Grammar-Based Tree Compression
EPFL Technical Report 1IC/2004/80

Giorgio Busattd, Markus Lohrey, and Sebastian Maneéth

1 Departmentifir Informatik, Universiat Oldenburg, Germany
2 Fakulat Informatik, Universit Stuttgart, Germany
3 School of Computer and Communication Sciences, EPFL, Switzerland

Abstract. Grammar-based compression means to find a small grammar that gen-
erates a given object. Such a grammar reveals the structure of the object (accord-
ing to the grammar formalism used); the main advantage of this compression
method is that the resulting grammar can often be used in further computations
without prior decompression. A linear time bottom-up algorithm is presented
which transforms a tree into a particular context-free tree grammar. For common
XML documents the algorithm performs well, compressing the tree structure to
about 5% of the original size. The validation of an XML document against an
XML type can be done without decompression, in linear time w.r.t. the size of
the grammar (for a fixed type). While the involved grammars can be double ex-
ponentially smaller than the represented trees, testing them for equivalence can
be done in polynomial space w.r.t. the sum of their sizes.

1 Introduction

There are many scenarios in which trees are processed by computer programs. Often it
is useful to keep a representation of the tree in main memory in order to retain fast ac-
cess. If the trees to be stored are very large, then it is important to use a memory efficient
representation. A recent, most prominent example of large trees are XML documents
which are sequential representations of ordered (unranked) trees, and an example appli-
cation which requires to materialize (part of) the document in main memory is the eval-
uation of XML queries. The latter is typically done using one of the existing XML data
models, e.g., the DOM. Benchmarks show that a DOM representation in main memory
is 4-5 times larger than the original XML file. There are some improvements leading
to more compact representations, e.g., Galax [F&} uses only 3—4 times more main
memory than the size of the file. Another, more memory efficient data model for XML

is that of a binary tree. As shown in [MSV03], the known XML query languages can be
readily evaluated on the binary tree model.

In this paper, we concentrate on the problem of representing binary trees in a space
efficient way so that the functionality of the basic tree operations (such as the movement
along the edges of the tree) are preserved. Instead of compression, such a representa-
tion is also called “data optimization”. A well-known method of tree compression is
sharing of common subtrees: during a bottom-up phase we determine, using a hash

* Seehttp://icwww.epfl.ch/publications/



table, whether we have seen a particular subtree already, and if so we delete it and re-
place it by the corresponding pointer. In this way we obtain in linear time the minimal
(unigue) DAG (directed acyclic graph) that represents the tree. For usual XML docu-
ments the minimal DAG is about 1/10 of the size of the original tree [BGKO03]. As an
example, consider the tre€c(a, a), c(a, a)) consisting of seven nodes and six edges.
The minimal DAG for this tree has three nodes), w and four edges (‘first-child’ and
‘second-child’ edges fromy to v and fromwv to w). The minimal DAG can also be

seen as the minimal regular tree grammar that generates the tree [MB04]: the shared
nodes correspond to nonterminals of the grammar. For example, the above DAG is gen-
erated by the regular tree grammar with productions> ¢(V, V), V — ¢(W, W), and

W — a.

A generalization of sharing of subtrees is the sharing of arbitrary patterns, i.e., con-
nected subgraphs of the tree. In a graph model it leads to the well-known notion of shar-
ing graphs [Lam90] (which are graphs with special “begin-sharing” and “end-sharing”
edges, called fan-ins and fan-outs in [Lam90]). As opposed to DAGs which can be at
most exponentially smaller than the represented trees, sharing graphs can be at most
double-exponentially smaller than the tree. A sharing graph can be seen as a context-
free (cf) tree grammar [MBO04]. In a cf tree grammar nonterminals can appear inside of
atree (as opposed to at the leaves in the regular case); formal parageters. . are
used in productions in order to indicate where to glue the subtrees of the nonterminal
to which the production is applied. Finding the smallest sharing graph for a given tree
is equivalent to finding the smallest cf tree grammar that generates the tree. Unfortu-
nately, the latter problem is NP-hard because finding the smallest cf (string) grammar
for a given string is a well-known NP-complete problem [LS02]. The first main result
of this paper is a linear time algorithm for finding a small cf tree grammar for a given
tree. On usual XML documents the algorithm performs well, obtaining a grammar that
is 1.5-2 times smaller than the minimal DAG. As an example, consider the tree

t = c(c(a,a),d(c(a,a),c(c(a,a),d(c(a, a), c(a,a)))))

which has 18 edges. The minimal DAG, written as tree grammar, can be seen on the left
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Fig. 1. Regular and cf tree grammars generat{ng.

of Fig. 1. It is the starting point of our algorithm which tries to transform the grammar
into a smaller cf tree grammar. This is done by going bottom-up through the right-hand
side of productions, looking for multiple (non-overlapping) occurrences of patterns. In



our example, the tree pattern pat (consisting of two nodes laketed d and their
left children labeled”) appears twice in the right-hand side of the first production. A
patternp in a tree can conveniently be represented by atyeeth formal parameters
y1,-..,yr atleaves: simply add tg, all children of nodes of p (and the edges), and label
the jth such node (in preoder) by. Thus,tpa = ¢(C, d(C, y1)). This tree becomes the
right-hand side of a new nonterminBland the right-hand side of the first production
becomesB(B(C)). The resulting minimal cf tree grammar is shown on the right of
Fig. 1.

The BPLEX algorithm is presented in Section 3. In Section 4 we discuss the ap-
plication of BPLEX to XML documents and present experimental results which were
obtained by running BPLEX on various benchmark XML documents. In Section 5 we
study two problems for our tree grammarsthat are important for XML documents:

(1) to validate against an XML type and (2) to test equivalence. In fact, we consider
both of these problems for so called “straight-line” (for short, SL) context-free tree
grammmars, which are grammars that are guaranteed to generate at most one tree; the
“straight-line” notion is well-known from string grammars (see, e.g., [Ryt04,Pla94]).
Since BPLEX generates grammars of a more restricted form (namely, they additionally
are linear in the paramters) we also consider problems (1) and (2) for the case that the
SL cf tree grammar is linear. It is shown that for an XML typeepresented by a (de-
terministic) bottom-up tree automaton we can test whether oL(6% has typeT in

time O(a™ x |G|), wherem is the maximal number parameters of the nonterminals of

G anda is the size of the automaton. Note that running a tree automaton is similar to
evaluating a query; in [BGKO03] it was shown that a ‘Core XPath quérgan be eval-

uated on an XML document represented by its minimal DB@ time O(|Q| x | D).
Moreover, in the string case a similar result@fa x |G|) is well-known (see, e.g.,
Theorem 28(b) of [Ryt99]). Next it is proved that testing the equivalence of two SL

cf tree grammars can be done in polynomial space w.r.t. the sum of sizes of the two
grammars. If the grammars are linear then testing their equivalence can even be done in
polynomial time.

2 Preliminaries

Fork € N, we denote the sét, . . ., k} with [£]. A finite setX together with a mapping
rank : ) — N is called aranked alphabetThe set of all (ordered, rooted) ranked trees
over X is denoted byl's,. For a setd, T's;(A) is the set of all trees oveX U A, where

all elements of4 have rank). We fix a set of paramete®s = {y1,y2,...} and, for
k>0,Y, ={y1,...,yx}. For aranked treg V(¢) denotes its set of nodes aftt)
denotes its set of edges. Each nodd/ift) can be represented by a sequencef
integers describing the path from the root o6 the desired node (Dewey notation), the
node itself is denoted with,; for example,1.1.1 denotes the left-most leaf of the tree
t from the Introduction (labeled). The label at node is denoted|[«] and the subtree
rooted atu is denoted:/u. For symbolsay, ..., a, of rank zero and trees, ..., t,,

[ar < t1,...,a, < t,] denotes the substitution of replacing each leaf labeleoly
the treet;, 1 < i < n.



Context-free (cf) tree grammars are a natural generalization of cf grammars to
ranked trees (see, e.g., Section 15 in [GS97]). A cf tree granthwnsists of ranked
alphabetsV and X’ of nonterminal and terminal symbols, respectively, of a start symbol
(of rank zero), and of a finite set of productions of the fadty,...,yx) — t. The
right-hand side of a production of the nontermina is a tree over nonterminal and
terminal symbols and over the parameterdjjnwhich may appear at leaves, whére
is the rank ofA. Sentential forms are treass’ in Ty x ands = s’ if s’ is obtained
from s by replacing a subtreg(sy, .. ., si) by the tre€[y; < s1,...,yr < sx] where
t is the right-hand side of ad-production. Thus, the parameters are used to indicate
where to glue the subtrees of a nonterminal, when applying a production to it. The lan-
guage generated lfy is {s € T'x, | S = s}. Note that a parameter can cause copying
(if it appears more than once in a rhs) or deletion (if it does not appear). For example,
the cf tree grammar with productions

S—Aa),  Aly) = Alelyr, ), Aly) = m

generates the language of all full binary trees over the binary syadoad the constant
symbola.

A cf tree grammar igegular if all nonterminals have rank. It is straight-line
(for short, SL) if each nonterminal has exactly one production (with right-hand side
denotedhs(A)) and the nonterminals can be ordered4as. . ., A, in such a way that
rhs(A;) has no occurrences df; for j < 4. Thus, an SL cf tree grammar can be defined
by a tuple(N, X, rhs) whereN is ordered and rhs is a mapping frakhto right-hand
sides. A grammar ifinear if for every productionA(ys, . .., yx) — t, each parameter
y; occurs at most once in

3 BPLEX: A Bottom-Up Algorithm for Grammar-Based Tree
Compression

Grammar-based tree compression means to find a small grammar that generates a given
tree. The size of such a grammar can be considerably smaller than the size of the tree,
depending on the grammar formalism chosen. For example, finding the smallest regular
tree grammar that generates a given tree can be done in linear time, and the resulting
grammar is isomorphic to the minimal DAG of the tree. The minimal regular tree gram-
mar is also straight-line (SL) and, in general, any grammar that generates exactly one
element can be turned into an SL grammar. Our starting point for compressing a tree is
an SL regular tree grammar, and our algorithm takes such a grammar as input and gener-
ates as output a (smaller) SL cf tree grammar. As mentioned in the Introduction, moving
from regular to cf tree grammars corresponds to generalizing the sharing of common
subtrees to the sharing of arbitrary tree patterns (which are connected subgraphs of a
tree).

The basic idea of the algorithm is to find tree patterns that appear more than once
in the input grammar (in a non-overlapping way), and to replace them by new nonter-
minals which generate the corresponding patterns. We call this techmigjtiplexing
because multiple occurrences of the replaced patterns are represented only once in the



output. The algorithm is called BPLEX (fdrottom-up multiplexingsince the right-

hand sides of productions in the input grammar are scanned bottom-up while searching
for patterns. Note that a tree pattern can be conveniently described by a tree with param-
eters at leaves (parameters denote connected subtrees that are not part of the pattern).
Formally, a {ree) patternp (of rank k) is a ranked tree in which eaghe Y}, occurs
exactly once. Given a treeand a node; of ¢, the patterrp matches in u if there

are treedy, ..., t; and a patternp’ isomorphic top such that/u = p'© where® is

the substitutiorfy; « t¢1,...,yr < tx]. The pair(p’, ©) is called amatchof p (in t)

atu. Given a matchn, p,, denotes the corresponding pattern. Two matdpesd’),
(p"”,0"), areoverlappingif p’ andp” have at least one common node. Two matches
m' =,y — th,.. ., ye — ), m" = @, [yn — tf,...,yr < t}]) of the same
patternp aremaximalif, for all i € [k], t[] # t][¢] (intuitively: there is no possibility

to extendm/, m”’ to matches of some larger common pattern).

We now discuss how the size of a cf tree grammar changes when occurrences of a
tree pattern are replaced by a nonterminal that generates the pattern. The size of a tree
(without parameters) is its number of edges. Since the SL cf tree grammars that are
generated by BPLEX have the property thatfafparameters of a nonterminal appear
exactly once in the right-hand side of its rule, and in the ordeys, ..., yi, we do
not need to explicitely represent the parameters as nodes of the tree. Hence, we do
not count the edges to parameters; thus in general, for &,teéee(t) is defined as
|E(t)] — |Ey,(t)| where E,(t) are the edges to parameterstinFor a tree grammar
G, size(G) is the sum of sizes of the right-hand sides of the production§.ofet
G be an SL cf tree grammap, a pattern of rank: with a corresponding production
Ayi,...,yx) — pin G, andm = (p',[y1 < ti,...,yx — tx]) @ match ofp in
the right-hand side of some other productionthfThe matchmn is replaced byA by
deleting the subtree rooted at the rootpbfand replacing it by the tred (¢4, ..., t).

The resulting grammar is denoted 6§fm «— A]. Similarly, for two non-overlapping
matchesmy, ms oOf p in G, Gm1,my «— A] is the grammar obtained fro¥ by
replacing each matctu; andmg by A. Clearly,size(G) — size(G[m — A]) = size(p)
andsize(G) — size(G[m1,ms «— A]) = 2 x size(p). For a production prod we denote
by add(G, prod) the grammar obtained froi® by adding prod. Clearly, if prod is not
in G already, then the size afld(G, prod) is size(G) + size(rhs(prod)). If G is a cf
tree grammar, we denote lisesh(G, k) a nonterminal of rank that does not occur in
G.

The execution of our algorithm produces a sequérce . . , G, of SL cf tree gram-
mars that generate the same tree and share the nonterminals , A4;. G; = G is
the SL cf tree grammar that the algorithm takes as in@ytiis the result. New non-
terminalsA; 1, A;1o,... may appear irGs, ..., G,. Given a grammats;, i € [h],
scanning the nodes of the tredss:, (A;) throughrhsg, (A1) in postorder induces a
total order on the set of nodes

V= | Virhse, (45))
Jell

denoted by</; . The reflexive closure ok, is denoted by</, . Scanning the input
regular grammar in this order corresponds to scanning the generated tree bottom-up.



Let: € [h]. Forj € [I], anode inV (rhsg, (4,)) is denoted by thaddress: = (j, u),
whereu is the path to that node in the trelesg, (4;). If z is a node inV, that is not
the root ofrhsg, (A1), thennext (<, , z) is the node following: in the order</; . The
execution of the algorithm on an input gramngarcan be described by a sequence of
configurationgGi, z1), - . ., (Gn, z1), WhereG = G4, ..., G}, are SL cftree grammars
and, for each € [h], z; is the address of some nodelig , called thecurrent node
which is examined during thith step. Address; is the left-most leaf ofhsg, (A4;)
andz, = (1,¢) is the root ofrhsg, (A1). A patternp matchegrammarG in z = (j, u)
if p matchesths(4;) in u; if m = (p’,©) is the match op in z = (j,u), z is the
address ofn in G.

At stepi € [h], the algorithm computes the s&f, (G;, z;, Kp) of all matches in
z; of patterns that are isomorphic to a right-hand sidke;, (A,) for somej > I. The
parametef(r € Nis introduced for efficiency reasons, and indicates that only the latest
Kp productions with index greater thdrare considered. This is similar to the idea
of a sliding window as it is used in many implementations of the LZ77 compression
scheme, cf. also the discussion in Section 6. Note that one can check whether
rhsg, (A;) matchesG; in z; in at mostsize(p) steps by comparing the two trees top-
down and binding parameters pfto descendants of;. The total cost of computing
M, (G, z, Kp) is bounded byKs x Kp, where Kg (see below) is the maximum
size for a production with index > [. Additionally, the algorithm computes the set
Ms(G;, z;, K, Kg) of all matches irg; such that, for eachw € Ms (G, 2z, K, Kg),
we have

— there exists a (non-overlappingdmpanion match,,, of the same pattern in some
nodew among the lask y nodes preceding; in the order<lGi, and
— 0 < size(pm) < Kg and, ifsize(p,,,) < Kg, thenm andc,, are maximal.

The setMy(Gy, z;, Ky, Kg) can be computed by comparing top-down the tree
rooted atz; with trees rooted at nodes precedingThe cost of computind/» (G, z;,

Ky, Kg) is bounded bys x K. After computing the two sets of matches, the algo-
rithm chooses a mateh € M, (G, z;, Kp) U My (G, 2z, Ky, Kg) with maximal size
denoted bynax(M;, Ms). If the chosen match: belongs tal; (G5, z;, Kp), then the
match is replaced by the right-hand side of the corresponding productiarbdéiongs

to My (G, zi, Kn, Kg), @ new production with a nontermindl andrhsg, (A) = pm

is added to the grammar, and the matches:,,, are replaced bw. In both cases, the
size of the grammar is reduced bige(p,,). If M = (), we move the current node to
the next node with respect to the ord%i. This procedure is repeated until the root of
rhsg, (A1) is reached. The linearity of the algorithm derives from the fact that, for an
input grammax, the body of the loop cannot be executed more than G| (each run
through the body either moves the address forward or reduces the size of the grammar),
and from the fact that the two selM (G;, z;, Kp) and Mx(G;, z;, Ky, Ks) can be
computed in constant time.

The algorithm is shown in Fig. 2. Let us consider its behavior on the regular tree
grammar on the left of Fig. 1. A postorder traversal of the grammar goes through the
third and second production without finding any pair of matches that can be replaced.
It then continues scanning the first production. When the high&sencountered (ad-
dress(1,2)) a matchm of patternd(C,y,) is found, together with a companian,



G := input grammar
z := leftmost leaf ofrhsa (A;)
while true do
M1 = ]\/ll(Gv7 z, Kp)
M2 = ]\42(G7 z, I(N7 Ks)
if My # (0 or Ms # 0 then
m := max(Mi, M3)
if m € M then
G := G[m «— A], withrhsg(A) = pm
else
k := rank(pm)
A := fresh(G, k)
G :=add(G, A(y1,.-.,Yx) — Dm)
G :=Gm,cm — 4]
endif
elif 3w € V4 : 2z <4 wthen
z 1= next(<;, 2)
else
break
endif
enddo

Fig. 2. The complete algorithm

matching in(1,2.2.2). This has sizd and is chosen for replacement. The new non-
terminal D of rank 1 is added to the grammar together with productiofy,) —
d(C,y1), and the two matches are replaced so that the first production becomes
¢(C,D(c(C,D(C)))). The new pattermhs(D) does not match the new grammar in

z = (1,2) and no pairs of new matches are found either. Therefdeechanged to

the root of theS production ¢ = (1,¢)). Here, the right-hand side dP does not
match, while the maximal patteriC, D(y;)) matches in1,¢) and in(1,2.1). There-

fore a new nonterminak’ of rank 1 is added together with the productidi(y,) —

¢(C, D(y1)), and the matches are replacediyproducing the output grammar shown

in Fig. 3. This grammar and the cf tree grammar on the right of Fig. 1 have both size

S — E(E(C)) D(y1) — d(C, 1)
inAA) E(y1) — ¢(C,D(y1))

Fig. 3. Cf tree grammar generatiig}.

7. Note, however, that the algorithm has split the patjeea ¢(C, d(C,y;)) into two
sub-patterns, since pattei(iC, y; ) is detected and replaced before the larger pafiern
is scanned completely.



4 XML Compression using BPLEX

An XML document is a sequential representation of a nested list structure. As men-
tioned in the Introduction, there are different data models for XML, which vary in their
sizes. For example, DOM trees contain bidirectional pointers between a node and its
children, its parent node, and its direct left and right sibling; the resulting size is ap-
proximately 4-5 times more than the size of the original XML document. Another data
model are (ordered) unranked trees which are like DOM trees, but without pointers be-
tween siblings. As an example, consider the following XML document skeleton (i.e.,
without data values).

<agenda>
<person> <name/> <street/> </person>
<person> <name/> <street/> </person>
<person> <name/> <street/> </person>
<person> <name/> <street/> </person>
<person> <name/> <street/> </person>
</agenda>

An (ordered) unranked tree representation of this XML document consists of a root
node labelechgenda which has associated with it an array of five pointers, each to

a node labelegberson which in turn has an array of two pointers to nodes labeled
name andstreet , respectively. For each pointer to a child node we can additionally
also keep the inverse pointer from the child to its parent node. This doubles the number
of pointers in the representation. Our investigations are independent of this choice: we
always count in number of edges (these numbers have to be multiplied by the imple-
mentation cost of an edge, which possibly involves the cost of two pointers). The size
of the unranked tree representation of the above XML document is 15 edges.

The BPLEX algorithm works on ranked trees; on the other hand every unranked tree
can be turned into a binary ranked tree without changing the number of edges: delete
all edges to non-first children, and add a (second child) edge from any node to its next
sibling. Note that a leaf (resp. the last sibling) in the unranked tree has no left (resp.
no right) child edge in the binary tree representation; this is denoted by the superscript
2 (resp. 1), and by O for a last sibling leaf. In Fig. 4 the binary representation of the
unranked tree for the XML document of above is shown (with second child edges drawn

agenda

pe;son —  person— person — person — person
nar‘né’ nar‘né’ nar‘né’ nar‘né’ nar‘né’
str(‘ae? str(‘ae? str(‘ae? str(‘ae? str(‘ae?

Fig. 4. Binary tree representation of an unranked tree.

horizontally). As before, we first turn a (ranked) tree into its minimal DAG, represented



as a regular tree grammar, and then apply BPLEX to the grammar. For the example the
corresponding gramma¥s has the two productions

S — agendé(persor@A, personi A, persoriA, persoriA, person(A))))))
A — namé (street).

and its size is 11. Consider tk#eproduction of this grammar. Its right-hand side con-
tains four occurrences of the pattesn= persoriA,y;). Thus, given a production
C(y1) — persoriA,y,), each of the occurrences can be replaced by the nontermi-
nal C. However, there is one further occurrence of a similar pagtéea person(A),

which can be obtained by removing the paramgtdrom the patterm. Note that, since

A is a first child inp, removingy; changes person into persoin general, we allow a
nonterminalK’ of rankm to appear with any rank < » < m in the right-hand sides of
productions, provided it is indicated which parameters are to be deleted; in the imple-
mentation, missing parameters are marked by a special “empty tree marker”. With this
“overloading” semantics of productions in mind, BPLEX turns the above regular tree

S — agenda(C(D(D))) C(y1) — persoffA,y:)
A — namé(B) D(y1) — C(C(yr))
B — street

Fig. 5. Output of BPLEX onG’s.

grammar into the cf tree grammar shown in Fig. 5. In this grammarDtpeoductions
generates copies along a path of the binary tree. Repeated applications of such copying
productions cause exponential size increase. In this way, the size of the input grammar
can, in certain cases, be reduced exponentially. Consider our example, but now with
10000 person entries (thus, a binary tree w000 edges). The corresponding min-

imal regular tree gramma¥g00 has size20001 while BPLEX outputs the grammar
shown in Fig. 6, which has siz#). In this grammar, the symbol; generates the tree
persorinamestreety; )). More generally, foj = 3, ..., 15, A; generates a chain with

27=3 occurrences of this pattern and one paramgtet the end of the chain. It is easy

to see thatS generates the correct tree with000 person entries.

S — agenda(Ar (A1 (A12(A13(A15(A15)))))) As(y1) — A7(Az(y1))
Ay — streef Ag(yr) — As(As(y))
Az — namé(A:) Aio(y1) — Ao(Ao(y1))
Az(y1) — persorfAz,y1) An(y1) — Awo(Aio(y1))
As(y1) — As(As(yr)) Ar2(y1) — An(An(y))
As(y1) — Aa(Aa(yr)) Awz(y1) —  Ar2(Ai2(yr))
As(y1) — As(As(y1)) Ara(yr) — Asz(Ais(yr))
A7(y1) — As(As(y1)) Ais(y1) —  Ara(Ara(yr))

Fig. 6. Output of BPLEX 0nG'10000-

Before presenting experimental results with BPLEX, we discuss its relation to an-
other tree compression method that has been applied to XML. Recall that we applied



BPLEX to the minimal regular tree grammar of a binary tree representation of an un-
ranked tree. An unranked tree has itself a unique minimal DAG (minimal regular tree
grammar) which can be obtained in the same way as for ranked trees. However, the
size of the minimal DAG of an unranked tree can be different from the one of the min-
imal DAG of its binary representation! In most cases the minimal unranked DAG is
smaller than the binary one. The reason is that chains of second child edges in the bi-
nary tree become sibling subtrees in the unranked tree. To see this, consider the binary
tree in Fig 4. Clearly, its minimal DAG has only one copy of the subtree né&streej

and hence has only 11 edges. On the other hand, the minimal DAG of the correspond-
ing unranked tree has only one copy of the subtree pénsome stree} and there-

fore has only 7 edges. As an example of a binary tree with a minimal DAG that is
smaller than the one of the corresponding unranked tree, consider the unranked tree
ty = u(p(z,b,c,b,¢),p(y,b,¢,b,¢),p(z,b,¢,b,c)). Its minimal unranked DAG has 18
edges, but the minimal binary DAG has only 12, because only one copy of the subtree
b2(c2(b%(%))) appears.

In fact, the size of the minimal DAG representation can even be further reduced by
using “multiplicity” counters for consecutive equal subtrees [BGKO03]. Then the DAG
for the unranked tree of the agenda-example can be represented using only 3 edges,
or equivalently, by an (unranked) regular tree grammar with multiplicity counters and
productionsA — agend@5]P), P — persorfnamestreej. Of course, multiplicity
counters take up space, but following Koch et al. this space is neglected (similar to the
fact that we do not count edges to parameters in cf tree grammars, see Section 3). Thus,
BPLEX produces the grammar of Fig. 5 that is smaller (siz#han the minimal DAG
of the unranked tree (siZ8, but such a minimal DAG has a smaller representation (size
3) when multiplicity counters are added. From now on, we call this DAG representation
for an unranked tree its MDAG (minimal DAG with multiplicities). Such representation
can easily be turned into a regular tree grammar withstimae sizg¢hat generates the
binary representation of the original unranked tree. This grammar also contains multi-
plicity counters at nodes, which are expanded to chains of nodes. We implemented a
version of BPLEX which works on such grammars (and does not change the multiplic-
ity counters). As it turns out, only in a few cases we obtained small improvements over
BPLEX on the binary regular tree grammar corresponding to the minimal DAG. Thus,
the advantage of counters is compensated for, by the ability of BPLEX to exponentially
compress chains of nodes. On a few files, the minimal binary DAG was even smaller
than the mDAG, due to similar chains as in the ttg®f above; cf. in Table 1 the two
catalog files and the file NCBjene.chrl.

Experimental results

We tested BPLEX on three different sets of XML documents. The first one contains
most of the documents used in [BGKO03], namely SProt (protein data), DBLP (a biblio-
graphic database), Treebank (a linguistic database), and 1998statistics (baseball statis-
tics). The second set contains XML documents generated with the XBench bench-
mark [YOKO04]. The third set contains documents from the Japanese Single Nucleotide
Polymorphism database [HTH2]. BPLEX was implemented in C on a Linux plat-

form and the tests were run withiy = 50000, Kp unbounded, and(s = 500; the
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results are shown in Fig. 1. For each XML document, the table shows the size (number
of edges) of its skeleton, the size and compression ratio of the corresponding minimal
binary DAG, the size and compression ratio of the mDAG, and finally the size and
compression ratio of the output of BPLEX.

On the larger files from the first group, the output of BPLEX has approximately
half the size of the corresponding mDAG. On the files of the second group BPLEX
performs even better, producing in most cases a grammar whose size is one third of the
corresponding mDAG. In many of the files from the snp repository, BPLEX produces
an output with at most half the size of the corresponding mDAG (see the [JERB
files in the table). On other files (e.g. JSTp.chrl) BPLEX improves the compression
ratio by aboutl.5 only. On other files (like NCBknp.chrl) the construction of the
mMDAG already provides an exponential size reduction; on these files BPLEX also gives
exponential compression.

Input file size(t) Min. binary Min. unranked | BPLEX output
reg. gr. reg. gr. (mDAG)
SwissProt 10,903, 5681, 664, 451|15.0%|1, 100, 648| 10.1%(337,129| 3.1%
DBLP 2,611,931 533,188(20.0%| 222,755 8.5%(115,954| 4.4%
Treebank 2,447,727|1,456,707(60.0%|1, 301, 690| 53.2%]550,230| 22.0%
1998statistics 28,306 2,404| 8.5% 727 2.6% 411 1.5%
catalog-02 2,240,231  58,529| 2.6%| 74,165 3.3%| 30,451| 1.4%
catalog-01 225,194 9,581| 4.3%| 20,298| 9.0%| 4,916| 2.2%
dictionary-02 2,731,764 681,155(25.0%| 547,834| 20.0%(161,611| 5.9%
dictionary-01 277,072|  77,555|28.0%| 58,573 21.0%| 20,193 7.3%
JSTsnp.chrl 655,946  44,321| 6.8%| 25,047| 3.8%| 15,807 2.4%
JST.gene.chrl 216,401 15,314| 7.1% 7,386 3.4%| 4,839 2.2%
NCBI_snp.chrl|| 3,642,225 809,395|22.0% 15|< 0.1% 49|< 0.1%
NCBI_gene.chrll 360,350, 19,715| 5.5% 22491 6.2%| 9,506 2.6%

Table 1. Experimental results with BPLEX.

5 Algorithms on SL Context-Free Tree Grammars

As our experimental results show, SL cf tree grammars are well suited to efficiently
represent XML documents; especially if the underlying tree model is that of a binary
tree (unlike, e.g., DOM). Consider now a grammar in memory which represents a large
XML document. How can we process the XML tree that is represented, without decom-
pressing the grammar?

Any read access to the tree like, e.g., reading the label of the root node, or moving
along an edge from one node to another node, can be realized on the grammar represen-
tation with an additional per-step overhead of at most the/saf¢he grammar [MBO4].
Additionally, a stack of height at moatmust be maintained at all times. Thus, the price
to be payed for the fact that we have a small representation that can be accessed without
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decompression, is a slow down for each read operation. For some special applications,
however, it is possible to eliminate the slow-down, or to even achieve drastic speed ups.
In this section we investigate such applications.

5.1 XML Type Validation

The first application we consider is XML type validation: an XML document repre-
sented by an SL cf tree grammar should be validated against an XML type. There are
several formalisms for describing XML types, with varying expressiveness, e.g., DTDs,
XML Schema, or RELAX NG. All of these can conveniently be modeled by the regular
tree languages [MLMO0O], a classical concept well known from formal language theory
[GS97]. Our first result states that XML type checking can be done in time linear in the
size of the grammat, if the maximal number of parametersis fixed. The involved
constant depends on the size of the XML type definition, and on the maximal number
m of parameters of the nonterminals@h in fact, m appears as an exponent. Note that
our algorithm can easily be adapted to takeas an input parameter. Practical exper-
iments show that small values of already achieve competitive compression rates. It
can therefore be assumed thats very small with respect to the size Gf(the average
value ofm w.r.t. the size of5 in Table 1 is around0~*). As formal model for regular

tree languages we use (deterministic bottom-up finite) tree automata. Such an automa-
ton can be defined by a tuple= (Q, X, {0, }oc 5, F) whereQ is a finite set of states,

X is a ranked alphabet,, : Q* — Q for o € ¥ of rankk, andF C Q is a set of

final states. The transition functi@mof A is extended to trees ovér in the usual way:
0(o(t1, .. tk)) = 05(0(t1),...,0(tx)) for o € X of rankk andty, ..., ¢, € Tx. The
language accepted byis {s € T, | 4(s) € F'}.

Theorem 1. Given an SL cf tree gramma¥ and a tree automato# it can be checked
whether or notL(G) N L(B) = @ intimeO(s™ x |G|), wheres is the number of states
of B andm is the maximal number of parameters of the nontermina(s.of

Proof. Let G = (N, X, rhs) with N = {A;,...,A,} andB = (Q,X,0,F). We
assume thaf; is reduced, i.e., each nonterminal is used in a (successful) derivation of
G. We now run the tree automatdhon the right-hand sides @F, starting bottom-up
with the right-hand sidehs(4,,) of the last nonterminal af. For parameterg, . . ., yx
which (possibly) appear irhs(A,,) we do not yet know the actual trees; we therefore
try all possible combination§y,, . .., q) of states ofB, and store this in the function
Ua,(q1,...,qx) = 6(rhs(An)[y1 < q1,--., Yk < g&]). In a similar way we compute
Ua, ,, Using¥,  at occurrences ofd,, in rhs(A,_1). Continuing in this way, we
obtain aftern steps the constant functiahy, () € @ which is the state in whictB
arrives for the tree with L(G) = {t}.

For each nonterminal of rank, |Q|* many values of# are computed. Hence, in
total at mosts™ x |G| computations steps are needed. O

Note that it is not necessary to computg, for all combinations ofq, . . ., g ); rather,

this computation can be deferred until a concrete tuple of states has been determined.
In this ‘lazy’ manner, the factos™ can be reduced significantly. Note further that in
order to use Theorem 1 in the context of XML types, the corresponding type definition
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has to first be transformed into a (deterministic bottom-up finite) tree automaton. If the
type is given as DTD or as XML Schema, then the transformation into a tree automaton
can be done in time linear in the size of the representation; the reason is that these
formalisms are deterministic: there is only one rule per nonterminal, and the regular
expressions which are used in right-hand sides are also deterministic (which implies that
the corresponding Glushkov automaton is deterministic, which can be constructed in
time linear in the size of the expression). Hence, the algorithm of the proof of Theorem 1
is highly practical for DTDs and XML Schemas. For RELAX NG (which employs full
regular tree languages) it might be less practical, because the size of the corresponding
tree automaton can be exponential in the size of the representatianvever, if the SL
cf tree grammar is linear (which it is, if it was produced by BPLEX), then Theorem 1
can be extended to the case that the autom&tismnondeterministic: th& 4 are now
functions fromQ* to 29, wherek is the rank ofA; they are computed by checking
for every statep and state9;, ..., pr of B whether there is a run arhs(A,)[y1 —
P1,-- -, Yk < pi] arriving inp. Thus the problem can be solved in ti@és™ ! x |G|).
Validation of an XML document against a type description can also be done in an
approximative way. In fact, in [MdR95] it was shown that it can be decided in constant
time whether an XML document validates, or if is “far” from it. As distance measure
they use the tree edit distance with moves. Let us now show that their approximative
validation can also be done on compressed XML documents. The proof of Theorem 1
can easily be adapted in order to construct a finite tree automaton which runs on a
tree representation of the grammar (such a tree is simply an abstract derivation tree in
which copies of nonterminals are not taken into account, i.e., the rank of a production
equals the number of different nonterminals in its right-hand side). The states of the
automaton are finite functions fro@™ to Q and the transitions are computed in exactly
the same way as in the proof of Theorem 1. Note that this result can also be formulated
in terms of MSO (monadic second-order) logic: every MSO-definable property on trees
is also MSO definable on (SL cf grammar-) compressed trees. Even though the above
constructed automaton allows to do approximative validation, it is not clear yet how
good the approximation is with respect to one on the original tree. Therefore it should be
investigated how edit distances on trees change when moving to a compressed structure.

5.2 Testing Equivalence of SL Context-Free Tree Grammars

Consider two SL cf tree grammatg andGs. Is it possible to test whether botky and

G4 generate the same treewithout fully uncompressing the grammars, i.e., without
deriving the treg? More precisely, we are interested in the time complexity of testing
equivalence o7, andGs.

In the string case, i.e., &, G5 are SL cf string grammars, then the problem can be
solved in polynomial time with respect to the sum of the size&pfand G, [Pla94].
The proof relies on the fact that, for an SL cf string gram@gin Chomsky nf) of size
n, the length of the string derivable from a nonterminao < 2", and therefore can
be stored im bits. Since basic operations (comparing, addition, subtraction, multiplica-
tion, etc.) on such numbers work in polynomial time with respeet, twe can compute
in polynomial time the length of the word generated by any nonterminél.d8ince
in the tree case this property doest hold anymore (because the sizetafenerated

13



by an SL cf tree grammar of sizecan be22") it looks unlikely that the equivalence
problem can also be solved by an algorithm running in polynomial time. In fact, we
do not know whether such an algorithm exists. The following theorem shows that the
problem can be solved using polynomial space, and hence in exponential time. On the
other hand, if the grammais,, G, are linear, then they can be transformed into SL

cf string grammars generating a depth-first left-to-right traversal of the corresponding
tree; then, the result of [Pla94] can be used to show that in this case testing equivalence
can be done in polynomial time.

Theorem 2. Testing equivalence of two SL cf tree gramm@ssand G, can be done
in PSPACE, and in polynomial time i€/, and G are linear.

Proof. Let Gy = ({Al, - 7Am,}7 E,rhsl), Gy = ({Bl, Cey Bn}, E,I‘hSQ) be SL cf

tree grammars. By Savitch’'s Theorem (see, e.g., [Pap94]) and the complement closure
of PSPACE, it suffices to give a nondeterministic algorithm that testquivalence.
Roughly speaking, the algorithm guesses a noded; (the DAG represented b§,)

and accepts if the label afin d; is different fromu’s label ind, (the DAG represented

by G). The key issue is that a nodedh (d2) can be represented in polynomial space
w.r.t. the size ofGG; (G2). This representation is discussed in the end of [MBO04]. It
consists of a sequence

(ila ul)a (7;27’“2) R (ipaup)

wherei; = 1,41 < --- < 4, areindicesin(1,...,n}, and forl <v < p, u, is anode
in rhs; (A;,) with label A;,, ,; moreoverrhs; (4; )[u,] € X. The first pair(1,u;)
denotes that we start a derivation @f with the right-hand side ofi; and nodeu;
marked; the next paifiz, u2) meansu, is labeledA;, and that we apply its production
with u, is marked, etc. Since,, is terminal, the sequence represents a derivation of a
node oft;. Given such a sequenéerepresenting a node of ¢, it is straightforward
to construct a sequendg representing thé-th child u: of w in ¢; [MB04]. Note that
any such sequence has lengthn. The algorithm starts with two empty sequences. It
then generates the sequengeshs representing the root nodesf ¢5, respectively.
If their labels are different we accept. Otherwise, we guess a child nuiargl move
down to thei-th child, resulting ink/, k. If the corresponding labels are different we
accept, etc. If there is no child number (we are at a leaf) we reject.

Now let G, G2 be linear. This means that for any nonterminabf G, G2, of
rank k, the treeA(y.,...,yx) derives to a tree over X' U Y} in which y; occurs
at most oncel < j < k. In fact, it is straightforward to change the grammars in
such a way that (1) every; occurs exactly once ihand (2) the order of the param-
eters int (going depth-first left-to-right) is1, ..., yx. The idea is now to construct
cf string grammard7,, H, which generate depth-first left-to-right traversalg pand
ta, respectively. Let € {1,2}. For every nonterminak of G, of rankk > 0 let
Xo,1,X12,. .., Xk—1,6, X0 be new nonterminals aff;, and for everys € X of rank
k> 0letoo1,01,2,...,08—1,%, 0k b€ Nnew terminals off;. Nonterminals and ter-
minals of rank zero are taken over#. The nonterminald, ; generates the traversal
starting at the root node of the corresponding right-hand side (indicated by the index
0) up to the first parametay; of the right-hand side (indicated by the indéx The
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nonterminalA, , 1 generates the traversal startingyat(and going up), until the pa-
rametery, +; is encountered. Similarly, a terminal symlgel; means thag was entered
coming from its second child and was exited by moving to its third child. It should be
clear how to construct the productionsi®f. As an example, consider the tree grammar
production

A(y1,92,y3) — B(g(y1,a,b), h(B(y2,y3)))
and the nonterminall; 5 of the constructed string grammatr; its production is

A2 = g1,2a0923bg30DB12ho,1 Bo1-

Clearly,t; = to if and only if the stringw; generated byd, equalsws (gen. byHs).
Moreover,H,, H, are SL cf string grammars of polynomial size w.6t., G2, respec-
tively. By the result of [Pla94], testing; = w- can be done in polynomial time w.r.t.
the sizes ofd, Hs. a

6 Conclusions and Further Research Topics

We have presented a linear time algorithm which can be used to find a small SL cf tree
grammar for a given (ranked) tree. The size of the resulting grammar is ugaaily

50% of the size of the uniqgue minimal DAG of the tree. We have adapted the algorithm
to compress memory representations of XML documents, obtaining for large files about
half the size of the representation of Koch et. al. [BGKO03].

Consider the problem of finding the smallest cf string grammar for a given string.
This problem is NP-complete and various approximation algorithms have been stud-
ied [LSO2]. In particular, the size of the smallest cf grammar is lower bounded by
the size of the smallest LZ77 representation of the string (when no sliding window
is used) [CLLF02,Ryt02]. The question arises whether a similar result holds in the tree
case. But, what is an LZ77 representation of a tree? For LZ77 on strings, the prefix to
the current position is considered for finding the longest substring that matches at the
current position; often, only a fixed length prefix — the sliding window — is considered.
For example, the stringbbbaabbabbb is compressed by LZ77 intabbba[l, 3|1, 4],
where a paifi, j] represents the substring starting at positiaf length;. In the tree
case there is no accepted version of LZ77. The problem ig staduld be replaced by
a pathp, andj should be replaced by an unlabeled tredth parameters at leaves (or,
alternatively, by a list of paths to parameters) [Che04], but such paifsrequire too
much space in order to obtain good compression. The main idea of [Ryt02] is to ob-
tain grammars with balanced derivation trees, called “AVL-grammars”. This technique
seems to be applicable to cf tree grammars too, and it remains to be checked whether it
gives rise to better approximation algorithms than the one presented here.

Another variation of Lempel-Zip compression, known as LZ78, can more readily
be extended to trees. For LZ78 on strings, new patterns are composed by adding a letter
to already existing patterns. A pattern is specified as a(paij wherei is the index of
a previous pattern andis a letter. The case= 0 represents the one-letter patterrin
this scheme the stringhbbaabbabbb is compressed t(, a)(0, b)(2,b)(1, a)(3,a)(3, b).

Thus, the paii(2,b) is the concatenatiobb of b (the second pattern) arid and sim-
ilarly (3,a) is bba. A simple extension to trees is to consider complete subtrees as
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patterns [CR96]. It seems however, that the size of such a representation will be lower-
bounded by the size of the minimal DAG. A more powerful extension is to consider
trees with parameters as patterns and to compress a tree into a “pattern substitution
tree” which has edges labeled by substitutions [Che98].

There are also succinct tree representations that do not use pointers to represent
edges, see, e.g., [KM90,DCW293]. Recently it has been shown thatranle tree can
be represented W8n + o(n) bits, while allowingO(1) time for most read operations
on the tree [GRRO04]. Also in the context of XML pointerless representations exists; for
example, in XPRESS [MPCO03] label paths in an XML document are encoded by real
number intervals following an arithmetic encoding technique; this allows to run path
queries directly on the compressed instance.

It should be mentioned that context-free tree grammars are inspired by macro gram-
mars [Fis68] which are cf grammars with parameters. Such grammars can be used for
grammar-based string compression and support at most double exponential compres-
sion. It remains further research to investigate whether our algorithm can be used to
find small macro grammars for given strings.
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