∈ [[σ(?ψ)]]I = [[?σ(ψ)]]I iff ω = ν and ν ∈ [[σ(ψ)]]I , iff, by Lemma 8, ω = ν and
ν ∈ [[ψ]]σ

∗
νI , which is equivalent to (ν, ω) ∈ [[?ψ]]σ

∗
νI .

• (ν, ω) ∈ [[σ(x′ = θ&ψ)]]I = [[x′ = σ(θ) &σ(ψ)]]I (provided σ {x, x′}-admissible for θ, ψ)
iff ∃∃ϕ : [0, T]→ S with ϕ(0) = ν, ϕ(T) = ω and for all t ≥ 0: ϕ′(t) = [[σ(θ)]]Iϕ(t) =

[[θ]]σ
∗
ϕ(t)

Iϕ(t) by Lemma 7 as well as ϕ(t) ∈ [[σ(ψ)]]I , which, by Lemma 8, is equivalent to
ϕ(t) ∈ [[ψ]]σ

∗
ϕ(t)

I .

Also (ν, ω) ∈ [[x′ = θ&ψ]]σ
∗
νI iff ∃∃ϕ : [0, T]→ S with ϕ(0) = ν, ϕ(T) = ω and for all t ≥

0: ϕ′(t) = [[θ]]σ
∗
νIϕ(t) and ϕ(t) ∈ [[ψ]]σ

∗
νI . Finally, [[θ]]σ

∗
νI = [[θ]]σ

∗
ϕ(t)

I and [[ψ]]σ
∗
ϕ(t)

I = [[ψ]]σ
∗
νI

by Corollary 6 since σ is {x, x′}-admissible for θ, ψ and ν = ϕ(t) on BV(x′ = θ&ψ){ =
{x, x′}{ by Lemma 1.

• (ν, ω) ∈ [[σ(α ∪ β)]]I = [[σ(α) ∪ σ(β)]]I = [[σ(α)]]I ∪ [[σ(β)]]I , which, by induction hypothe-
sis, is equivalent to (ν, ω) ∈ [[α]]σ

∗
νI or (ν, ω) ∈ [[β]]σ

∗
νI , which is equivalent to (ν, ω) ∈ [[α]]σ

∗
νI∪

[[β]]σ
∗
νI = [[α ∪ β]]σ

∗
νI .

• (ν, ω) ∈ [[σ(α; β)]]I = [[σ(α);σ(β)]]I = [[σ(α)]]I◦[[σ(β)]]I (provided σ is BV(σ(α))-admissible
for β) iff there is a µ such that (ν, µ) ∈ [[σ(α)]]I and (µ, ω) ∈ [[σ(β)]]I , which, by induction
hypothesis, is equivalent to (ν, µ) ∈ [[α]]σ

∗
νI and (µ, ω) ∈ [[β]]σ

∗
µI . Yet, [[β]]σ

∗
µI = [[β]]σ

∗
νI by

Corollary 6, because σ is BV(σ(α))-admissible for β and ν = ω on BV(σ(α)){ by Lemma 1
since (ν, µ) ∈ [[σ(α)]]I . Finally, (ν, µ) ∈ [[α]]σ

∗
νI and (µ, ω) ∈ [[β]]σ

∗
νI for some µ is equivalent

to (ν, ω) ∈ [[α; β]]σ
∗
νI .

• (ν, ω) ∈ [[σ(α∗)]]I = [[(σ(α))∗]]I =
(
[[σ(α)]]I

)∗
=
⋃
n∈N([[σ(α)]]I)n (provided σ is BV(σ(α))-

admissible for α) iff there are n ∈ N and ν0 = ν, ν1, . . . , νn = ω such that (νi, νi+1) ∈ [[σ(α)]]I

for all i < n. By n uses of the induction hypothesis, this is equivalent to (νi, νi+1) ∈ [[α]]σ
∗
νi
I

19

A. Platzer A Uniform Substitution Calculus for Differential Dynamic Logic

for all i < n, which is equivalent to (νi, νi+1) ∈ [[α]]σ
∗
νI by Corollary 6 since σ is BV(σ(α))-

admissible for α and νi+1 = νi on BV(σ(α)){ by Lemma 1 as (νi, νi+1) ∈ [[σ(α)]]I for all
i < n. Thus, this is equivalent to (ν, ω) ∈ [[α∗]]σ

∗
νI =

(
[[α]]σ

∗
νI
)∗.

3.2 Soundness
The uniform substitution lemmas are the key insights for the soundness of US. US is only appli-
cable if the uniform substitution is defined (does not clash).

Theorem 10 (Soundness of uniform substitution). US is sound and so is its special case US1. That
is, if their premise is valid, then so is their conclusion.

Proof. Let the premise φ of US be valid, i.e. ν ∈ [[φ]]I for all interpretations and states I, ν. To
show that the conclusion is valid, consider any interpretation and state I, ν and show ν ∈ [[σ(φ)]]I .
By Lemma 8, ν ∈ [[σ(φ)]]I iff ν ∈ [[φ]]σ

∗
νI . The latter holds, because ν ∈ [[φ]]I for all I, ν, including

for σ∗νI, ν, by premise. The rule US1 is the special case of US where σ only substitutes predicate
symbol p.

4 Differential Dynamic Logic Axioms
Proof rules and axioms for a Hilbert-type axiomatization of dL from prior work [7] are shown in
Fig. 2, except that, thanks to rule US, axioms and rules now comprise the finite list of dL formulas
in Fig. 2 as opposed to an infinite collection of axioms from a finite list of axiom schemata along
with schema variables, side conditions, and implicit instantiation rules. Soundness of the axioms
in Fig. 2 follows from the soundness of corresponding axiom schemata [7], but would be easier
to prove standalone, because it is a finite list of formulas without the need to prove soundness
for all their instantiations. The rules in Fig. 2 are axiomatic rules, i.e. pairs of concrete formulas
instantiated by US. Further, x̄ is the vector of all relevant variables, which is finite-dimensional, or,
in practice, considered as a built-in vectorial term. Proofs in the uniform substitution dL calculus
use US (and bound renaming such as ∀x p(x) ↔ ∀y p(y)) to instantiate the axioms from Fig. 2
to the required form. CT,CQ,CE are congruence rules, which are included for efficiency to use
axioms in any context even if not needed for completeness.

Real Quantifiers. Besides (decidable) real arithmetic (whose use is denoted R), complete axioms
for first-order logic can be adopted to express universal instantiation ∀i(if p is true of all x it is also
true of constant symbol f), distributivity ∀→, and vacuous quantification V∀(predicate p of arity
zero does not depend on x).

(∀i) (∀x p(x))→ p(f)

(∀→) ∀x (p(x)→ q(x))→ (∀x p(x)→ ∀x q(x))

(V∀) p→ ∀x p

20

A. Platzer A Uniform Substitution Calculus for Differential Dynamic Logic

〈·〉 〈a〉p(x̄)↔ ¬[a]¬p(x̄)

[:=] [x := f]p(x)↔ p(f)

[?] [?q]p↔ (q → p)

[∪] [a ∪ b]p(x̄)↔ [a]p(x̄) ∧ [b]p(x̄)

[;] [a; b]p(x̄)↔ [a][b]p(x̄)

[∗] [a∗]p(x̄)↔ p(x̄) ∧ [a][a∗]p(x̄)

K [a](p(x̄)→ q(x̄))→ ([a]p(x̄)→ [a]q(x̄))

I [a∗](p(x̄)→ [a]p(x̄))→ (p(x̄)→ [a∗]p(x̄))

V p→ [a]p

G
p(x̄)

[a]p(x̄)

∀ p(x)

∀x p(x)

MP
p→ q p

q

CT
f(x̄) = g(x̄)

c(f(x̄)) = c(g(x̄))

CQ
f(x̄) = g(x̄)

p(f(x̄))↔ p(g(x̄))

CE
p(x̄)↔ q(x̄)

C(p(x̄))↔ C(q(x̄))

US
φ

σ(φ)

Figure 2: Differential dynamic logic axioms and proof rules

The Significance of Clashes. This section illustrates how soundness-critical it is for US to pro-
duce substitution clashes by showing unsound naı̈ve proof attempts that US prevents successfully.
US clashes for substitutions that introduce a free variable into a bound context. Even an occurrence
of p(x) in a context where x is bound does not allow mentioning x in the replacement except in
the · places:

clash
[x := f]p(x)↔ p(f)

[x := x+ 1]x 6= x↔ x+ 1 6= x
σ = {f 7→ x+ 1, p(·) 7→ (· 6= x)}

US can directly handle even nontrivial binding structures, though, e.g. from [:=] with the substitu-
tion σ = {f 7→ x2, p(·) 7→ [(z := · + z)∗; z := · + yz]y ≥ ·}:

US
[x := f]p(x)↔ p(f)

[x := x2][(z := x+z)∗; z := x+yz]y≥x↔ [(z := x2+z)∗; z := x2+yz]y≥x2

Similarly from [:=] with {f 7→ x2, p(·) 7→ [(y := y + 1 ∪ z := · + z∗); z := · + yz]y > ·}:

US
[x := f]p(x)↔ p(f)

[x := x2][(y := y+1 ∪ z := x+z∗); z := x+yz]y>x↔ [(y := y+1 ∪ z := x2+z∗); z := x2+yz]y>x2

It is soundness-critical that US clashes when trying to instantiate p in V∀ with a formula that
mentions the bound variable x:

clash
p→ ∀x p

x ≥ 0→ ∀x x ≥ 0
{p 7→ x ≥ 0}

21

A. Platzer A Uniform Substitution Calculus for Differential Dynamic Logic

It is soundness-critical that US clashes when substituting p in vacuous program axiom V with a
formula with a free occurrence of a variable bound by a:

clash
p→ [a]p

x ≥ 0→ [x := x− 1]x ≥ 0
{a 7→ x := x− 1, p 7→ x ≥ 0}

Gödel’s generalization rule G uses p(x̄) instead of p from V, so allows the proof:

US
(−x)2 ≥ 0

[x := x− 1](−x)2 ≥ 0

Let x̄ = (x, y), {a 7→ x := x+ 1, b 7→ x := 0; y := 0, p(x̄) 7→ x ≥ y}, US derives:

US

[∪]
∗

[a ∪ b]p(x̄)↔ [a]p(x̄) ∧ [b]p(x̄)

[x := x+ 1 ∪ (x := 0; y := 0)]x ≥ y ↔ [x := x+ 1]x ≥ 0 ∧ [x := 0; y := 0]x ≥ y

With x̄ = (x, y) and {a 7→ x := x+ 1 ∪ y := 0, b 7→ y := y + 1, p(x̄) 7→ x ≥ y} US derives:

US

[;]
∗

[a; b]p(x̄)↔ [a][b]p(x̄)

[(x := x+ 1 ∪ y := 0); y := y + 1]x ≥ y ↔ [x := x+ 1 ∪ y := 0][y := y + 1]x ≥ y

Not all axioms fit to the uniform substitution framework. The Barcan axiom was used in a
completeness proof for the Hilbert-type calculus for differential dynamic logic [7] (but not in the
completeness proof for its sequent calculus [5]):

(B) ∀x [α]p(x)→ [α]∀x p(x) (x 6∈ α)

B is unsound without the restriction x 6∈ α, though, so that the following would be an unsound
axiom:

∀x [a]p(x)→ [a]∀x p(x) (1)

because x 6∈ a cannot be enforced for program constants, since their effect might very well depend
on the value of x or since they might write to x. In (1), x cannot be written by a without violating
soundness:

∀x [a]p(x)→ [a]∀x p(x)

∀x [x := 0]x ≥ 0→ [x := 0]∀x x ≥ 0
{a 7→ x := 0, p(·) 7→ · ≥ 0}

nor can x be read by a in (1) without violating soundness:

∀x [a]p(x)→ [a]∀x p(x)

∀x [?y = x2]y = x2 → [?y = x2]∀x y = x2
{a 7→?y = x2, p(·) 7→ y = ·2}

Thus, the completeness proof for differential dynamic logic from prior work [7] does not di-
rectly carry over. A more general completeness result for differential game logic [9] implies,
however, that B is unnecessary for completeness.

22

A. Platzer A Uniform Substitution Calculus for Differential Dynamic Logic

5 Differential Equations and Differential Axioms
Section 4 leverages the first-order features of dL and US to obtain a finite list of axioms without
side-conditions. They lack axioms for differential equations, though. Classical calculi for dL have
axioms for replacing differential equations with a quantifier for time t ≥ 0 and an assignment for
their solutions x̄(t) [5, 7]. Besides being limited to simple differential equations, such axioms have
the inherent side-condition “if x̄(t) is a solution of the differential equation x′ = θ with symbolic
initial value x”. Such a side-condition is more difficult than occurrence and read/write conditions,
but equally soundness-critical. This section leverages US and the new differential forms in dL to
obtain a logically internalized version of differential invariants and related proof rules for differ-
ential equations [6, 8] as axioms (without schema variables and free of side-conditions). These
axioms can prove properties of more general “unsolvable” differential equations. They can also
prove all properties of differential equations that can be proved with solutions [8] while guarantee-
ing correctness of the solution as part of the proof.

5.1 Differentials: Invariants, Cuts, Effects, and Ghosts
Figure 3 shows differential equation axioms for differential weakening (DW), differential cuts
(DC), differential effect (DE), differential invariants (DI) [6], differential ghosts (DG) [8], solutions
(DS), differential substitutions ([′:=]), and differential axioms (+′,·′,◦′). Axioms identifying (x)′ =
x′ for variables x ∈ V and (f)′ = 0 for functions f and number literals of arity 0 are used implicitly.
Some axioms use reverse implications (φ← ψ) ≡ (ψ → φ) for emphasis.

DW [x′ = f(x) & q(x)]q(x)

DC
(
[x′ = f(x) & q(x)]p(x)↔ [x′ = f(x) & q(x) ∧ r(x)]p(x)

)
← [x′ = f(x) & q(x)]r(x)

DE [x′ = f(x) & q(x)]p(x, x′)↔ [x′ = f(x) & q(x)][x′ := f(x)]p(x, x′)

DI [x′ = f(x) & q(x)]p(x)←
(
q(x)→ p(x) ∧ [x′ = f(x) & q(x)](p(x))′

)
DG [x′ = f(x) & q(x)]p(x)↔ ∃y [x′ = f(x), y′ = a(x)y + b(x) & q(x)]p(x)

DS [x′ = f & q(x)]p(x)↔ ∀t≥0
(
(∀0≤s≤t q(x+ fs))→ [x := x+ ft]p(x)

)
[′:=] [x′ := f]p(x′)↔ p(f)

+′ (f(x̄) + g(x̄))′ = (f(x̄))′ + (g(x̄))′

·′ (f(x̄) · g(x̄))′ = (f(x̄))′ · g(x̄) + f(x̄) · (g(x̄))′

◦′ [y := g(x)][y′ := 1]
(
(f(g(x)))′ = (f(y))′ · (g(x))′

)
Figure 3: Differential equation axioms and differential axioms

23

A. Platzer A Uniform Substitution Calculus for Differential Dynamic Logic

Differential weakening axiom DW internalizes that differential equations can never leave their
evolution domain q(x). DW implies3 [x′ = f(x) & q(x)]p(x)↔ [x′ = f(x) & q(x)](q(x)→ p(x))
also called DW, whose (right) assumption is best proved by Gyielding premise q(x) → p(x).
The differential cut axiom DC is a cut for differential equations. It internalizes that differential
equations staying in r(x) stay in p(x) iff p(x) always holds after the differential equation that is
restricted to the smaller evolution domain & q(x) ∧ r(x). DC is a differential variant of modal
modus ponens K.

Differential effect axiom DE internalizes that the effect on differential symbols along a differen-
tial equation is a differential assignment assigning the right-hand side f(x) to the left-hand side x′.
Axiom DI internalizes differential invariants, i.e. that a differential equation stays in p(x) if it starts
in p(x) and if its differential (p(x))′ always holds after the differential equation x′ = f(x) & q(x).
The differential equation also vacuously stays in p(x) if it starts outside q(x), since it is stuck then.
The (right) assumption of DI is best proved by DE to select the appropriate vector field x′ = f(x)
for the differential (p(x))′ and a subsequent DW,G to make the evolution domain constraint q(x)
available as an assumption. For simplicity, this paper focuses on atomic postconditions for which
(θ ≥ η)′ ≡ (θ > η)′ ≡ (θ)′ ≥ (η)′ and (θ = η)′ ≡ (θ 6= η)′ ≡ (θ)′ = (η)′, etc. Axiom DG inter-
nalizes differential ghosts, i.e. that additional differential equations can be added if their solution
exists long enough. Axiom DS solves differential equations with the help of DG,DC. Vectorial
generalizations to systems of differential equations are possible for the axioms in Fig. 3.

The following proof proves a property of a differential equation using differential invariants
without having to solve that differential equation. One use of US is shown explicitly, other uses of
US are similar for DI,DE,[′:=] instances.

∗
R x3·x+ x·x3 ≥ 0

[′:=] [x′ := x3]x′·x+ x·x′ ≥ 0
G [x′ = x3][x′ := x3]x′·x+ x·x′ ≥ 0

∗
·′ (f(x̄)·g(x̄))′ = (f(x̄))′·g(x̄) + f(x̄)·(g(x̄))′

US (x·x)′ = (x)′·x+ x·(x)′

(x·x)′ = x′·x+ x·x′
CQ (x·x)′ ≥ 0↔ x′·x+ x·x′ ≥ 0

(x·x ≥ 1)′ ↔ x′·x+ x·x′ ≥ 0
CE [x′ = x3][x′ := x3](x·x ≥ 1)′
DE [x′ = x3](x·x ≥ 1)′
DI x·x ≥ 1→[x′ = x3]x·x ≥ 1

Previous calculi [6, 8] collapse this proof into a single proof step with complicated built-in operator
implementations that silently perform the same reasoning in an opaque way. The approach pre-
sented here combines separate axioms to achieve the same effect in a modular way, because they
have individual responsibilities internalizing separate logical reasoning principles in differential-
form dL. Tactics combining the axioms as indicated make the axiomatic way equally convenient.
Clever cuts or MP enable proofs in which the main argument remains as fast [6, 8] while the
additional premises subsequently check soundness. Both CQ and also CE simplify the proof sub-
stantially but are not necessary:

3[x′ = f(x) & q(x)](q(x) → p(x)) → [x′ = f(x) & q(x)]p(x) derives by K from DW. The con-
verse [x′ = f(x) & q(x)]p(x) → [x′ = f(x) & q(x)](q(x) → p(x)) derives by K since G derives
[x′ = f(x) & q(x)]

(
p(x)→ (q(x)→ p(x))

)
.

24

A. Platzer A Uniform Substitution Calculus for Differential Dynamic Logic

MP

∗
. .→ ((x · x)′ ≥ 0↔ x′ · x+ x · x′ ≥ 0)

US

·′
∗

(f(x̄) · g(x̄))′ = (f(x̄))′ · g(x̄) + f(x̄) · (g(x̄))′

(x · x)′ = (x)′ · x+ x · (x)′

(x · x)′ = x′ · x+ x · x′

G
(x · x)′ ≥ 0↔ x′ · x+ x · x′ ≥ 0

K
[x′ := x3]((x · x)′ ≥ 0↔ x′ · x+ x · x′ ≥ 0)

[x′ := x3](x · x)′ ≥ 0↔ [x′ := x3]x′ · x+ x · x′ ≥ 0

use proof above

∗
R x3 · x+ x · x3 ≥ 0

[′:=] [x′ := x3]x′ · x+ x · x′ ≥ 0
MP [x′ := x3](x · x)′ ≥ 0
G [x′ = x3][x′ := x3](x · x)′ ≥ 0

DE [x′ = x3](x · x)′ ≥ 0
DI x · x ≥ 1→[x′ = x3]x · x ≥ 1

The proof uses (implicit) cuts with equivalences predicting the outcome of the right branch, which
is simple but inconvenient. A constructive direct proof uses a free function symbol j(x, x′), instead,
which is ultimately instantiated by US as in Theorem 14.

The same technique is helpful for invariant search, in which case a free predicate symbol p(x̄)
is used and instantiated by US lazily when the proof closes.

∗
R x3 · x+ x · x3 ≥ 0

j(x, x3) ≥ 0
[′:=] [x′ := x3]j(x, x′) ≥ 0

G [x′ = x3][x′ := x3]j(x, x′) ≥ 0

∗
·′ (f(x̄) · g(x̄))′ = (f(x̄))′ · g(x̄) + f(x̄) · (g(x̄))′

US (x · x)′ = (x)′ · x+ x · (x)′

(x · x)′ = x′ · x+ x · x′
(x · x)′ = j(x, x′)

CQ (x · x)′ ≥ 0↔ j(x, x′) ≥ 0
(x · x ≥ 1)′ ↔ j(x, x′) ≥ 0

CE [x′ = x3][x′ := x3](x · x ≥ 1)′
DE [x′ = x3](x · x ≥ 1)′
DI x · x ≥ 1→[x′ = x3]x · x ≥ 1

Proofs based entirely on equivalences for solving differential equations involve DG for intro-
ducing a time variable, DC to cut the solutions in, DW to export the solution to the postcondition,
inverse DC to remove the evolution domain constraints again, inverse DG to remove the original
differential equations, and finally DS to solve the differential equation for time:

∗
R φ→∀s≥0 (x0 + a

2s
2 + v0s ≥ 0)

[:=]φ→∀s≥0 [t := 0 + 1s]x0 + a
2 t

2 + v0t ≥ 0
DS φ→[t′ = 1]x0 + a

2 t
2 + v0t ≥ 0

DGφ→[v′ = a, t′ = 1]x0 + a
2 t

2 + v0t ≥ 0
DGφ→[x′ = v, v′ = a, t′ = 1]x0 + a

2 t
2 + v0t ≥ 0

DCφ→[x′ = v, v′ = a, t′ = 1 & v = v0 + at]x0 + a
2 t

2 + v0t ≥ 0
DCφ→[x′ = v, v′ = a, t′ = 1 & v = v0 + at ∧ x = x0 + a

2 t
2 + v0t]x0 + a

2 t
2 + v0t ≥ 0

G,Kφ→[x′ = v, v′ = a, t′ = 1 & v = v0 + at ∧ x = x0 + a
2 t

2 + v0t](x=x0+a
2 t

2+v0t→ x≥0)
DWφ→[x′ = v, v′ = a, t′ = 1 & v = v0 + at ∧ x = x0 + a

2 t
2 + v0t]x ≥ 0

DCφ→[x′ = v, v′ = a, t′ = 1 & v = v0 + at]x ≥ 0
DCφ→[x′ = v, v′ = a, t′ = 1]x ≥ 0
φ→∃t [x′ = v, v′ = a, t′ = 1]x ≥ 0

DGφ→[x′ = v, v′ = a]x ≥ 0

25

A. Platzer A Uniform Substitution Calculus for Differential Dynamic Logic

where φ is a ≥ 0 ∧ v = v0 ≥ 0 ∧ x = x0 ≥ 0. The existential quantifier for t is instantiated by 0,
leading to [t := 0] (suppressed in the proof for readability reasons). The 4 uses of DC lead to 2
additional premises proving that v = v0 +at and then x = x0 + a

2
t2 +v0t are differential invariants

(using DI,DE,DW). Shortcuts using DW are possible but the above proof generalize to 〈〉 because
it is an equivalence proof. The additional premise for DC with v = v0 + at proves as follows:

∗
R a = 0 + a · 1

[′:=] [v′ := a][t′ := 1]v′ = 0 + at′

∗
+′ (f(x̄) + g(x̄))′ = (f(x̄))′ + (g(x̄))′
US (v0 + at)′ = (v0)′ + (at)′

·′ (v0 + at)′ = 0 + a(t′)
CQv′ = (v0 + at)′ ↔ v′ = 0 + at′

(v = v0 + at)′ ↔ v′ = 0 + at′
CE [v′ := a][t′ := 1](v = v0 + at)′
G [x′ = v, v′ = a, t′ = 1][v′ := a][t′ := 1](v = v0 + at)′

DE [x′ = v, v′ = a, t′ = 1](v = v0 + at)′
DI φ→[x′ = v, v′ = a, t′ = 1]v = v0 + at

The additional premise for DC with x = x0 + a
2
t2 + v0t proves as follows:

∗
R v = v0 + at→ v = at · 1 + v0 · 1

[′:=] v = v0 + at→ [x′ := v][t′ := 1]x′ = att′ + v0t
′

∗
2 a

2
tt′ + v0t

′ = att′ + vot
′

+′ ,·′ (x0 + a
2
t2 + v0t)

′ = att′ + vot
′

CQ x′ = (x0 + a
2
t2 + v0t)

′↔ x′ = att′ + vot
′

(x = x0 + a
2
t2 + v0t)

′↔ x′ = att′ + vot
′

CE v = v0 + at→ [x′ := v][t′ := 1](x = x0 + a
2
t2 + v0t)

′
G [x′ = v, v′ = a, t′ = 1& v = v0 + at](v = v0 + at→ [x′ := v][t′ := 1](x = x0 + a

2
t2 + v0t)

′)
DW [x′ = v, v′ = a, t′ = 1& v = v0 + at][x′ := v][t′ := 1](x = x0 + a

2
t2 + v0t)

′
DE [x′ = v, v′ = a, t′ = 1& v = v0 + at](x = x0 + a

2
t2 + v0t)

′
DI φ→[x′ = v, v′ = a, t′ = 1& v = v0 + at]x = x0 + a

2
t2 + v0t

5.2 Differential Substitution Lemmas
The key insight for the soundness of DI is that the analytic time-derivative of the value of a term
η along a differential equation x′ = θ&ψ agrees with the values of its differential (η)′ along the
vector field of that differential equation.

Lemma 11 (Differential lemma). If I, ϕ |= x′ = θ ∧ ψ holds for some flow ϕ : [0, r]→ S of any
duration r > 0, then for all 0 ≤ ζ ≤ r:

[[(η)′]]Iϕ(ζ) =
d[[η]]Iϕ(t)

dt
(ζ)

Proof. By chain rule [13, §3.10]:

d[[η]]Iϕ(t)

dt
(ζ) = ([[η]]I ◦ ϕ)′(ζ) = (∇[[η]]I)

(
ϕ(ζ)

)
· ϕ′(ζ) =

∑
x

∂[[η]]I

∂x

(
ϕ(ζ)

)
ϕ′(ζ)(x)

where (∇[[η]]I)
(
ϕ(ζ)

)
, the spatial gradient∇[[η]]I at ϕ(ζ), is the vector of ∂[[η]]I

∂x

(
ϕ(ζ)

)
=

∂[[η]]Iϕ(ζ)Xx
∂X

.
Chain rule and Def. 4 andDef. 6, thus, imply:

[[(η)′]]Iϕ(ζ) =
∑
x

ϕ(ζ)(x′)
∂[[η]]Iϕ(ζ)Xx

∂X
=
∑
x

∂[[η]]Iϕ(ζ)Xx
∂X

dϕ(t)(x)

dt
(ζ) =

d[[η]]Iϕ(t)

dt
(ζ)

26

A. Platzer A Uniform Substitution Calculus for Differential Dynamic Logic

The key insight for the soundness of differential effects DE is that differential assignments
mimicking the differential equation are vacuous along that differential equation. The differential
substitution resulting from a subsequent use of [′:=] is crucial to relay the values of the time-
derivatives of the state variables x along a differential equation by way of their corresponding
differential symbol x′. In combination, this makes it possible to soundly substitute the right-hand
side of a differential equation for its left-hand side in a proof.

Lemma 12 (Differential assignment). If I, ϕ |= x′ = θ ∧ ψ for some flow ϕ : [0, r]→ S of any
duration r ≥ 0, then

I, ϕ |= φ↔ [x′ := θ]φ

Proof. I, ϕ |= x′ = θ ∧ ψ impliesϕ(ζ) ∈ [[x′ = θ ∧ ψ]]I , i.e. ϕ(ζ)(x′) = [[θ]]Iϕ(ζ) andϕ(ζ) ∈ [[ψ]]I

for all 0 ≤ ζ ≤ r. Consequently (ϕ(ζ), ϕ(ζ)) ∈ [[x′ := θ]]I does not change the state, so that φ and
[x′ := θ]φ are equivalent along ϕ.

The final insights for differential invariant reasoning for differential equations are syntactic
ways of computing differentials, which can be internalized as axioms (+′,·′,◦′), since differentials
are syntactically represented in differential-form dL.

Lemma 13 (Derivations). The following equations of differentials are valid:

(f)′ = 0 for arity 0 functions/numbers f (2)
(x)′ = x′ for variables x ∈ V (3)

(θ + η)′ = (θ)′ + (η)′ (4)
(θ · η)′ = (θ)′ · η + θ · (η)′ (5)

[y := θ][y′ := 1]
(
(f(θ))′ = (f(y))′ · (θ)′

)
for y, y′ 6∈ θ (6)

Proof. The proof shows each equation separately. The first parts consider any constant function
(i.e. arity 0) or number literal f for (2) and align the differential (x)′ of a term that happens to be a
variable x ∈ V with its corresponding differential symbol x′ ∈ V ′ for (3). The other cases exploit
linearity for (4) and Leibniz properties of partial derivatives for (5). Case (6) exploits the chain
rule and assignments and differential assignments for the fresh y, y′ to mimic partial derivatives.
Equation (6) generalizes to functions f of arity n > 1, in which case · is the (definable) Euclidean
scalar product.

[[(f)′]]Iν =
∑
x

ν(x′)
∂[[f]]IνXx
∂X

=
∑
x

ν(x′)
∂I(f)

∂X
= 0 (2)

[[(x)′]]Iν =
∑
y

ν(y′)
∂[[x]]IνXy
∂X

= ν(x′)
∂[[x]]IνXx
∂X

= ν(x′)
∂X

∂X
= ν(x′) = [[x′]]Iν (3)

[[(θ + η)′]]Iν =
∑
x

ν(x′)
∂[[θ + η]]IνXx

∂X
=
∑
x

ν(x′)
∂([[θ]]IνXx + [[η]]IνXx)

∂X

=
∑
x

ν(x′)
(∂[[θ]]IνXx

∂X
+
∂[[η]]IνXx
∂X

)
27

A. Platzer A Uniform Substitution Calculus for Differential Dynamic Logic

=
∑
x

ν(x′)
∂[[θ]]IνXx
∂X

+
∑
x

ν(x′)
∂[[η]]IνXx
∂X

= [[(θ)′]]Iν + [[(η)′]]Iν = [[(θ)′ + (η)′]]Iν (4)

[[(θ · η)′]]Iν =
∑
x

ν(x′)
∂[[θ · η]]IνXx

∂X
=
∑
x

ν(x′)
∂([[θ]]IνXx · [[η]]IνXx)

∂X

=
∑
x

ν(x′)
(

[[η]]Iν
∂[[θ]]IνXx
∂X

+ [[θ]]Iν
∂[[η]]IνXx
∂X

)
= [[η]]Iν

∑
x

ν(x′)
∂[[θ]]IνXx
∂X

+ [[θ]]Iν
∑
x

ν(x′)
∂[[η]]IνXx
∂X

= [[(θ)′]]Iν · [[η]]Iν + [[θ]]Iν · [[(η)′]]Iν = [[(θ)′ · η + θ · (η)′]]Iν (5)

Proving that ν ∈ [[[y := θ][y′ := 1]
(
(f(θ))′ = (f(y))′ · (θ)′

)
]]I requires showing that

ν
[[θ]]Iν
y

1
y′ ∈ [[(f(θ))′ = (f(y))′ · (θ)′]]I , i.e. [[(f(θ))′]]Iν

[[θ]]Iν
y

1
y′ = [[(f(y))′ · (θ)′]]Iν

[[θ]]Iν
y

1
y′ . This is equiv-

alent to [[(f(θ))′]]Iν = [[(f(y))′]]Iν
[[θ]]Iν
y

1
y′ · [[(θ)′]]Iν by Lemma 2 since ν = ν

[[θ]]Iν
y

1
y′ on {y, y′}{ and

y, y′ 6∈ FV(θ) by assumption, so y, y′ 6∈ FV((f(θ))′) and y, y′ 6∈ FV((θ)′). The latter equation
proves using the chain rule and a fresh variable z when denoting [[f]]I

def
= I(f):

[[(f(θ))′]]Iν =
∑
x

ν(x′)
∂[[f(θ)]]I

∂x
(ν) =

∑
x

ν(x′)
∂([[f]]I ◦ [[θ]]I)

∂x
(ν)

chain
=
∑
x

ν(x′)
∂[[f]]I

∂y

(
[[θ]]Iν

)
· ∂[[θ]]I

∂x
(ν)

=
∂[[f]]I

∂y

(
[[θ]]Iν

)
·
∑
x

ν(x′)
∂[[θ]]I

∂x
(ν) =

∂[[f]]I

∂y

(
[[θ]]Iν

)
· [[(θ)′]]Iν

=
∂I(f)

∂y

(
[[θ]]Iν

)
· [[(θ)′]]Iν

=
∂I(f)

∂z
([[θ]]Iν)1 · [[(θ)′]]Iν

=
∂I(f)

∂z

(
[[y]]Iν [[θ]]Iν

y
1
y′

)∂[[y]]I

∂y
(ν [[θ]]Iν
y

1
y′) · [[(θ)′]]Iν

chain
=

∂(I(f) ◦ [[y]]I)

∂y
(ν [[θ]]Iν
y

1
y′) · [[(θ)′]]Iν

=

(
∂[[f(y)]]I

∂y
(ν [[θ]]Iν
y

1
y′)

)
· [[(θ)′]]Iν

=

(
ν [[θ]]Iν
y

1
y′(y

′)
∂[[f(y)]]I

∂y
(ν [[θ]]Iν
y

1
y′)

)
· [[(θ)′]]Iν

28

A. Platzer A Uniform Substitution Calculus for Differential Dynamic Logic

=

∑
x∈{y}

ν [[θ]]Iν
y

1
y′(x

′)
∂[[f(y)]]I

∂x
(ν [[θ]]Iν
y

1
y′)

 · [[(θ)′]]Iν

= [[(f(y))′]]Iν [[θ]]Iν
y

1
y′ · [[(θ)′]]Iν (6)

5.3 Soundness
Theorem 14 (Soundness). The dL axioms and proof rules in Fig. 2, 3 are sound, i.e. the axioms
are valid formulas and the conclusion of a rule is valid if its premises are. All US instances of the
proof rules (with FV(σ) = ∅) are sound.

Proof. The axioms (and most proof rules) in Fig. 2 are special instances of corresponding axiom
schemata and proof rules for differential dynamic logic [7] and, thus, sound. All proof rules except
US are even locally sound, i.e. for all I: if all their premises φj are valid in I (I |= φj) then their
conclusion ψ is, too (I |= ψ). Local soundness implies soundness. In addition, local soundness
implies that US can be used to soundly instantiate proof rules just like it soundly instantiates
axioms (Theorem 10). If

φ1 . . . φn

ψ
(7)

is a locally sound proof rule then its substitution instance is locally sound:

σ(φ1) . . . σ(φn)

σ(ψ)
(8)

where σ is any uniform substitution (for which the above results are defined, i.e. no clash) with
FV(σ) = ∅. To show this, consider any I in which all premises of (8) are valid, i.e. I |= σ(φj)

for all j. That is, ν ∈ [[σ(φj)]]
I for all ν and all j. By Lemma 8, ν ∈ [[σ(φj)]]

I is equivalent to
ν ∈ [[φj]]

σ∗νI , which, thus, also holds for all ν and all j. By Corollary 6, [[φj]]
σ∗νI = [[φj]]

σ∗ωI for any
ω, since FV(σ) = ∅. Consequently, all premises of (7) are valid in σ∗ωI , i.e. σ∗ωI |= φj for all j.
Thus, σ∗ωI |= ψ by local soundness of (7). That is, ν ∈ [[ψ]]σ

∗
νI = [[ψ]]σ

∗
ωI by Corollary 6 for all ν.

By Lemma 8, ν ∈ [[ψ]]σ
∗
νI is equivalent to ν ∈ [[σ(ψ)]]I , which continues to hold for all ν. Thus,

I |= σ(ψ), i.e. the conclusion of (8) is valid in I , hence (8) locally sound. Consequently, all US
instances of the locally sound proof rules of dL with FV(σ) = ∅ are locally sound. Note that ∀,MP
can be augmented soundly to use p(x̄) instead of p(x) or p, respectively, such that the FV(σ) = ∅
requirement will be met during US instances of all rules.

DW Soundness of DW uses that differential equations can never leave their evolution domain
by Def. 6. To show ν ∈ [[[x′ = f(x) & q(x)]q(x)]]I , consider any ϕ of any duration r ≥ 0

solving I, ϕ |= x′ = f(x) ∧ q(x). Then I, ϕ |= q(x) hence ϕ(r) ∈ [[q(x)]]I .

29

A. Platzer A Uniform Substitution Calculus for Differential Dynamic Logic

DC Soundness of DC is a stronger version of soundness for the differential cut rule [6]. DC
is a differential version of the modal modus ponens K. The core is that if r(x) always
holds after the differential equation and p(x) always holds after the differential equation
x′ = f(x) & q(x)∧r(x) that is restricted to r(x), then p(x) always holds after the differential
equation x′ = f(x) & q(x) without that additional restriction. Let ν ∈ [[[x′ = f(x) & q(x)]r(x)]]I .
Since all restrictions of solutions are solutions, this is equivalent to I, ϕ |= r(x) for all ϕ of
any duration solving I, ϕ |= x′ = f(x) ∧ q(x) and starting in ϕ(0) = ν on {x′}{. Conse-
quently, for all ϕ starting in ϕ(0) = ν on {x′}{: I, ϕ |= x′ = f(x) ∧ q(x) is equivalent to
I, ϕ |= x′ = f(x) ∧ q(x) ∧ r(x). Hence, ν ∈ [[[x′ = f(x) & q(x) ∧ r(x)]p(x)]]I is equivalent
to ν ∈ [[[x′ = f(x) & q(x)]p(x)]]I .

DE Soundness of DE is genuine to differential-form dL leveraging Lemma 12. Consider any
state ν. Then ν ∈ [[[x′ = f(x) & q(x)]p(x, x′)]]I iff ϕ(r) ∈ [[p(x, x′)]]I for all solutions ϕ :
[0, r]→ S of I, ϕ |= x′ = f(x) ∧ q(x) of any duration r starting in ϕ(0) = ν on {x′}{. That
is equivalent to: for all ϕ, if I, ϕ |= x′ = f(x) ∧ q(x) then I, ϕ |= p(x, x′). By Lemma 12,
I, ϕ |= p(x, x′) iff I, ϕ |= [x′ := f(x)]p(x, x′), so, that is equivalent toϕ(r) ∈ [[[x′ := f(x)]p(x, x′)]]I

for all solutions ϕ : [0, r] → S of I, ϕ |= x′ = f(x) ∧ q(x) of any duration r starting in
ϕ(0) = ν on {x′}{, which is, consequently, equivalent to ν ∈ [[[x′ = f(x) & q(x)][x′ := f(x)]p(x, x′)]]I .

DI Soundness of DI has some relation to the soundness proof for differential invariants [6], yet

is generalized to leverage differentials. The proof is only shown for p(x)
def≡ g(x) ≥ 0, in

which case (p(x))′ ≡ ((g(x))′ ≥ 0). Consider a state ν in which
ν ∈ [[q(x)→ (p(x) ∧ [x′ = f(x) & q(x)](p(x))′]]I). If ν 6∈ [[q(x)]]I , there is nothing to show,
because there is no solution of x′ = f(x) & q(x) for any duration, so the consequence holds
vacuously. Otherwise, ν ∈ [[q(x)]]I implies ν ∈ [[p(x) ∧ [x′ = f(x) & q(x)](p(x))′]]I . To
show that ν ∈ [[[x′ = f(x) & q(x)]p(x)]]I consider any solution ϕ of any duration r ≥ 0.
The case r = 0 follows from ν ∈ [[p(x)]]I by Lemma 3 since FV(p(x)) = {x} is disjoint
from {x′}, which is changed by evolutions of any duration. That leaves the case r > 0.

Let I, ϕ |= x′ = f(x) & q(x), which, by ν ∈ [[[x′ = f(x) & q(x)](p(x))′]]I , implies I, ϕ |= (p(x))′.
Since r > 0, Lemma 11 implies 0 ≤ [[(g(x))′]]Iϕ(ζ) = d[[g(x)]]Iϕ(t)

dt (ζ) for all ζ . Together with
ϕ(0) ∈ [[p(x)]]I (by Lemma 3 and FV(p(x)) ∩ {x′} = ∅), i.e. ϕ(0) ∈ [[g(x) ≥ 0]]I , this im-
plies ϕ(ζ) ∈ [[g(x) ≥ 0]]I for all ζ , including r, by the mean-value theorem since [[g(x)]]Iϕ(t)
is continuous in t on [0, r] and differentiable on (0, r).

DG Soundness of DG is a constructive variation of the soundness proof for differential auxil-
iaries [8]. Let ν ∈ [[∃y [x′ = f(x), y′ = a(x)y + b(x) & q(x)]p(x)]]I , that is,
νdx ∈ [[[x′ = f(x), y′ = a(x)y + b(x) & q(x)]p(x)]]I for some d. In order to show that
ν ∈ [[[x′ = f(x) & q(x)]p(x)]]I , consider anyϕ : [0, r]→ S such that I, ϕ |= x′ = f(x) ∧ q(x)
and ϕ(0) = ν on {x′}{. By modifying the values of y, y′ along ϕ, this function can be aug-
mented to a solution ϕ̃ : [0, r] → S such that I, ϕ̃ |= x′ = f(x) ∧ y′ = a(x)y + b(x) ∧ q(x)
and ϕ̃(0)(y) = d. The assumption then implies ϕ̃(r) ∈ [[p(x)]]I , which, by Lemma 3, is
equivalent to ϕ(r) ∈ [[p(x)]]I since y, y′ 6∈ FV(p(x)) and ϕ(r) = ϕ̃(r) on {y, y′}{, which

30

A. Platzer A Uniform Substitution Calculus for Differential Dynamic Logic

implies ν ∈ [[[x′ = f(x) & q(x)]p(x)]]I , since ϕ was arbitrary. The construction of the mod-
ification ϕ̃ of ϕ on {y, y′} proceeds as follows. By Picard-Lindelöf [14, §10.VII], there is a
solution y : [0, r]→ R of the initial-value problem

y(0) = d

y′(t) = F (t, y(t))
def
= y(t)[[a(x)]]Iϕ(t) + [[b(x)]]Iϕ(t)

(9)

because F (t, y) is continuous on [0, r]×R (since [[a(x)]]Iϕ(t) and [[b(x)]]Iϕ(t) are continuous
in t as compositions of the, by Def. 4 smooth, evaluation function and the continuous solution
ϕ(t) of a differential equation) and because F (t, y) satisfies the Lipschitz condition

‖F (t, y)− F (t, z)‖ = ‖(y − z)[[a(x)]]Iϕ(t)‖ ≤ ‖y − z‖ max
t∈[0,r]

[[a(x)]]Iϕ(t)

where the maximum exists, because it is a maximum of a continuous function on the compact
set [0, r]. The modification ϕ̃ agrees with ϕ on {y, y′}{ and is defined as ϕ̃(t)(y) = y(t)
and ϕ̃(t)(y′) = F (t, y(t)) = y′(t) on {y, y′}, respectively, for the solution y(t) of (9).
By construction, ϕ̃(0)(y) = d and I, ϕ̃ |= x′ = f(x) ∧ y′ = a(x)y + b(x) ∧ q(x), because
ϕ(t) = ϕ̃(t) on {y, y′}{ so that x′ = f(x) & q(x) continues to hold along ϕ̃ by Lemma 2
because y, y′ 6∈ FV(x′ = f(x) & q(x)), and because y′ = a(x)y+ b(x) holds along ϕ̃ by (9).

Conversely, let ν ∈ [[[x′ = f(x) & q(x)]p(x)]]I . This direction shows a stronger version of
ν ∈ [[∃y [x′ = f(x), y′ = a(x)y + b(x) & q(x)]p(x)]]I by showing that
νdy ∈ [[[x′ = f(x), y′ = η& q(x)]p(x)]]I for all d ∈ R and all terms η. Consider any ϕ :

[0, r] → S such that I, ϕ |= x′ = f(x) ∧ y′ = η ∧ q(x) with ϕ(0) = νdy on {x′, y′}{. Then
the restriction ϕ|{y,y′}{ of ϕ to {y, y′}{ with ϕ|{y,y′}{(t) = νdy on {y, y′} for all t ∈ [0, r]

still solves I, ϕ|{y,y′}{ |= x′ = f(x) ∧ q(x) by Lemma 2 since ϕ|{y,y′}{ = ϕ on {y, y′}{ and
y, y′ 6∈ FV(x′ = f(x) & q(x)). It also satisfies ϕ|{y,y′}{(0) = νdy on {x′}{, because ϕ(0) = νdy
on {x′, y′}{ yet ϕ|{y,y′}{(t)(y′) = νdy (y′). Thus, by assumption, ϕ|{y,y′}{(r) ∈ [[p(x)]]I , which
implies ϕ(r) ∈ [[p(x)]]I by Lemma 3, because ϕ = ϕ|{y,y′}{ on {y, y′}{ and y, y′ 6∈ FV(p(x)),

DS Soundness of the solution axiom DS follows from existence and uniqueness of global so-
lutions of constant differential equations. Consider any state ν. There is a unique [14,
§10.VII] global solution ϕ : [0,∞)→ S defined as ϕ(ζ)(x)

def
= [[x+ ft]]Iνζt and ϕ(ζ)(x′)

def
=

dϕ(t)(x)
dt (ζ) = I(f) and ϕ(ζ) = ν on {x, x′}{. This solution satisfies ϕ(0) = ν(x) on {x′}{

and I, ϕ |= x′ = f , i.e. ϕ(ζ) ∈ [[x′ = f]]I for all 0 ≤ ζ ≤ r. All solutions of x′ = f from
initial state ν are restrictions of ϕ to subintervals of [0,∞). The (unique) state ω that sat-
isfies (νζt , ω) ∈ [[x := x+ ft]]I agrees with ω = ϕ(ζ) on {x′}{, so that, by x′ 6∈ FV(p(x)),
Lemma 3 implies that ω ∈ [[p(x)]]I iff ϕ(ζ) ∈ [[p(x)]]I .

First consider axiom [x′ = f]p(x)↔ ∀t≥0 [x := x+ ft]p(x) for q(x) ≡ true. If
ν ∈ [[[x′ = f]p(x)]]I , then ϕ(ζ) ∈ [[p(x)]]I for all ζ ≥ 0, because the restriction of ϕ to
[0, ζ) solves x′ = f from ν, thus ω ∈ [[p(x)]]I , which implies νζt ∈ [[[x := x+ ft]p(x)]]I ,
so ν ∈ [[∀t≥0 [x := x+ ft]p(x)]]I as ζ ≥ 0 was arbitrary.

31

A. Platzer A Uniform Substitution Calculus for Differential Dynamic Logic

Conversely, ν ∈ [[∀t≥0 [x := x+ ft]p(x)]]I implies νζt ∈ [[[x := x+ ft]p(x)]]I for all ζ ≥ 0,
i.e. ω ∈ [[p(x)]]I when (νζt , ω) ∈ [[x := x+ ft]]I . Lemma 3 again implies ϕ(ζ) ∈ [[p(x)]]I for
all ζ ≥ 0, so ν ∈ [[[x′ = f]p(x)]]I , since all solutions are restrictions of ϕ.

Soundness of DS now follows using that all solutions ϕ : [0, r] → S of x′ = f(x) & q(x)
satisfy ϕ(ζ) ∈ [[q(x)]]I for all 0 ≤ ζ ≤ r, which, using Lemma 3 as above, is equivalent to
ν ∈ [[∀0≤s≤t q(x+ fs)]]I when ν(t) = r.

[′:=] Soundness of [′:=] follows from the semantics of differential assignments (Def. 6) and com-
positionality. In detail: x′ := f changes the value of symbol x′ to the value of f . The
predicate p has the same value for arguments x′ and f that have the same value.

+′,·′,◦′ Soundness of the derivation axioms +′,·′,◦′ follows from Lemma 13, since they are special
instances of (4) and (5) and (6), respectively. For ◦′ observe that y, y′ 6∈ g(x).

G Let the premise p(x̄) be valid in some I , i.e. I |= p(x̄), i.e. ω ∈ [[p(x̄)]]I for all ω. Then, the
conclusion [a]p(x̄) is valid in the same I , i.e. ν ∈ [[[a]p(x̄)]]I for all ν, because ω ∈ [[p(x̄)]]I

for all ω, so also for all ω with (ν, ω) ∈ [[a]]I . Thus, G is locally sound.

∀ Let the premise p(x) be valid in some I , i.e. I |= p(x), i.e. ω ∈ [[p(x)]]I for all ω. Then, the
conclusion ∀x p(x) is valid in the same I , i.e. ν ∈ [[∀x p(x)]]I for all ν, i.e. νdx ∈ [[p(x)]]I for
all d ∈ R, because ω ∈ [[p(x)]]I for all ω, so in particular for all ω = νdx for any d ∈ R. Thus,
∀ is locally sound.

CQ Let the premise f(x̄) = g(x̄) be valid in some I , i.e. I |= f(x̄) = g(x̄), i.e. ν ∈ [[f(x̄) = g(x̄)]]I

for all ν, i.e. [[f(x̄)]]Iν = [[g(x̄)]]Iν for all ν. Consequently, [[f(x̄)]]Iν ∈ I(p) iff [[g(x̄)]]Iν ∈
I(p). So, I |= p(f(x̄))↔ p(g(x̄)). Thus, CQ is locally sound.

CE Let the premise p(x̄)↔ q(x̄) be valid in some I , i.e. I |= p(x̄)↔ q(x̄), i.e. ν ∈ [[p(x̄)↔ q(x̄)]]I

for all ν. Consequently, [[p(x̄)]]I = [[q(x̄)]]I . Thus, [[C(p(x̄))]]I = I(C)
(
[[p(x̄)]]I

)
= I(C)

(
[[q(x̄)]]I

)
=

[[C(q(x̄))]]I . This implies I |= C(p(x̄))↔ C(q(x̄)), hence the conclusion is valid in I . Thus,
CE is locally sound.

CT Rule CT is a (locally sound) derived rule and only included for comparison. CT is derivable

from CQ using p(·) def≡ (c(·) = c(g(x̄))) and reflexivity of =.

MP Modus ponens MP is locally sound with respect to the interpretation I and the state ν, which
implies local soundness and thus soundness. If ν ∈ [[p→ q]]I and ν ∈ [[p]]I then ν ∈ [[q]]I .

US Uniform substitution is sound by Theorem 10, just not necessarily locally sound.

32

A. Platzer A Uniform Substitution Calculus for Differential Dynamic Logic

6 Conclusions
With differential forms for local reasoning about differential equations, uniform substitutions lead
to a simple and modular proof calculus for differential dynamic logic that is entirely based on
axioms and axiomatic rules, instead of soundness-critical schema variables with side-conditions in
axiom schemata. The US calculus is straightforward to implement and enables flexible reasoning
with axioms by contextual equivalence. Efficiency can be regained by tactics that combine multiple
axioms and rebalance the proof to obtain short proof search branches. Contextual equivalence
rewriting for implications is possible when adding monotone quantifiers C whose substitution
instances limit to positive polarity.

Acknowledgment. I thank the anonymous reviewers of the conference version [10] for their
helpful feedback.

This material is based upon work supported by the National Science Foundation by NSF CA-
REER Award CNS-1054246. The views and conclusions contained in this document are those of
the author and should not be interpreted as representing the official policies, either expressed or
implied, of any sponsoring institution or government. Any opinions, findings, and conclusions or
recommendations expressed in this publication are those of the author(s) and do not necessarily
reflect the views of any sponsoring institution or government.

A Appendix
This appendix briefly discusses generalized uses and forms of the differential ghost axioms and
how it generalizes the differential auxiliaries proof rule [8].

Differential Lipschitz Ghosts The differential ghost axiom DG generalizes to arbitrary Lipschitz-
continuous differential equations y′ = g(x, y):

(DG`)
(
[x′ = f(x) & q(x)]p(x)↔ ∃y [x′ = f(x), y′ = g(x, y) & q(x)]p(x)

)
← ∃`∀x, y, z |g(x, y)− g(x, z)| ≤ `|y − z|

The soundness argument for DG` is an extension of the soundness proof for DG. The direction “←”
of DG is sound for all differential equations. The proof for the direction “→” extends the proof for
DG with an adaptation of the function F from (9) to the differential equation y′ = g(x, y):

y(0) = d

y′(t) = F (t, y(t))
def
= [[g(x, y)]]Iϕ(t)y(t)

y

(10)

This function F (t, δ) is still continuous on [0, r] × R since it is a composition of the continuous
evaluation (of the, by assumption, continuous term g(x, y)) with the (continuous) composition of
the continuous function ϕ(t) of t with the continuous modification of the value of variable y to δ.
By assumption F (t, y) is Lipschitz in y, since there is an ` ∈ R such that for all t, a, b ∈ R:

33

A. Platzer A Uniform Substitution Calculus for Differential Dynamic Logic

|F (t, a)− F (t, b)| = |[[g(x, y)]]Iϕ(t)ay − [[g(x, y)]]Iϕ(t)by| = |[[g(x, y)− g(x, z)]]Iϕ(t)ay
b

z
|

= [[|g(x, y)− g(x, z)|︸ ︷︷ ︸
≤`[[|y−z|]]Iϕ(t)ay

b

z

]]Iϕ(t)ay
b

z
≤ `|a− b|

This establishes the only two properties of F that the soundness proof of DG was based on. The
existence of a solution y : [0, r] → R of (10) is, thus, established again by Picard-Lindelöf as
needed for the soundness proof.

Differential Auxiliaries Rule The differential auxiliaries proof rule [8] is derivable from DG
and monotonicity M.

(DA)
p(x)↔ ∃y r(x, y) r(x, y)→[x′ = f(x), y′ = g(x, y) & q(x)]r(x, y)

p(x)→[x′ = f(x) & q(x)]p(x)

where y is new and y′ = g(x, y), y(0) = y0 has a solution y : [0,∞)→ Rn for each y0.
The derivation proceeds as follows (the middle premise uses V∃ with y 6∈ p(x)):

p(x)↔ ∃y r(x, y)

∃y r(x, y)→p(x)
V∃ r(x, y)→p(x) r(x, y)→[x′ = f(x), y′ = g(x, y) & q(x)]r(x, y)

M r(x, y)→[x′ = f(x), y′ = g(x, y) & q(x)]p(x)
∃i r(x, y)→∃y [x′ = f(x), y′ = g(x, y) & q(x)]p(x)

DG r(x, y)→[x′ = f(x) & q(x)]p(x)
∃i ∃y r(x, y)→[x′ = f(x) & q(x)]p(x)

cut p(x)→[x′ = f(x) & q(x)]p(x)

Using the following duals of ∀i and V∀ as well as monotonicity rule M [4] that derives from G,K:
(∃i) p(f)→ (∃x p(x))

(V∃) ∃x p→ p

(M)
φ→ ψ

[α]φ→ [α]ψ

References
[1] Alonzo Church. A formulation of the simple theory of types. J. Symb. Log., 5(2):56–68,

1940.

[2] Alonzo Church. Introduction to Mathematical Logic, Volume I. Princeton University Press,
Princeton, NJ, 1956.

[3] Leon Henkin. Banishing the rule of substitution for functional variables. J. Symb. Log.,
18(3):pp. 201–208, 1953.

[4] André Platzer. Differential game logic. ACM Trans. Comput. Log. To appear. Preprint at
arXiv 1408.1980.

34

A. Platzer A Uniform Substitution Calculus for Differential Dynamic Logic

[5] André Platzer. Differential dynamic logic for hybrid systems. J. Autom. Reas., 41(2):143–
189, 2008. doi:10.1007/s10817-008-9103-8.

[6] André Platzer. Differential-algebraic dynamic logic for differential-algebraic programs. J.
Log. Comput., 20(1):309–352, 2010. doi:10.1093/logcom/exn070.

[7] André Platzer. The complete proof theory of hybrid systems. In LICS, pages 541–550. IEEE,
2012. doi:10.1109/LICS.2012.64.

[8] André Platzer. The structure of differential invariants and differential cut elimination. Log.
Meth. Comput. Sci., 8(4):1–38, 2012. doi:10.2168/LMCS-8(4:16)2012.

[9] André Platzer. Differential game logic. CoRR, abs/1408.1980, 2014. arXiv:1408.1980.

[10] André Platzer. A uniform substitution calculus for differential dynamic logic. In Amy Felty
and Aart Middeldorp, editors, CADE, volume 9195 of LNCS, pages 467–481. Springer, 2015.
doi:10.1007/978-3-319-21401-6_32.

[11] André Platzer and Jan-David Quesel. KeYmaera: A hybrid theorem prover for hybrid sys-
tems. In Alessandro Armando, Peter Baumgartner, and Gilles Dowek, editors, IJCAR, volume
5195 of LNCS, pages 171–178. Springer, 2008. doi:10.1007/978-3-540-71070-7_
15.

[12] H. Gordon Rice. Classes of recursively enumerable sets and their decision problems. Trans.
AMS, 89:25–59, 1953.

[13] Wolfgang Walter. Analysis 2. Springer, 4 edition, 1995.

[14] Wolfgang Walter. Ordinary Differential Equations. Springer, 1998.

35

http://dx.doi.org/10.1007/s10817-008-9103-8
http://dx.doi.org/10.1093/logcom/exn070
http://dx.doi.org/10.1109/LICS.2012.64
http://dx.doi.org/10.2168/LMCS-8(4:16)2012
http://arxiv.org/abs/1408.1980
http://dx.doi.org/10.1007/978-3-319-21401-6_32
http://dx.doi.org/10.1007/978-3-540-71070-7_15
http://dx.doi.org/10.1007/978-3-540-71070-7_15

	1 Introduction
	2 Differential-Form Differential Dynamic Logic
	2.1 Syntax
	2.2 Dynamic Semantics
	2.3 Static Semantics
	2.4 Correctness of Static Semantics

	3 Uniform Substitutions
	3.1 Correctness of Uniform Substitutions
	3.2 Soundness

	4 Differential Dynamic Logic Axioms
	5 Differential Equations and Differential Axioms
	5.1 Differentials: Invariants, Cuts, Effects, and Ghosts
	5.2 Differential Substitution Lemmas
	5.3 Soundness

	6 Conclusions
	A Appendix

