
Latency Optimization for Resource Allocation in Cloud 
Computing System 

Masoud Nosrati1(), Abdolah Chalechale2, and Ronak Karimi1 

1 Kermanshah Branch, Islamic Azad University, Kermanshah, Iran 
minibigs_m@yahoo.co.uk 

2 Department of Computer Engineering, Razi University, Kermanshah, Iran 

Abstract. Recent studies in different fields of science caused emergence of 
needs for high performance computing systems like Cloud. A critical issue in 
design and implementation of such systems is resource allocation which is di-
rectly affected by internal and external factors like the number of nodes, geo-
graphical distance and communication latencies. Many optimizations took place 
in resource allocation methods in order to achieve better performance by con-
centrating on computing, network and energy resources. Communication laten-
cies as a limitation of network resources have always been playing an important 
role in parallel processing (especially in fine-grained programs). In this paper, 
we are going to have a survey on the resource allocation issue in Cloud and then 
do an optimization on common resource allocation method based on the laten-
cies of communications. Due to it, we added a table to Resource Agent (entity 
that allocates resources to the applicants) to hold the history of previous alloca-
tions. Then, a probability matrix was constructed for allocation of resources 
partially based on the history of latencies. Response time was considered as a 
metric for evaluation of proposed method. Results indicated the better response 
time, especially by increasing the number of tasks. Besides, the proposed meth-
od is inherently capable for detecting the unavailable resources through measur-
ing the communication latencies. It assists other issues in cloud systems like 
migration, resource replication and fault –tolerance. 

Keywords: Distributed systems · Resource allocation · Resource agent · Opti-
mization in resource allocation · Latency of communication 

1 Introduction 

The distributed computers emerged to tie together the power of large number of re-
sources distributed across a network [1]. The requirements of each user are shared on 
the network through a proper communication channel. It helps to utilize the capabilities 
of the whole of system for all users. Generally, High Performance Computing Systems 
(HPC) are defined as a collection of single coherent systems that are interconnected 
through a high speed network, to provide facility of high performance computing [2].  
Many applications of High Performance Computing systems such as industrial [3], 

DOI: 10.1007/978-3-319-21404-7_26 



356 M. Nosrati et al. 

educational [4], medical [5] and commercial [6] came to existence after provision of 
hardware infrastructures. HPCs are preferred for the following reasons [7]: 

• The nature of distributed applications is based on the network connections. 
• Parallelism is provided in HPC by executing parallel grains on different machines. 
• Higher reliability rather than single systems. 

Previous studies in this area, categorizes the distributed systems to 3 types: Cluster, 
Grid and Cloud. In classic texts, Cluster is known as a distributed system with homo-
geneous nodes and Grid with heterogeneous ones [8][9]. But, in recent researches, 
there are Clusters with heterogeneous nodes implemented. It shows that homogeneity 
can’t be a good metric for classification. Due to it, [7] categorizes the distributed sys-
tems by their resource allocation features as the fig.1. In this study, we will get into 
the resource allocation in Cloud systems. 

Modeling of a Cloud system is not an easy errand to run. It is complicated because 
of wide range of different factors influencing the systems, such as: number of  
machines, types of applications, processing load and other important factors which 
can affect the system. Type of services is also a critical point. It can be Software as a 
Service (SaaS), Platform as a Service (PaaS) and Infrastructure as a Service (IaaS). 
Fig.2 shows some instances of these services. Another important notion is the issue of 
migration. Migration lets the system to achieve better performance, fault-tolerance, 
system management and load distribution. So, it is always considered in design and 
modeling of all Clouds. Quality of Service is other challenge in Cloud systems. QoS 
can be set in run time. This feature is called “Dynamic QoS Negotiation” [10]. 
DQoSN is implemented by a special entity or through self-algorithms [10]. 

The challenges that were talked can clearly indicate the delicacy and toughness of 
resource allocation in Cloud systems. Accordingly, [11] classifies the recent studies in 
Cloud resource allocation in 3 types: 

• Researches focusing on processing resources like [12] and [13]. 
• Researches focusing on network resources like [14] and [15]. 
• Researches focusing on power and energy resources like [16] and [17]. 

Also, [11] states that challenges are external or internal. External challenges in-
clude regulative and geographical challenges (it is about the geographical location, 
and regulative and security issues of data caused by distribution) and charging model 
issues (it is about the charges for customers to utilize the Cloud). In other hand, inter-
nal challenges include the data locality: combining compute and data management; 
reliability of network resources inside a data center; and Software Defined Network-
ing design challenges inside the data centers. SDN is a networking paradigm that 
separates the forwarding plane from software control. Details are mentioned in [11]. 

One of the important issues in real world implementation of distributed systems is 
about the power and energy resources optimization. Different strategies are intro-
duced in order to decrease the energy consumption. Most of them try to aggregate the 
resources on smaller number of servers, in order to shut down the non-busy ones. 
Resource aggregation has a trade-off with the performance of the system. Also, it will 



 Latency Optimization for Resource Allocation in Cloud Computing System 357 

cause to have a bottle neck on the I/O of the running servers. Also, it may affect the 
Quality of Service of system. Average response time will be increased, respectively. 

As the conclusion of this section, it should be restated that in every resource alloca-
tion method, all the aspects of processing capabilities, network resources and energy 
consumption must be considered. Regarding the trade-off among these factors, the 
best configuration should be found and set. Besides, other issues like the portability 
and fault-tolerance should be paid attention, respectively. Recent studies go through 
these issues separately and many approaches for optimization of recourse manage-
ment are offered by them. 

In the rest of this paper, we will have a brief look at the resource allocation and the 
strategies that Resource Agent (the entity that allocates the resources to applicants) 
utilizes to choose the best resource for best applicant. After pointing out the standard 
method of resource allocation, we offer our contribution based on the optimization of 
latencies between the resource and applicant. Results of simulation of proposed meth-
od shows the better performance of this method rather than the standard resource 
allocation approach. Finally it the end of paper, we will have a discussion and conclu-
sion on the features of proposed method. 

 

 

Fig. 1. HPC systems categories and attributes [7] 



358 M. Nosrati et al. 

 

Fig. 2. Instances of Cloud services  
Source: http://ohsweb.ohiohistory.org/ohioerc/?page_id=187 

 

Fig. 3. Cloud resources allocation environment [21] 

2 Common Resource Allocation Method 

In this section, a common resource allocation method is talked that many researches 
like [18], [19] and [20] utilized it for their resource allocation optimization. In this 
method, a resource agent is considered as the entity that performs the resource alloca-
tion. As it is shown in fig.3, both resource owners and resource applicants send their 
costs to ResAg. General policy of ResAg is to sort the requests and resources and 
totally allocate the applicants with highest budget to the resource with lowest  
price [21]. 

Let U = ሼuଵ, uଶ, uଷ, … , u୫ሽ  be the set composed of m Resource applicants, each 
task of resource applicant ui is ti, so the task set of U can be described as ܶ =ሼݐଵ, ,ଶݐ ,ଷݐ … , ௜ݐ ௠ሽ. And ti has four attributesݐ = ሼ݀݅ݐ௜, ݈௜ , ܾ௜, ݀௜ሽ, where tidi is the ith 
task’s identify, li is the ith task’s length, bi is the ith task’s budget, and di is the deadline 
of the task. 



 Latency Optimization for Resource Allocation in Cloud Computing System 359 

Let ܱ = ሼ݋ଵ, ,ଶ݋ ,ଷ݋ … , -௡ሽ  be the set composed of n resource owners, each re݋
source of resource owner oj is rj, so the resource set of O can be described as ܴ =ሼݎଵ, ,ଶݎ ,ଷݎ … , ௝ݎ  ௡ሽ. And rj has five attributesݎ = ൛݅ݎ ௝݀ , ,௝ݑ݌ܿ ,௝ݐݏ ,௝݌݈ ℎ݌௝ൟ, where ridj 
is the jth media resource’s identify, cpuj is the jth media resource’s computing ability 
of solving the task, stj is the start time to deal with a new task (i.e. the current work-
load of resource rj), lpj is the jth media resource’s lowest price, and hpj is the jth media 
resource’s highest price. 

The media resources allocation probability matrix is shown as P which each pij is 
the probability of resource j to be allocated to applicant i: 
 

ܲ = ൦ ଵଵ݌ ଶଵ݌ଵଶ݌ ଶଶ݌ ⋯ …ଵ௡݌ ⋮ଶ௡݌ ௠ଵ݌⋮ ௠ଶ݌ ⋮ ⋮… ௠௡൪    s.t.   0݌ ≤ ௜௝݌ ≤ 1  ,  ∑ ௜௝௠௜ୀଵ݌ = 1  ,  ∑ ௜௝௡௝ୀଵ݌ = 1 

 
Before any decision about resource allocation, the budget of applicant and the price 

of resource should be calculated and submitted to ResAg. It is important to consider 
the following point all the time: 

Resource must be capable enough to process the request of applicant in the dead-

line:  ݀௜ − ௝ݐݏ − ௟೔௖௣௨ೕ ≥ 0 

The price of resource must be less than or equal to the applicant:  ܾ௜/݈௜ ≥ ௝݌݈  
Budget of applicant must be at least equal to the average of the price of remaining 

resources.  (݈݌ഥ = ቀଵ௡ቁ ∑ ௝௡௝ୀଵ݌݈ ) 

Budget of applicant is calculated from (1), where ܾ݅݀௜௥௘௦௢௨௥௖௘ has inverse relation-
ship with the number of remaining resources. It means, when the number of unallo-
cated resources is decreasing, proposed budget of applicant for the resource will be 
increased, and vice versa. Other impressing factor that is Average Remaining Time, 
that [22] calculated it as (2). Total budget based on the (3) is the sum of both (1) and 
(2) with the weights of α′ and β′. Weights might be changed based on the policies of 
the system. ܾ݅݀௜௥௘௦௢௨௥௖௘(ݐ) = ഥ݌݈ + ቀ௕೔௟೔ − ഥ݌݈ ቁ ൬1 − ௡೔೟௡೔೘ೌೣ൰భഀ

         (1) 

ഥݐݎ  ௜(ݐ) = ∑ ൫௥௧೔ೕ(௧)ఠ೔ೕ൯௡೔೘ೌೣ௡௝ୀଵ   ,  ߱௜௝ = ൜1 (ݐ)௜௝ݐݎ ݂݅ ≥ 00 ݁ݏ݅ݓݎℎ݁ݐ݋    ܾ݅݀௜௧௜௠௘(ݐ) = ഥ݌݈ + ቀ௕೔௟೔ − ഥ݌݈ ቁ ൬1 − ௥௧തതത೔(௧)௥௧೔೘ೌೣ൰భഁ
         (2) 

 ܾ݅݀௜(ݐ) = (ݐ)ᇱܾ݅݀௜௥௘௦௢௨௥௖௘ߙ + 0 (3)       (ݐ)௜௧௜௠௘ܾ݀݅′ߚ ≤ ,ᇱߙ ′ߚ ≤ 1 
 
In these equations, ݊௜௧ is the number of remaining resources in the time t, which 

can be applied by applicant ti, and ݊௜௠௔௫  is the maximum number of resources that 



360 M. Nosrati et al. 

might be applied by ti. Remaining time of ti who is utilizing rj is calculated as ݐݎ௜௝(ݐ) = ݀௜ − ௝ݐݏ − ݈௜/ܿݑ݌௝. Let ݐݎ௜௠௔௫ be the maximum time of waiting for ti. Dif-
ferent applicant’s budget curve can be adjusted by changing ߙ and ߚ. In fig.4 differ-
ent values of ߙ is shown. It has the same shape for ߚ and σ (that will be introduced 
in next parts of paper).  

After calculation of the budget of applicant, it is time to calculate the price of the 
resource. General policy of the resource owner is to service the applicant with the 
highest budget, in order to increase the utilizing the resource. In other words: 

(ݐ)௝݌ݎ = ௝݌݈ + (ℎ݌௝ − (௝݌݈ ൬௦௧ೕ(௧)௪௟ೕ(௧)൰భ഑
   (4) 

 
Where, ݌ݎ௝(ݐ) is the price of resource at time t and ݐݏ௝(ݐ) is the current workload 

or the workload at the start time of the task at time t. ݓ ௝݈(ݐ) is the workload of ݎ௝ 
after the last allocation. In this equation, general trend is to decrease the price of the 
resource when the allocated resource is going to finish the task, in order to let other 
applicants to apply for it easier. 

After the calculation of both budget and price, they are submitted to ResAg. It sorts 
the applicants’ budgets in descent order and the resource prices in ascent order. Then, 
according to (5) final price is calculated as the average of the richest applicant 
(ܾ݅݀௜௠௔௫) and cheapest resource (݌ݎ௝௠௜௡):  

(ݐ)݌݂  = ଵଶ ൫ܾ݅݀௜௠௔௫(ݐ) +  ൯        (5)(ݐ)௝௠௜௡݌ݎ

 
Matrix P is then constructed according to the final prices. Resource allocation meth-

ods utilize this P for binding the resource to the applicant. But, an important issue is 
optimizing the values of matrix P to achieve more valuable goals like green computing. 

This section was mostly adopted from [21]; and readers can refer to it for further 
details about the construction P and strategies of applicant and resource owners. 

3 Optimization of Matrix P Based on the History of Latencies 

3.1 Taking the Communication Latencies into Account 

Definitely, there might be a geographical distance between the resource and applicant 
that causes latencies in communication. These latencies affect the whole performance 
of the system and increase the average response times. These negative results will be 
emerged while execution of fine-grained parallel programs. Trade-off between the 
latency factors that might be forked from the faults in the system of from the geo-
graphical distance and performance of system, encourages us for optimization of ma-
trix P to achieve better performance. The main contribution is to maintain a history of 
latencies. The history of latencies can be taken into the account for constructing P. It 
will help to have better performance of system when there are similar resources. 
Then, ResAg can consider the latencies as a part of the weight of ݂݌. 



 Latency Optimization for Resource Allocation in Cloud Computing System 361 

Construction of the table of latencies is done gradually. After each resource alloca-
tion, a record is added to the table of latencies that shows the latency between ti and rj; 
or modifies the previous records between them. Let resource rj is allocated to appli-
cant ti for the first time. Latencies of messages communication can be measured 
through sending acknowledge packets. Acknowledge packets might be more than 
once submitted from applicant to resource (and vice versa) to collect the average of 
the latencies: 

തതതത௜௝ܥܮ = ෍ ௤௣ܮܲ
௤ୀଵ  

 
Fig. 4. Resource applicants’ price considering remaining resources with different values of ࢻ 
[21] 

Where ܥܮതതതത௜௝ is the average latency of communication between applicant ti and re-
source rj and ܲܮ௤  is the latency of qth acknowledge message. Note that, there are no 
lower and upper bounds for ܥܮതതതത௜௝ (0 ≤ തതതത௜௝ܥܮ ≤ ∞). Value 0 for the ܥܮതതതത௜௝ is when the 
resource and applicant are located at the same node and there is no communication 
latency; and value ∞ is when the resource is faced with failure and it sends no re-
sponse to the acknowledge message. So, it can’t be utilized directly in the P. Here we 
need to change it to the scale of 0 to 1 in order to affect the P with the value of ܥܮതതതത௜௝. 
Due to it, the average of all ܥܮതതതത௜௝ that are stored in the specified table should be calcu-
lated as (6): 

(ݐ)ܥܮܣ = 1݉ × ݊ × ෍ ෍ തതതത௜௝௠ܥܮ
௝ୀଵ

௡
௜ୀଵ  ௝   (6)ݎ ݀݊ܽ ௜ݐ ݎ݋݂ ݏ݁݅ܿ݊݁ݐ݈ܽ ݂݋ ݈ܾ݁ܽݐ ݊݅ ݀ݎ݋ܿ݁ݎ ܽ ݏ݅ ݁ݎℎ݁ݐ ݂݅ 

 



362 M. Nosrati et al. 

Where (ݐ)ܥܮܣ is the average of latencies of communications between nodes ti and 
rj where they were allocated previously and there is a record in the table of latencies 
for them. 

Equation (7) generates a number between 0 and 1, for modification of matrix P:  
(ݐ)௜௝ܥܮܶ  = 1 − ൬ ௅஼തതതത೔ೕ௅஼തതതത೔ೕା஺௅஼(௧)൰    (7) 

 
Where ܶܥܮ௜௝(ݐ) is the impact of total latency between applicant ti and resource rj 

at the time t. ܶܥܮ௜௝(ݐ) = 0  means that the resource is unavailable and it gave no 
response to the acknowledge packet (ܥܮതതതത௜௝ = ∞); accordingly, ܶܥܮ௜௝(ݐ) = 1  means 
that there is no latency and resource and applicant are located at the same node 
തതതത௜௝ܥܮ) = 0). 

Now, matrix LC can be constructed as (8): 
 

ܥܮ = ൦ ݈ଵଵ ݈ଵଶ݈ଶଵ ݈ଶଶ ⋯ ݈ଵ௡… ݈ଶ௡⋮ ⋮݈௠ଵ ݈௠ଶ ⋮ ⋮… ݈௠௡
൪  s.t. 0 ≤ ݈௜௝ ≤ 1  ,  ∑ ݈௜௝௠௜ୀଵ = 1 ,  ∑ ݈௜௝௡௝ୀଵ = 1   (8) 

 
Where lij is the impact of latency between applicant ti and resource rj which is ob-

tained from ܶܥܮ௜௝(ݐ). 

3.2 Modification of Matrix P with LC 

Now, it is time to have a consequent matrix at ResAg to do the resource allocation 
efficiently. It should be pointed out that in all the systems, policies regulate every-
thing. So, some facilities to implement the policies should be considered. So, we will 
put a weight on the P and LC to be able to control them. The consequent is matrix FP 
as in (9): 
(ݐ)ܲܨ  = ଵఏାఒ × ܲߠ) + (ܥܮߣ =

ଵఏାఒ × ൦ ଵଵ݌ߠ + ଵଵ݈ߣ ଵଶ݌ߠ + ଶଵ݌ߠଵଶ݈ߣ + ଶଵ݈ߣ ଶଶ݌ߠ + ଶଶ݈ߣ ⋯ …ଵ௡݈ߣ+ଵ௡݌ߠ ଶ௡݌ߠ + ⋮ଶ௡݈ߣ ௠ଵ݌ߠ⋮ + ௠ଵ݈ߣ ௠ଶ݌ߠ + ௠ଶ݈ߣ ⋮ ⋮… ௠௡݌ߠ + ௠௡݈ߣ
൪        (9) 

 
Where, ߠ is the weight of P and ߣ is the weight of LC to implement the policies of 
system.  

3.3 Side Issues 

Inherently, the proposed method has some features to detect the unavailable re-
sources. In fact, ܥܮതതതത௜௝  can indicate the availability of resource rj. It can be a good  



 Latency Optimization for Resource Allocation in Cloud Computing System 363 

feature for handling the faults of system by isolating the crashed resources. This issue 
will also assist the migration strategies to have a better performance. Replication is 
not out of the circle, too. 

The way of calculation of  ܥܮതതതത௜௝ for unavailable resources has a major drawback. 
When a node is unavailable, ܥܮതതതത௜௝ → ∞; so, ܨ ௜ܲ௝  will be take a lower number, so that 
the resource rj never be allocated to any applicant task even after becoming available. 
This trap will practically omit the resource from the overlay network of resource-
applicant graph. After repairing the failed resource, it won’t be able to come back to 
the network. Due to solve this problem, some solutions must be taken into the ac-
count. For example, ResAg can set a timestamp for the resources that ܥܮതതതത௜௝ = ∞ to 
check their availability every time to time. 

4 Simulation and Results 

Implementation of proposed method and analyzing the results lead to better under-
standing about the efficiency of this method. In order to evaluate the performance of 
the proposed algorithm, we implement it by the CloudSim toolkit [23]. Each task is 
submitted according to Poisson distribution after its previous tasks, the length of each 
task is considered as a random number within [100000,200000], the number of tasks 
are considered between [100,1000], while the number of resources is between [30,50], 
the deadline di of task ti is set according to (10), and the budget bi of task ti is set ac-
cording to(11) [21]. 
 ݀௜ = ௝ݐݏ + ݉݋݀݊ܽݎ ൬ ௟೔ଵ.ଵ×௖௣௨ೕ , ௟೔଴.ଽ×௖௣௨ೕ൰    (10) ܾ௜ = ݈௜ × ഥ݌0.9݈)݉݋݀݊ܽݎ , 1.1ℎ݌തതതത)        (11) 
 

Where ݈݌ഥ  and ℎ݌തതതത are the average values of the media resources’ ݈݌ and ℎ[21] ݌. 
Fig.5 shows a comparison between the response times of common method (which 

was talked in section 2) and the proposed method with optimization based on the 
communication latencies between the nodes. This indicates the efficiency of the LO 
method especially by increasing the number of tasks and passing more times. 

In standard resource allocation, the common method is implemented, which the 
tasks come into the system and execute normally. In this way, latencies between the 
nodes are waivered. For example, when ResAg is allocating a resource to applicant, it 
does not consider the factor of latencies. So, it might choose a resource with highest 
latencies to be allocated to applicant. It will cause longer response times. So, the basic 
strategy is to let the ResAg to know about the latencies among the nodes of resources 
and applicants. Then, it can include the factor of latencies to make decisions about 
choosing the resources for allocation. This advantage improves the response times 
especially in the case of increasing the tasks. On the other hands, increasing the re-
sources from similar types can also improve the performance of system in comparison 
with the common resource allocation. Because, it provides more choices for ResAg 
for selecting the best latencies. 



364 M. Nosrati et al. 

 

Fig. 5. Comparison of response time between the common and latency optimized methods 

5 Discussion and Conclusion 

The impact of communication latencies on total performance of Cloud systems en-
couraged us to optimize one of the most common resource allocation methods. Al-
most in all distributed systems, resource allocation is counted as a duty of Resource 
Agent. Both resources and applicants calculate their prices and budgets and send it to 
the ResAg. ResAg then makes decision to allocate the most appropriate resource to 
the best applicant. Due to it, ResAg constructs the matrix P (as in section 2) based on 
the prices and budgets. Optimization of P can lead to better performance. In our 
method, we considered a table in ResAg that holds the history of the resource alloca-
tion bindings with their average latencies. At first, this table has no record and after 
each allocation a record is added or updated. For next allocations, the values of laten-
cy impact will be taken into account for making decision. Accordingly, Matrix ܲܨ is 
constructed where ܨ ௜ܲ௝(ݐ) is the possibility of resource rj to be allocated to applicant 
ti. This value is partially obtained from the average latencies of previous allocations. 
Response time is considered as a metric for evaluation of current method. Results 
indicate the better response time rather than standard method, especially by increasing 
the number of tasks and passing time. Increasing the number of tasks and especially 
more resources from similar types, let the ResAg to have a more options for alloca-
tion. In this war, ResAg can select the resources with the best latencies as a part of 
their decisions. Besides, this method can be utilized to detect the failure of resources 
by measuring the latency of communications; so that the nodes with very high laten-
cies are considered to be disconnected from the network. It is an important point for 
the other issues like migration, resource replication and fault-tolerance. 



 Latency Optimization for Resource Allocation in Cloud Computing System 365 

References 

1. Nezarat, A., Raja, M., Dastghaibifard, G.: A New High Performance GPU-based Approach 
to Prime Numbers Generation. World Applied Programming 5(1), 1–7 (2015) 

2. Coulouris, G., Dollimore, J., Kindberg, T., Blair, G.: Distributed Systems: Concepts and 
Design, 5th edn. Addison-Wesley, Boston (2011) ISBN 0-132-14301 

3. Yi-wei, F.: Limitation on Stability and Performance of Control System over a Communi-
cation Channel. International Journal of Engineering Sciences 4(3), 19–27 (2015) 

4. Sharma, G., Kharel, P.: E-Participation Concept and Web 2.0 in E-government. General 
Scientific Researches 3(1), 1–4, (2015) 

5. Edessy, M., EL-Darwish, A.G., Nasr, A.A., Ali, A.A., El-Katatny, H., Tammam, M.: Dif-
ferent Modalities in First Stage Enhancement of Labor. General Health and Medical Sci-
ences 2(1), 1–4 (2015) 

6. Malekakhlagh, E., Meysamifard, S.: Industry Pathology to Develop Global Market Entry 
Strategies: Emphasizing on Small and Medium-Sized Enterprises. International Journal of 
Economy, Management and Social Sciences 4(2), 188–193 (2015) 

7. Hussain, H., et al.: A survey on resource allocation in high performance distributed com-
puting systems. Parallel Computing 39, 709–736 2013. 
http://dx.doi.org/10.1016/j.parco.2013.09.009 

8. Tanenbaum, A.S., van Steen, M.: Distributed systems: principles and paradigms. Pearson 
Prentice Hall, Upper Saddle River (2007). ISBN 0-13-239227-5 

9. Shorbi, M., Wan Hussin, W.: The use of Spatial Data in Disaster Management. World Ap-
plied Programming 5(4), 73–78 (2015) 

10. Pinel, F., Pecero, J., Bouvry, P., Khan, S.: A two-phase heuristic for the scheduling of in-
dependent tasks on computational grids. In: ACM/IEEE/IFIP International Conference on 
High Performance Computing and Simulation (HPCS), pp. 471–477, July 2011 

11. Sharkh, M.A., Jammal, M., Shami, A., Ouda, A.: Resource Allocation in a Network-Based 
Cloud Computing Environment: Design Challenges. IEEE Communications Magazine 
(November 2013) 

12. Maguluri, S., Srikant, R., Ying, L.: Stochastic Models of Load Balancing and Scheduling 
in Cloud Computing Clusters. In: Proc. IEEE INFOCOM 2012, March 25–30, pp. 702–10 
(2012) 

13. Alicherry, M., Lakshman, T.V.: Network Aware Resource Allocation in Distributed 
Clouds. In: Proc. IEEE INFOCOM 2012, March 25–30, pp. 963–71 (2012) 

14. Sun, G., et al.: Optimal Provisioning for Elastic Service Oriented Virtual Network Request 
in Cloud Computing. IEEE GLOBECOM 2012, 2541–2546 (2012) 

15. Kantarci, B., Mouftah, H.T.: Scheduling Advance Reservation Requests for Wavelength 
Division Multiplexed Networks with Static Traffic Demands. In: IEEE Symp. Computers 
and Commun., July 1–4, pp. 806–11 (2012) 

16. Srikantaiah, S., Kansal, A., Zhao, F.: Energy Aware Consolidation for Cloud Computing. 
Cluster Computing 12, 1–15 (2009) 

17. Chase, J.S., et al.: Managing Energy and Server Resources in Hosting Centers. In: 18th 
ACM Symp. Op. Sys. Principles, October 21, 2001 

18. Zhang, B, Zhao, Y, Wang, R.: A resource allocation algorithm based on media task QoS in 
cloud computing. In: Proceedings of the 4th IEEE International Conference on Software 
Engineering and Service Science (ICSESS), Beijing, pp. 841–844 (2013) 

19. Radu, V.: Application. In: Radu, V. (ed.) Stochastic Modeling of Thermal Fatigue Crack 
Growth. ACM, vol. 1, pp. 63–70. Springer, Heidelberg (2015) 



366 M. Nosrati et al. 

20. Zhang, M., Zhu, Y.: An enhanced greedy resource allocation algorithm for localized SC-
FDMA systems. IEEE Commun. Lett. 17(7), 1479–82 (2013) 

21. Tang, R., et al.: Credibility-based cloud media resource allocation algorithm. Journal of 
Network and Computer Applications (2014). doi:10.1016/j.jnca.2014.07.018i 

22. Anthony, P., Jennings, N.R.: Developing a bidding agent for multiple heterogeneous auc-
tions. ACM Trans. Internet Technol. 3(3), 185–217 (2003) 

23. Calheiros, R.N., Ranjan, R., Beloglazov, A., et al.: CloudSim: a toolkit for modeling and 
simulation of cloud computing environments and evaluation of resource provisioning algo-
rithms. Soft. w: Pract. Exp. 41(1), 23–50 (2011) 


	Latency Optimization for Resource Allocation in Cloud Computing System
	1 Introduction
	2 Common Resource Allocation Method
	3 Optimization of Matrix
	Based on the History of Latencies
	3.1 Taking the Communication Latencies into Account
	3.2 Modification of Matrix
	3.3 Side Issues

	4 Simulation and Results
	5 Discussion and Conclusion
	References


