
Improving the Reliability and Availability of IaaS
Services in Hybrid Clouds

†Bernady Apduhan, ‡ Muhammad Younas, †Toshihiro Uchibayashi

†Faculty of Information Science, Kyushu Sangyo University, Japan

{bob, uchibayashi}@is.kyusan-u.ac.jp

‡Department of Computing and Communication Technologies

Oxford Brookes University, Oxford, United Kingdom

{m.younas@brookes.ac.jp}

ABSTRACT
This paper investigates into IaaS service provisioning in hybrid cloud which comprises private
and public clouds. It proposes a hybrid cloud framework in order to improve reliability and
availability of IaaS services by taking into account alternative services which are available
through public clouds. However, provisioning of alternative services in hybrid cloud involves
complex processing, intelligent decision making and reliability and consistency issues. In the
proposed framework, we develop an agent-based system using cloud ontology in order to iden-
tify and rank alternative cloud services which users can acquire in the event of failures or una-
vailability of desired services. The proposed framework also exploits transactional techniques
in order to ensure the reliability and consistency of the service acquisition process. The pro-
posed framework is evaluated through various experiments which show that it improves service
availability and reliability in hybrid cloud.

Keywords: component; Hybrid cloud; IaaS; availability; reliability

1 Introduction

In hybrid cloud environment, organizations and companies can provide some of its
services internally using private cloud, while other services are provided externally
using public cloud [1]. For instance, mission critical applications and data can be
deployed at private cloud while other part of applications can be delegated to public
cloud. While hybrid clouds provide immense benefits and promising returns, they are
still vulnerable to various kinds of failures which can be attributed to the unavailabil-

adfa, p. 1, 2011.
© Springer-Verlag Berlin Heidelberg 2011

ity of required services, complexity of the underlying cloud infrastructure, large-scale,
and widely distributed computing resources.

In this paper we propose a hybrid cloud framework in order to improve reliability
and availability of IaaS (Infrastructure-as-a-Service) services (e.g., CPU, disk storage,
memory, etc.) by taking into account alternative services which are available through
public clouds. However, the process of provisioning and acquisition of alternative
services in hybrid cloud is not trivial. First, it involves complex processing and intel-
ligent decision making in order to decide on which alternative services should be
provided to cloud users in the case of unavailability of desired services. Second, the
required services should be acquired in a reliable way such that they are consistent
and correct even in the event of failures such as system failures or network communi-
cation failures.

In the proposed framework, we develop an agent-based system using cloud ontolo-
gy [4] in order to identify and rank alternative cloud services which users can acquire
in the event of failures or unavailability of desired services. It includes a broker server
within the private cloud that collects information about availability and status of ser-
vices from different public cloud providers. Individual agents are stationed on public
clouds that monitor and transmit (in real time) the availability and service status
changes to the broker server. Using a heuristic algorithm the broker server ranks
available services at public cloud in an order that best match specification of user’s
requests. Once services are ranked the broker server then starts acquiring the services.
It exploits transactional techniques in service acquisition in order to maintain the cor-
rectness and consistency of user’s requests and the required services. Transactions
have been employed in various cloud services [5]. However, they have not been ex-
ploited in the acquisition of services in hybrid cloud environment. We believe that
employing transactions in hybrid cloud service acquisition can guarantee correctness
and consistency of applications and services despite failures of computing nodes, or
network failures.

The rest of the paper is organized as follows. Section 2 discusses related work.
Section 3 presents architecture and an example scenario of IaaS service provisioning
in a hybrid cloud. Section 4 describes the selection and ranking process of IaaS ser-
vices. Section 5 presents service acquisition. Section 6 presents empirical evaluation
and results. Section 7 describes the concluding remarks.

2 Related work

The work in [2] introduces an agent-based cloud service search engine for cloud
resource management. However, SLA and network latency were not considered. Au-
thors in [3] identified the characteristics of IaaS and used the analytic hierarchy pro-
cess (AHP) as the multi-criteria decision-making technique to compare IaaS provid-
ers. In our case, we used ontology and semantics to find the provider services that
best-fit the user requirements. While we share similar goals with the above efforts, we
focus on the infrastructure level and used ontology and agents for discovery and se-
lection of IaaS services to provide resiliency support in hybrid cloud computing. Our

work does not intend to replace existing or classic cloud computing resiliency tech-
niques, but can be considered as a complement. Authors in [5] study various alterna-
tive architectures of cloud computing for transaction processing in web and database
applications. Based on alternative architectures, this work investigates into perfor-
mance and cost of running such applications on different commercial cloud services
such as Google and Amazon AWS. The findings are that all major cloud service pro-
viders have adopted a different architecture for their cloud service provisioning. Thus
depending on the workload, there are significant differences in the cost and perfor-
mance of cloud services. Paper [7] proposed a scalable transaction management ap-
proach which is based on snapshot isolation. The objective is to achieve high scalabil-
ity by decoupling transaction management functions from storage systems and inte-
grating them with application-level processes. Paper [6] presents a Deuteronomy sys-
tem that ensures ACID properties in data anywhere or cloud environment. This work
also separates transactions from underlying data such that the former are managed by
transactional component and the latter by data component. Such separation is claimed
to result in improved performance while still maintaining ACID properties. The
aforementioned approaches do not exploit transactions in service acquisition in hybrid
cloud. Instead, they are concerned with transaction processing in cloud data manage-
ment.

3 The hybrid cloud Framework

A generic architecture of the proposed hybrid cloud framework is depicted in Fig-
ure 1. It is comprised of a private cloud, broker server and a number of public clouds.
Users can acquire services from a private cloud. If required services are not available
from the private cloud then they can be acquired from one or more public clouds. In
this paper, we focus on the IaaS services such as CPU, memory, disk space, and so
on.

Consider a scenario where a highway control office wish to run a cloud application
in order to collect large volume of data (e.g., cameras, sensors, traffic vehicles, etc)
about current traffic conditions on roads; and process such data in order to assess the
impact of various events such as traffic jams, accidents, etc. Based on the assessment
and analysis of data the highway control office can then provide highway operation
staff with useful information so they can respond to events in a timely manner and
ensure smooth traffic flow on roads. In order to process such a huge data in a timely
manner, such application will require various IaaS services such as CPUs, memory,
disk space, and so on. Highway control office may use private cloud to run such an
application. But if a private cloud does not provide all the required services then this
application will not be able to run and will eventually fail. In this situation, hybrid
cloud provides alternative provisioning of services from public clouds. That is, in the
case of unavailability of some services, the highway control office can acquire ser-
vices from public clouds in order to run their application.

In the proposed framework, a broker server is deployed (on the private cloud side)
which facilities the alternative service provisioning. Broker server provides various
functionalities which we classify in the following classes:

Service selection and ranking: As shown in Figure 1, there are various public clouds
which provide similar alternative services but with varying level of quality. Thus it is
important to identify (search), rank and select the alternative services. The proposed
broker-server is built around multi-agents and cloud ontology in order to carry out
searching, ranking and selection of services.

Fig. 1. Architecture of the Hybrid Cloud

Service acquisition: In order for a cloud application (e.g., highway application) to
run, it is important to guarantee that all required services are acquired in a consistent
and reliable manner. For a cloud application, it would not be acceptable, if a CPU
service is acquired but not a memory or a disk space. The broker server uses transac-
tions in order to avoid such situation.

4 Service Selection and Ranking

This section describes an agent-based system which is used to collect and monitor
the availability and status of services provided by the selected public cloud IaaS ser-
vice providers. The system comprises a broker server and various agents — i.e., each
public cloud has an agent deployed on its side. Such agents send to the broker server
all updated information about the user-required services of public clouds. In other
words, all updated services of each cloud provider are in place in the broker server
database. This helps to instantly process user’s requests (or transactions) which are
explained in the subsequent section. As an example we consider the following two
cases:

All Services in one Public Cloud Provider:

The broker server, based on the requirements from the user application (e.g., load
spikes), will conduct a first search of all member public clouds providing a first-list of
public clouds which meets the minimum requirements demanded by the user applica-
tion. With the first-list and using a heuristic algorithm, the broker server will conduct

an individual search of each cloud service (e.g., OS, Cost, CPU, memory, storage,
SLA) and rank the providers according to the level of services availability (i.e., the
more memory the provider offers, the many points it gets) that it can provide based on
the user requirements.

The provider having the most number of high service availability or having the
most cumulative points of its services will be ranked top and others follow according-
ly. The rational idea is to have all required cloud services to be provisioned by the
same provider so as to minimize communication overhead.

Some Services in other Public Clouds:

Considering that other clients or customers are also vying to avail of the same pub-
lic cloud service(s), there’s a possibility that one or more requested public cloud ser-
vices in the top-ranked provider may not be available by the time the broker server
made its selection decision. The broker server will then proceed to the next-ranked
cloud provider, and so on.

However, if the set of services cannot be provisioned by one cloud provider, the

broker server will then search in the next rank provider the unavailable requested
service(s). If the broker server cannot find a match, the same procedure is repeated to
the next lower providers until the first-list is used up. Up to this point when no match
is found, the broker server repeats the same procedure from the beginning, i.e., look-
ing up to its updated database.

Results and Observations:

Tables 1 and 2 show the first-list of public cloud providers (top five) which have
met the requirements of two users, and ranked according to the procedures described
above. Each cloud provider in the list offers all the required services. The tables in-
clude the SLA (System Level Agreement) guarantee offered by each public cloud
provider and slightly differ from each other. These SLAs are used to break up when-
ever two or more providers have the same accumulated scores for ranking. If a tie
score persists, then a random selection is employed.

Since some users may be requesting the same service(s) concurrently on the same

provider, one or some services may not be available by the time the broker server
made its final acquisition decision. The broker server will then tap the lacking ser-
vices from other cloud providers.

A possible dilemma is that if one or more services will be provided by a different

public cloud, such operation may incur a large communication overhead (latency)
which may be detrimental to the application performance. The broker server may send
a ping message to the public cloud providers to determine the latency which can be
considered as a parameter to deal with so as not to compromise the service transaction
process.

To this, the user will now have a full knowledge on the best-fit public cloud pro-
viders ranked accordingly. It is now up to the user to select the desired provider for
optimum benefits.

5 Service Acquisition

This section describe hybrid cloud transactions which are executed as part of users’
requests in order to correctly and consistently acquire the cloud services which are
ranked by the agent-based system.

To run an application, user makes a request (or initiate a transaction) in order to
acquire required services from a hybrid cloud, for example, 4_Core CPU, 2GB
memory, 200GB disk space, Ubuntu OS. All these four services are necessary for a
user to run an application. If some of these resources (e.g., disk space) are not availa-
ble from one cloud provider then it can be acquired from an alternative public cloud
provider.

We define hybrid cloud transaction as an execution of a user’s request which can
be divided into well defined units (or component transactions) that provide correct-
ness and consistency of cloud services. A hybrid cloud transaction can be considered
as a unit of different component transactions each of which is used to acquire service
— e.g. one component transaction can be used to acquire CPU service, another to
acquire memory, and so on.

In order to ensure that cloud resources are consistently acquired we define the fol-
lowing rules (properties) [8] which must be followed by hybrid cloud transactions.

Semantic atomicity requires that a hybrid cloud transaction should execute as an
atomic unit of work. That is, its component transactions should be run completely
such that they can acquire those services which are essential for running a user’s ap-
plication. If any of the essential resource (e.g., CPU) is not available then other re-
sources (e.g. OS) are not required.

Consistency: This requires that a hybrid cloud transaction should maintain the
consistency of information related to the availability of cloud resources and user’s
application requirements.

Durability requires that effects of a completed hybrid cloud transaction must be
made permanent in their respective data sources, in order to ensure recovery in the
event of failures.

Resiliency is the ability to complete a hybrid cloud transaction in spite of failures
or service unavailability. Resiliency is achieved by providing alternative services
from public clouds. For example, if a disk space cannot be acquired from one cloud
provider then it can be acquired from another one as there exist various alternative
cloud providers.

5.1 Hybrid Cloud Transaction Protocol

In the following, we describe a protocol that enforces the above rules in hybrid
cloud transactions. The proposed protocol is implemented as one Hybrid Cloud Coor-
dinator (HCC) and several Component Transaction Coordinators (CTC). HCC is de-
ployed as part of the broker server while each CTC is deployed on individual public
cloud (as in Figure 1). The main functionality of the HCC is to coordinate the execu-
tion of the overall hybrid cloud transaction in relation to the component transactions.
Each CTC is responsible for coordinating its individual component transaction (e.g.,
acquiring CPU or disk space). HCC and each CTC maintain log files in order to rec-
ord the required information about the execution of hybrid cloud transaction.

In order to acquire required resources for user’s requests, HCC needs to execute

hybrid cloud transaction. During the execution of hybrid cloud transaction, HCC
communicates various messages with CTCc. Transaction execution is accomplished
through the following steps:

1. A new hybrid cloud transaction is assigned to a HCC, which records the start of

the transaction in a log file, and send ‘start’ message to CTCi to initiate component
service transaction.

2. CTCi records the start of a component service transaction in the log file. After

processing, CTC sends either a ‘local success’ or ‘local fail’ decision to HCC. ‘local
success’ decision is made if component service transaction can acquire the required
cloud resource (e.g., CPU, etc). ‘local fail’ decision is made if it cannot acquire the
required cloud resource.

In case of ‘local fail’ decision, CTC records the failure of component service trans-
action, and declares it to be locally failed. Otherwise, CTC writes a ‘local success’
decision, and awaits from HCC final decision.

3. HCC receives all decisions from CTCc. If all the decisions are ‘success’ (i.e., all

resources, CPU, disk space, memory are acquired), then HCC records ‘global success’
decision in the log file and inform all CTCs of the success decision. The CTCs com-
mits, by forcibly writing the commit decision and then terminates the transaction and
starts the processing of a new one.

Table 1. User1 Requirements

Table 2. User2 Requirements

4. If any ‘failed’ component service transaction is replaceable (having alternative

service from public cloud), MTC initiates the alternative component service transac-
tion and awaits the CTC’s decision regarding ‘success’ or ‘fail’ of the alternative
component service. If component service transaction is not replaceable HCC records
‘global fail’, and informs all CTCs about its decision. In this case, the overall hybrid
cloud transaction has failed and cloud resources cannot be acquired.

Table 1. User1 Requirements: cpu memory storage cost os
2_Core 2GB 200GB 10000JPY Ubuntu

rank point provider service cpu(core) memory(GB) storage(GB) SLA(%) cost(JPY) OS

1 3 Softbank_Telecom Type_Dual 2 2 100 99 15750
WindowsSever2012
Ubuntu
CentOS

2 3 NIFTY Spec_Type6 2 2 30 99.99 25410

WindowsServer2012
Ubuntu
RedHatEnterpriseLinux
CentOS

3 2 GOGRID Large 4 25 200 100 13140

Ubuntu
Debian
RedHatEnterpriseLinux
WindowsServer2012
CentOS

4 2 NTTCommunications Plan_v2 2 4 10 99.99 7560
WindowsSever2012
Ubuntu
CentOS

5 2 IDC_Frontier Type_M2 2 8 15 99.999 21000

WindowsServer2012
Ubuntu
RedHatEnterpriseLinux
CentOS

Table 2. User 2 Requirements: cpu memory storage cost os

4_Core 2GB 200GB 10000JPY Ubuntu

rank point provider service cpu(core) memory(GB) storage(GB) SLA(%) cost(JPY) OS

1 3 GOGRID Large 4 25 200 100 13140

Ubuntu
Debian
RedHatEnterpriseLinux
WindowsServer2012
CentOS

2 2 Softbank_Telecom Type_Dual 2 2 100 99 15750
WindowsSever2012
Ubuntu
CentOS

3 2 NTTCommunications Plan_v4 4 8 10 99.99 15120
WindowsSever2012
Ubuntu
CentOS

4 2 IDC_Frontier Type_L 4 4 15 99.999 29400

WindowsServer2012
Ubuntu
RedHatEnterpriseLinux
CentOS

5 2 NIFTY Spec_Type3 1 2 30 99.99 18144

WindowsServer2012
Ubuntu
RedHatEnterpriseLinux
CentOS

5. After receiving a global decision, CTC writes the global success of component
service transaction. If component service transaction is local-success and CTC re-
ceives a ‘global fail’ from HCC, then CTC must cancel that service. This situation
occurs when one component service transaction acquires a resource (e.g. disk space)
and another does not acquire (e.g. CPU). In this case the acquired resource needs to
be cancelled as user will need both resources (CPU and disk). This is the constraint
set by the semantic atomicity rule (as described above).

6 Empirical Evaluation

This section describes the evaluation of the proposed framework in terms of failure
resilience and communication overhead. One of the main objectives of the proposed
framework is to enhance the resiliency of cloud services through alternative public
cloud services. We therefore evaluate the resiliency aspect of the framework. Howev-
er, such resiliency may incur performance delay mainly due to the network communi-
cation delays. We therefore evaluate the overhead caused through the alternative ser-
vices provisioning from the public clouds.

A. Failure Resiliency
Our evaluation criteria for failure resiliency are based on probability theory and are

simulated through a prototype tool. In order to simulate the success/failure rate of a
hybrid cloud transaction, we define the following set of probabilities:

private cloud success (PriCS): This refers to the probability that user can acquire
required services from a private cloud by executing a hybrid cloud transaction.

private cloud failure (PriCF): This refers to the probability that user cannot acquire
required resources from a private cloud by executing a hybrid cloud transaction. In
other words, if the private cloud cannot meet the minimum requirement of user’s
request then it is considered as a failure of private cloud. In this case, the user’s re-
quests should be sent to the broker server (as described in the subsequent section).

alternative services availability (AltSA): This refers to the probability that there ex-
ist alternative services which user can acquire from public clouds. In other words, this
depicts the situation where users cannot acquire first choice services from private
cloud. But they have the opportunity to acquire alternative services from public cloud.
As described above, we use a heuristic algorithm to rank different public cloud pro-
viders.

public cloud success (PubCS): This refers to the probability that user can acquire
required services from a public cloud (first-list – see below) by executing a hybrid
cloud transaction.

public cloud failure (PubCF): This refers to the probability that user cannot acquire
required resources from a public cloud by executing a hybrid cloud transaction.

total success rate (TSR): This refers to the probability that a user can acquire re-
quired services from private and one or more public clouds.

total failure rate (TFR): This refers to the probability that user cannot acquire re-
quired services from private or any of the public clouds.

Based on the above probabilities, we design various mathematical expressions in
order to calculate the total success rate (TSR) and total failure rate (TFR) of a hybrid
cloud transaction. TSR and TFR are calculated using the probabilities PriCS, PriCF,
AltSA, PubCS and PubCF.

We consider multiple alternative cloud services from public clouds. For example,
if required storage is not available from a private cloud then it can be acquired from
public clouds (see Section 4).

Table 3. Total Success and Failure Rates

Case 1 Case 2 Case 3 Case 4 Case 5

PriCS 0.9 0.8 0.7 0.6 0.5

PriCF 0.1 0.2 0.3 0.4 0.5

TFR1 0.028 0.072 0.132 0.208 0.3

TFR2 0.0208 0.0464 0.0816 0.1312 0.2

TSR1 0.972 0.928 0.868 0.792 0.7

TSR2 0.9792 0.9536 0.9184 0.8688 0.8

As shown in Table 3 we conduct various experiments to evaluate the resiliency of

the proposed framework. We assume that the probability of alternative services avail-
ability (AltSA) is 0.9 — showing that there exist 90% chance of acquiring alternative
services from public clouds. In each case, different values of the PriCS and PriCF
probabilities are also used in conjunction with AltSA. Various situations are consid-
ered. For example, scenarios where the failure probability is high, and also scenarios
where the success probability is high.

The total success and failure rates of hybrid cloud transactions are calculated in
Table 3 and are graphically represented in Figures 2 and 3. The graphs clearly indi-
cate that the proposed framework increases the resiliency of the service provisioning
by successfully executing hybrid cloud transactions and acquiring the cloud services.
For instance, the success rate of hybrid cloud transaction in Figure 2 is higher when
there are services available from public clouds (TSR1 and TSR2). Similarly, Figure 3
shows that failure rate of TFR1 and TFR2 is lower than the PriCF when public cloud
services are available.

B. Processing and Communication Delays
The improvement in failure resiliency may result in performance degradation. If

one or more services are acquired from public clouds, then it may incur a communica-
tion overhead (latency) which may be detrimental to the application performance. In
this section, we evaluate such overhead by taking into account some of the important
parameters such as the network communication delay, the number of messages com-
municated between Hybrid Cloud Coordinator and several Component Transaction
Coordinators (see Section 5-A), processing time of each component transaction spent

on acquiring services from public cloud, the total number of component transactions
acquiring services from public cloud, and the probability that a particular service is
acquired from a public cloud.

The average time taken to process a hybrid cloud transaction, Tproc, can be calculat-
ed as follows:

 Tproc = ∑ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖𝑛𝑛
𝑖𝑖=0 + ∑ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑗𝑗𝑚𝑚

𝑗𝑗=0 + 𝑁𝑁𝑁𝑁𝑁𝑁𝑑𝑑

Tproc is the sum of processing time of its component transactions (CTPRi) acquiring

resources from a private cloud plus component transactions (CTPUBi) acquiring re-
sources from a public cloud plus the network communication delay (NETd).

Processing time of a component transaction is the time it takes to acquire a cloud

service (e.g., disk storage, memory, etc).

Fig. 2. Success Rate of Hybrid Cloud Transactions

Fig. 3. Failure rate of Hybrid Cloud Transactions

NETd is a network delay which is calculated as follows:

0 0.5 1 1.5

1
2
3
4
5

TSR2

TSR1

PriCS

0 0.2 0.4 0.6

1

2

3

4

5

TFR2

TFR1

PriCF

𝑁𝑁𝑁𝑁𝑁𝑁𝑑𝑑= (Mpr x CDpr x Npr) + ((Mpub x CDpub x Npub) x Ppub)

Mpr and Mpub are the number of messages communicated between hybrid cloud

systems in order to respectively acquire services from private cloud and public
cloud(s). CDpr and CDpub are the message delays for private and public clouds. Npr
and Npub represent the number of component transactions respectively acquiring ser-
vices from private cloud and public cloud. Ppub is the probability that one or more
cloud services can be acquired from a public cloud. Ppub = 0, if all services can be
acquired from a private cloud. In that case, there is no extra communication overhead
of acquiring services from public clouds. Ppub = 1, if any of the service is acquired
from a public cloud.

Fig. 4. Average Processing Time

We simulate an average time taken to process a hybrid cloud transaction, Tproc, by
taking into account four different cases. We consider that as part of user request, a
hybrid cloud transaction has to acquire four services by executing four component
transactions.

The average time for four different cases is graphically represented in Figure 4.
Case 1 represents the situation where all services are acquired from private cloud and
thus average processing time, Tproc, is less than other cases. Case 4 represents the
opposite that all services are acquired from public cloud showing steep increase in the
processing time. Case 2 shows the situation where half of the services are acquired
from private cloud and half from public cloud. Case 3 shows that three services are
acquired from public cloud and one from private cloud.

7 Conclusion

We presented a hybrid cloud framework in order to improve reliability and availa-
bility of IaaS services through a synergetic approach of agents, ontology and transac-
tions. The framework employed agents and ontology to gather current status of IaaS
services from each member public clouds. The service information status is consoli-
dated on a broker server which can provide, using a heuristic selection algorithm, the

0
100
200
300
400
500

Case
1

Case
2

Case
3

Case
4

280
360 400 440

Time (ms)

first-list public cloud providers which meet the user requirements through the private
cloud at runtime. Transactional techniques are then used in order to ensure the relia-
bility and consistency of the service acquisition process. The proposed framework can
be used by cloud users and providers in order to make intelligent decision in service
consumption/provisioning in hybrid cloud by taking into account various crucial fac-
tors such as (i) ranking and selection of alternative cloud services from public
cloud(s) (ii) enhanced failure resiliency and (iii) the performance and communication
delay caused when services are acquired from private and/or public clouds.

Acknowledgment

This research was supported in part by the Japan Society for the Promotion of
Science Grants-in-Aid for Scientific Research 24500100.

References

1. T. Uchibayashi, B.O. Apduhan, N. Shiratori, “An Ontology Update Mechanism in IaaS
Service Discovery System”, Int. Journal of Web Information Systems, No.9(4), pp.330-
343, 2013.

2. K.W. Sim “Agent-Based Cloud Computing”, IEEE Trans. on Services Computing, Vol.
5(4), pp.564-577, 2012.

3. S. Lee, K-K. Seo “A Multi-Criteria Decision-making Model for an IaaS Provider Selection
Problem”, Int. Journal of Advancements in Computing Technology, Vol. 5(12), 2013.

4. D. Androcec, N. Vrcek, J. Seva “Cloud Computing Ontologies: A Systematic Overview”,
Proc. of the 3rd Int. Conf. on Models and Ontology-based Design of Protocols, Architec-
tures and Services, pp. 9-14, 2012.

5. D. Kossmann, T. Kraska, and S. Loesing, “An Evaluation of Alternative Architectures for
Transaction Processing in the Cloud”. Proc. of SIGMOD, pp. 579-590, 2010.

6. J. J. Levandoski, D. B. Lomet, M. F. Mokbel, and K. Zhao, “Deuteronomy: Transaction
Support for Cloud Data” 5th Biennial Conference on Innovative Data Systems Research
January 9-12, Asilomar, California, USA, pp. 123–133, 2011.

7. V. Padhye and A. Tripathi, “Scalable Transaction Management with Snapshot Isolation on
Cloud Data Management Systems,” Proc. of IEEE 5th Intl. Conference on Cloud Compu-
ting, pp. 542-549, 2012.

8. M. Younas, B. Eagelstone, R. Holton “A Review of Multidatabase Transactions on the
Web: From the ACID to the SACReD” British National Conference on Databases
(BNCOD), Exeter, UK, July 3-5, Springer LNCS, pp. 140-152, 2000.

	1 Introduction
	2 Related work
	3 The hybrid cloud Framework
	4 Service Selection and Ranking
	5 Service Acquisition
	5.1 Hybrid Cloud Transaction Protocol

	6 Empirical Evaluation
	7 Conclusion
	Acknowledgment
	References

