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Abstract. Coastal zone of Emilia-Romagna region, Italy, has been significantly 

urbanized during the last decades, as a result of a tourism development. This 

was the main motivation to estimate future trajectories of urban growth in the 

area. Cellular automata (CA)-based SLEUTH model was applied for this pur-

pose, by using quality geographical dataset combined with relevant information 

on environmental management policy. Three different scenarios of urban 

growth were employed: sprawled growth scenario, compact growth scenario 

and a scenario with business-as-usual pattern of development. The results 

showed the maximum increase in urbanization in the area would occur if urban 

areas continue to grow according to compact growth scenario, while minimum 

was observed in case of more sprawled-like type of growth.  This research goes 

beyond the domain of the study site, providing future users of SLEUTH de-

tailed discussion on considerations that need to be taken into account in its ap-

plication. 
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1 Introduction 

Uncontrolled urbanization can lead to series of environmental issues, such as en-

croachment of natural habitat and agricultural land, high energy or water consumption 

and waste generation, among others [1]. Worldwide, urban growth is particularly 

taking part in coastal areas [2]. For instance, between 1990 and 2000 the urbanization 

rates of European coastal regions were approximately 30% higher than in inland areas 

[3]. One of the hotspots of urbanization in Europe is the coastal zone of Mediterra-
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nean region, where urban growth is driven to large extent by tourism development [4]. 

A relevant example is the coastal zone included within the administrative boundaries 

of Emilia-Romagna region, Italy. It was heavily urbanized in decades following the 

Second World War, mainly due to the development of beach related tourism [5].  

Since this area is characterized by low lying setting and sandy beaches, it is suscepti-

ble to inundation and erosion, caused mainly by marine flooding [6].   

In order to study Emilia Romagna’s vulnerability to coastal flooding in dynamic 

manner, a previous study [7] compared flooding scenarios with outputs of different 

scenarios of urban growth. For marine flooding scenarios this was done by applying 

functions implemented in the Cost-Distance tool of ArcGIS® to a high resolution 

Digital Terrain Model [8]. The urban growth scenarios were estimated by applying 

the SLEUTH model [9]. SLEUTH belongs to the group of cellular automata (CA) 

models, known for the ability to capture complex non-linear behaviour in growth 

patterns and self-organization emerging from the local interaction between cells and 

their neighbours. 

This study faces issues related to the use of the SLEUTH model to project urban 

growth on regional level by using geographical dataset at high spatial resolution and 

all available information related to the environmental management policy. This in-

cludes a detailed step-by step discussion on SLEUTH application throughout all of its 

phases, highlighting some potential considerations and summarizing the lessons 

learned. The output of this paper could serve all researches that consider the applica-

tion of SLEUTH to introduce the best practice in the field of present and future envi-

ronmental management and planning.  

2 SLEUTH Model 

SLEUTH is a self-modifying probabilistic cellular automata model. It is a public 

domain C-language source code that runs under UNIX or UNIX-based operating sys-

tems, structured into two modules that can be activated independently. One module is 

the Urban Growth Model (UGM) that simulates the urban growth, and the other is 

Land Cover Deltraton Model (LCD) that simulates the changes in land use. The code 

is publicly available on Project Gigalopolis website [10], a project born from collabo-

ration between the University of California of Santa Barbara (UCSB) and United 

States Geological Survey (USGS). 

SLEUTH’s acronym is derived from its input requirements: Slope, Land use, Ex-

clusion, Urban, Transportation and Hillshade. In brief, it can be described as a scale-

independent CA model with Boolean logic, since each cell can be categorized only as 

urbanized or non-urbanized. Whether or not a cell becomes urbanized is defined by 

four transition rules of urban growth: spontaneous, diffusive (new spreading centre), 

edge growth and road-influenced growth. These rules are controlled by five coeffi-

cients with values ranging from 0 to 100: dispersion (DI), breed (BR), spread (SP), 

road gravity (RG) and slope resistance (SR) coefficient [11]. Relationship between 

the growth types and growth coefficients is schematized in Figure 1. 



Growth coefficients do not necessarily remain static throughout the model applica-

tion. If growth rate exceeds or falls short of limit values, a self-modification process is 

applied. Without this feature, the growth could appear as linear or exponential, which 

is unrealistic [12, 13]. 

 

 

Fig. 1. Relationship between growth types and growth coefficients in SLEUTH (adapted from 

[14] and [15] 

The model is implemented in two general phases: calibration phase, which simu-

lates historic growth; and prediction phase; which uses patterns of historic growth to 

derive scenarios for future growth. The output of the model is a series of GIF images 

showing the predicted urban growth scenarios for each year.  

All details on SLEUTH phases and other considerations (e.g. input data), are ex-

plained in the following section, through an example of our application of the model 

on the coastal area of Emilia-Romagna region.  

3 Application of SLEUTH on the Coastal Area of Emilia-

Romagna (IT) 

This section describes the overall methodology related to: (i) selection, quality and 

overall characteristics of input data; (ii) calibration process; and (iii) design of three 

scenarios used for prediction. 



3.1 Input Data 

SLEUTH requires five types (or six, if land use is included) of input data: historic 

urban cover of at least four time periods, historic transportation network of at least 

two periods, slope, hillshade, and exclusion layers. All raster or vector-based layers in 

the end need to be attributed to a reference grid and successively converted into GIF 

images of same number of rows and columns.  

In our case all input layers were prepared in SAGA (System for Automated Geos-

cientific Analyses) and ArcGIS 10.1 software. They were clipped to the same extent 

(rectangle of approximately 76 km of length and 26 km), representing a portion of the 

coastal zone of Emilia Romagna.  

Urban layers were digitized for the years 1978, 1990, 2000 and 2011, from differ-

ent sources. The 1978 urban layer was derived from 1:5000 scale topographic map 

provided by the Regione Emilia Romagna. The 1990 urban layer resulted from the 

digitizing of a LANDSAT image at 30mx30m spatial resolution, obtained from the 

United States Geological Survey (USGS) Global Visualization Viewer (GloVis) web 

service (http://glovis.usgs.gov). The 2000 urban layer was based on the aerial photo-

grammetric surveys after the 1999-2000 Istituto Geografico Militare Italiano (IGMI) 

flight (1:29000 scale, 0.65 m spatial resolution). Finally, for the year 2011 urban areas 

were digitized by using the World Imagery Basemap feature in ArcGIS 10.1, with 

high resolution (0.3 m) imagery of Western Europe provided by Digital Globe
®

.  

Two transportation layers were prepared for years 1978 (the same topographic map 

as for 1978 urban layer), and for 2011 layer (from Web Mapping Service of Italian 

National Geo-portal: www.pcn.minambiente.it). Both layers took into consideration 

provincial and national level of roads, as well as highways.  

Regarding Slope and Hillshade layers, they were both created from a 10mx10m 

Digital Terrain Model (DTM) provided by Regione Emilia Romagna after being re-

sampled to a 20 m resolution by using the nearest neighbour method. As required by 

the model, the slope was extracted in percentage values. 

 Special attention was given to the Exclusion layer. Two different exclusion layers 

were considered: the first one referring to historical settings, used for calibration pur-

poses; and the second one, used for the prediction stage. The need for such an ap-

proach deserves further explaining. Calibrating the model with current exclusion layer 

could be erroneous since many areas have received their protection status in period 

between the first historical year of calibration and the most recent one [16]. Early 

periods of calibration would therefore get informed by the actual distribution of cur-

rently excluded areas, leading to better fit in calibration in sort of “manipulative” 

manner [15]. 

Both of our exclusion layers had joint exclusion areas which remained unchanged, 

such as the sea and inland water bodies. The present exclusion layer contains addi-

tional zones where construction is prohibited, such as different zones of protected 

natural areas on a regional level; national reserves; sites of community importance 

related to the Natura 2000 network of the EU Habitats Directive (92/43/EEC); zones 

of special protection related to the EU Birds Directive (79/403/EEC), different protec-

tion levels of archaeological sites; and 150 m buffer zones around river banks and 300 

http://glovis.usgs.gov/


m buffer around shorelines (see [7] for more details). Historic exclusion layer in-

cluded only areas which were known as areas with prohibited construction since the 

very beginning of the time period used for calibration. 

All input layers were converted into 20 m resolution raster grids of 1323 columns 

by 3816 rows using SAGA
 
software and saved as greyscale GIF images, as required 

for the calibration stage.  

Input layers are shown in Figure 2. 

Fig. 2. All input layers for SLEUTH model 

3.2  Model Calibration 

The main goal of the calibration phase is to determine the values of growth coeffi-

cients that simulate urban growth for certain historic time periods. SLEUTH calibra-

tion is carried out through a “brute force” method which consists of three phases: 

coarse, fine and final [17]. Growth is simulated multiple times by using the Monte 



Carlo method, an iterative procedure used for computation of different spatial statis-

tics [18-19]. 

In the coarse calibration phase, the widest range (1-100) of coefficient values is 

used, incremented of 25 at a time. The range of coefficients values used in calibra-

tion’s subsequent phases (fine and final) is narrowed based on coefficient values that 

best replicate the historical growth in each preceding phase.  

Self-modification constraints are causing coefficient values to be constantly altered 

from the first date to the last date of the run. For that reason, the best coefficient set 

for forecasting is actually derived by averaging the resulting values coming out from 

the final phase. In our case, this was done through 100 Monte Carlo simulations (with 

1 step increment) so that an average value for each coefficient could be derived (read 

more in [14]). We named this additional phase “derive”, according to [15]. This pro-

cedure is also recommended in the official website of the Gigalopolis Project. 

In order to obtain the coefficient range of each successive step of calibration, we 

used the goodness-of-fit metric called Optimal SLEUTH Metric (OSM). The OSM is 

a product of the most relevant metrics offered by the code - compare, population, 

edges, clusters, slope, X-mean, an Y-mean metrics [20][16]. 

The resulting values of the calibration parameters for our study site, concerning all 

calibration phases, are visualized in Table 1. The coefficient range for successive 

steps of calibration was selected by examining the top three rankings of the OSM 

values, as indicated on the official Project Gigalopolis website. The highest OSM 

value increased with each calibration step (from 0.38 in coarse to 0.397 in final 

phase), meaning that the resemblance between modelled and observed data improved 

as calibration progressed. 

 
  



Table 1. SLEUTH calibration parameters for 1978-2011 historic urban growth of Emilia-

Romagna coastal area (from [7]) 

 

 COARSE FINE FINAL  DERIVE  

 
Monte 

Carlo itera-

tions = 4 

Monte 

Carlo itera-

tions = 7 

Monte 

Carlo itera-

tions = 9 

 

Monte 

Carlo itera-

tions = 100 

 

Growth 

coefficients 
Range Step Range Step Range Step Final  Range Step Final 

DI 1-100 25 0-20 5 0-5 1 1 1-1 1 1 

BR 1-100 25 0-20 5 0-5 1 1 1-1 1 1 

SP 1-100 25 15-35 5 20-30 2 24 24-24 1 30 

SR 1-100 25 0-75 10 0-10 2 10 10-10 1 1 

RG 1-100 25 0-50 10 10-50 5 50 50-50 1 52 

 

The low final values of the DI (1) and the BR (1) coefficients imply that there was 

very little sprawled growth in the coastal area of Emilia Romagna for the 1978-2011 

period. The value of the SP coefficient (30) indicates that growth occurred in a more 

compact manner, around existing urban areas. High value of the RG coefficient (52) 

implies that the road network played an important role in attracting urban develop-

ment. Low value of the SR coefficient (1) was somewhat expected, since the study 

area is characterized by an extremely low slope variations and, therefore, slope does 

not represent a limiting factor for growth. It appears that self-modification parameters 

did influence the coefficient values that came out of the final phase, since they 

changed towards derive phase for SP, RG and especially for the SR coefficient. 

3.3  Model Prediction – Development of Urban Growth Scenarios to the year 

2050 

There are three different approaches to develop scenarios of urban growth within 

SLEUTH: (i) changing the values of growth parameters obtained through the calibra-

tion phase (e.g. [21][14]), (ii) assigning different protection levels to the exclusion 

layer (e.g. [22, 23]), and (iii) manipulating the self-modification constraints (e.g. 

[24]). 

In our study, we used the combination of the first two approaches: both growth co-

efficients and exclusion levels were modified to establish different scenarios of urban 

growth up to 2050.  Three growth scenarios were designed - the Business As Usual 



(BAU) scenario, which assumes that future urban development will follow the same 

pattern as in history, and two “alternative” scenarios: the Sprawled Growth Scenario 

(SGS) and the Compact Growth Scenario (CGS). The characteristics of all three sce-

narios are summarized in Table 2. 

Table 2. Scenarios used for SLEUTH prediction 

Scenario Main characteristics Impacts on values 

Business As Usual 

(BAU) 

The parameter values are the same as ones resulted from 

calibration were used 

Sprawled Growth Sce-

nario (SGS) 

Dispersive growth: new sub-

urban and peri-urban centres 

likely to emerge (mainly in 

existing agricultural and for-

ested areas). 

 

Higher values for DI 

and BR coefficients 

The “infilling” growth is ex-

pected to be minimal 

 

Reduced value of the 

SP coefficient 

Higher probability for growth 

along the road network since 

sprawled growth could result 

in greater travel distances 

 

Higher value for RG 

Spatial planning is more 

aimed at satisfying high de-

mand for urban areas 

 

Flexible exclusion lev-

els 

Compact Growth Sce-

nario (CGS) 

Compact-like growth 

The DI and BR values 

were lowered while SP 

was increased 

 

Reduced travel distances 
Lower RG value 

 

Less demand for urbanization 

outside already urbanized 

areas and hence, less rationale 

to allow construction in areas 

that are currently protected 

Maximum exclusion 

levels assigned 

 

Prior to decision making which exact value to assign to different growth coeffi-

cients to fit different scenarios, a sensitivity analysis was performed. This was done in 

order to examine how each single coefficient affects urban growth in our case. The 

prediction (100 runs) was executed by assigning high value (80) to each coefficient 

while keeping the values of other coefficients as low as possible (1) (similar to [13]). 

The results revealed that the SP coefficient had by far the highest impact on urban 



growth (increase of urban cover by 11.25%), while DI, BR and RG coefficients 

proved to be less significant in influencing the increase of urban cover (0.35%, 0.14% 

and 0.11% respectively). Keeping in mind the results from this sensitivity analysis, 

the coefficient values for two alternative scenarios were established in following 

manner: 

─ In SGS scenario the values of DI, BR and RG were increased by 25, while SP coef-

ficient was decreased by 10 (“only” by 10, because of high affinity of urban in-

crease to changes in SP values shown in sensitivity analysis). Exclusion levels 

were arbitrarily weighted with a value of 80, meaning that there is an 80% prob-

ability that the exclusion level will remain as such in areas where urban develop-

ment can be permitted under certain conditions. 

─ In CGS scenario the DI and BR remained at minimal values while RG was de-

creased by 25. The SP was decreased by 10. Maximum exclusion levels were as-

signed to all polygons within the Exclusion layer (100). 

─ The SR coefficient was not modified in any of the alternative scenarios since it was 

shown not to be a limiting factor for the urbanization in the area 

─ The BAU scenario remained with the same values of growth coefficients that re-

sulted from the calibration. Exclusion levels were weighted with a value of 80 for 

the same reason as in SGS 

Finally the values for the “alternative” scenarios were: for SGS: DI (25), BR (25), 

SP (10), SR (1), and RG (77); and for CGS: DI (1), BR (1), SP (40), SR (1), and RG 

(27). With established coefficient values for all scenarios, the prediction was executed 

by running 100 Monte Carlo iterations.  The results for urbanization up to 2050 were 

the following:  the SGS predicted minimum increase in urbanized areas: 0.76 %. On 

the contrary, the maximum increase in urbanization was predicted by the CGS: 

7.26%. The BAU predicted an increase of urbanized areas by 3.7%. More details on 

results are shown in Table 3. It seems that a transition from compact to sprawled type 

of urban growth is not likely to occur in the study area according to SLEUTH predic-

tions for the future. In other words, if urbanization continues to take place in the area, 

it will most probably happen around the existing urban areas, in compact manner. 

Prediction for 2050 is illustrated in Figure 3 for all three scenarios. The figure depicts 

only a portion of the study area for visualization reasons. 

It seems that more compact urban development in the past made a mark on the 

prediction for the study area. This is particularly evident in the example of SGS sce-

nario. Although some sparse urbanized areas appear in this scenario, their probability 

of occurrence is less than 20%. The fact that the SGS showed the lowest to-urban 

conversion even though the DI and BR values were increased by 25, implies how 

dominant was the SP coefficient in the control of urbanization, even though it was 

changed by a lower value. Moreover, it could be that the sprawl was hindered by great 

share of Exclusion in the area (see Figure 2). All in all, the results indicate that ur-

banization levels until 2050 will be relatively low in the area. This could be related to 

the fact mention above – considerable share of area that is either urbanized or ex-

cluded from development. In addition, the scenarios were driven by the information 

coming from calibration, which in our case, initiated with 1978, i.e. after the period in 



which the biggest boom of urbanization took place (1950s and 1960s [5]). The quality 

data for the pre-1978 period were not available to “capture” this “boom” in the cali-

bration. 

Table 3. Share of the number of urban pixels in the total number of pixels (%urban) and the 

percent of the new urban pixels in one year divided by the total number of urban pixels 

(grw_rate) for all three scenarios up to 2050 

 BAU SGS CGS 

Year %Urban Grw_rate %Urban Grw_rate %Urban Grw_rate 

2012 10.29 1.06 10.27 0.88 12.07 1.36 

2020 11.05 1.17 10.67 0.42 13.31 1.63 

2030 12.11 1.11 10.89 0.19 15.14 1.53 

2040 13.19 0.99 10.99 0.09 17.13 1.44 

2050 13.99 0.44 11.03 0.05 19.33 1.39 

 

 

Fig. 3. Probability of urban growth for 2050 for part of the Emilia-Romagna coastal region 

according to CGS, BAU and SGS scenario  

4 Discussion and Conclusions  

Like any other model, SLEUTH has its own limitations, as well as uncertainties 

that can emerge during its application. Like many urban models, it cannot capture the 



driving forces behind urban growth [12]. Which factors will drive urbanization in the 

future, and to what extent, is dependent on complex interrelationship between uncer-

tain future demographics and socio-economic aspects [25]. However, it seems that 

SLEUTH is deliberately focused more on form and dynamics, i.e. “where” could the 

development take place, not “why” [26]. In addition, SLEUTH is sensitive to time 

resolution and spacing, geographical resolution and scale, and the classification 

scheme applied to land use. It is neither capable to capture the interior structure of 

cities, nor to create destiny estimates within them. Finally, there is no explicit model 

of uncertainty in SLEUTH, although it is accounted for [26]. 

Some uncertainties were also encountered in our study, during different steps of 

SLEUTH application. Initial concern was the appropriateness of input data. All of the 

available maps for historic urban extent were from different sources, with different 

spatial resolution. This can be of particular significance since SLEUTH performance 

can be sensitive to different sources of input data, even when they cover the same 

geographical area [27].  On the other hand, the input datasets used were relatively 

recent with no big gaps between time series. This is highly important since SLEUTH 

seems to show temporal sensitivity regarding historic datasets. Using more dense 

historic observation points, i.e. shorter time series, may produce better agreement 

between the simulated and observed urban growth [18].  

One of main uncertainties regarding calibration was the choice of goodness-of-fit 

metric that implies the most relevant coefficient values for each successive phase. 

Although many earlier applications of SLEUTH used some other metrics (Lee-Sallee 

metric in particular), we employed the OSM since it is believed to be the most robust 

measurement of model accuracy with the past data [20]. However, since OSM is a 

product of several values ranging from 0 to 1, even small differences from 1.0 can 

quickly compound downward. It is important to remember that the values of compo-

nent metrics of OSM are not in correlation in rankings, i.e. the highest OSM value 

does not correspond with the highest of any of its constituent metrics [16]. 

In this study we did not alter the resolution of the input images throughout the dif-

ferent phases of the calibration process. Lowering the resolution of input images is a 

common practice to reduce computation intensiveness [28]. However, changing the 

resolution of input layers may influence the growth rules, impact the overall perfor-

mance of the model and finally, lead to inaccurate representation of growth [29]. By 

taking these observations into consideration, the resolution of input images was kept 

the same (20m cell size using the nearest neighbor resampling algorithm) throughout 

the whole calibration process.  

Other concerns were mainly related to the design of the scenarios. There are nu-

merous issues that need to be taken into consideration when developing scenarios of 

land use change [30]. We opposed the two alternative scenarios sprawled vs. compact 

type of growth, a concept that was also used, in similar manner, in some earlier appli-

cations (e.g. [21] [31, 32]).  

One uncertainty related to the scenarios was how much to increase/decrease the 

coefficient values in order to represent scenarios. We have performed a sensitivity 

analysis, based to some extent on [13], to help us in making such a decision. Howev-

er, it needs to be said that this kind of sensitivity analysis perhaps oversimplifies the 

connection between single coefficient and certain type of growth. In other words, all 

growth coefficients are highly correlated to each other and certain type of growth is a 



product of their interaction. Different coefficients do not necessarily need to be in-

versely related within a scenario. For example, even if a scenario aims to reflect a 

sprawled growth (i.e. DI and BR coefficients increase) this does not mean that the 

compact growth should automatically decrease, and vice versa. Some studies used 

different methods to estimate whether an urban area is passing through a sprawl phase 

or a coalescence phase during certain time period. These include calculating a ratio 

between the number of clusters and average cluster size [33] or computing metrics 

such as number of patches, patch density, Euclidian nearest-neighbor distance, mean 

patch size etc [34].    

The other uncertainty related to scenario-design lies in the designation of exclusion 

levels. In our study the excluded value for certain areas in BAU and SGS scenarios 

was set to 80%. The question arises which number is the appropriate one since, if the 

demand for urban land increases and protection gets treated “more loosely”, the ex-

cluded areas could be assigned with even lower values. Finally, all these values had to 

be set arbitrarily. After all, scenarios are “possibilities, not predictions” [35]. The 

reality can be much more complex in a way that, in the example of our case, sprawled 

and compact growth increase or decrease at the same time. 

Despite these uncertainties, SLEUTH has proven to be successful in providing us 

with insights regarding historic urban growth in the coastal area of Emilia-Romagna, 

as well as being practical in deriving scenarios of future urban growth. We found the 

code relatively easy to operate, and the fact that it is freely available online should not 

be disregarded. Although there is always a certain level of uncertainty in trajectories 

of future urban development, we believe that the outputs from SLEUTH scenarios can 

assist coastal planners in taking into account where urban development could take 

place in future. SLETH outputs could have an important role on the decision-making 

in coastal planning: GIF maps are highly compatible with Geographic Information 

Systems (GIS) and hence, suitable for further quantitative analysis. This compatibility 

can be taken as an advantage and utilized as a visualization tool with a potentially 

high l impact on different types of end-users.     
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