
Grammar-Based Tree Compression
EPFL Technical Report IC/2004/80?

Giorgio Busatto1, Markus Lohrey2, and Sebastian Maneth3

1 Department f̈ur Informatik, Universiẗat Oldenburg, Germany
2 Fakulẗat Informatik, Universiẗat Stuttgart, Germany

3 School of Computer and Communication Sciences, EPFL, Switzerland

Abstract. Grammar-based compression means to find a small grammar that gen-
erates a given object. Such a grammar reveals the structure of the object (accord-
ing to the grammar formalism used); the main advantage of this compression
method is that the resulting grammar can often be used in further computations
without prior decompression. A linear time bottom-up algorithm is presented
which transforms a tree into a particular context-free tree grammar. For common
XML documents the algorithm performs well, compressing the tree structure to
about 5% of the original size. The validation of an XML document against an
XML type can be done without decompression, in linear time w.r.t. the size of
the grammar (for a fixed type). While the involved grammars can be double ex-
ponentially smaller than the represented trees, testing them for equivalence can
be done in polynomial space w.r.t. the sum of their sizes.

1 Introduction

There are many scenarios in which trees are processed by computer programs. Often it
is useful to keep a representation of the tree in main memory in order to retain fast ac-
cess. If the trees to be stored are very large, then it is important to use a memory efficient
representation. A recent, most prominent example of large trees are XML documents
which are sequential representations of ordered (unranked) trees, and an example appli-
cation which requires to materialize (part of) the document in main memory is the eval-
uation of XML queries. The latter is typically done using one of the existing XML data
models, e.g., the DOM. Benchmarks show that a DOM representation in main memory
is 4–5 times larger than the original XML file. There are some improvements leading
to more compact representations, e.g., Galax [FSC+03] uses only 3–4 times more main
memory than the size of the file. Another, more memory efficient data model for XML
is that of a binary tree. As shown in [MSV03], the known XML query languages can be
readily evaluated on the binary tree model.

In this paper, we concentrate on the problem of representing binary trees in a space
efficient way so that the functionality of the basic tree operations (such as the movement
along the edges of the tree) are preserved. Instead of compression, such a representa-
tion is also called “data optimization”. A well-known method of tree compression is
sharing of common subtrees: during a bottom-up phase we determine, using a hash

? Seehttp://icwww.epfl.ch/publications/



table, whether we have seen a particular subtree already, and if so we delete it and re-
place it by the corresponding pointer. In this way we obtain in linear time the minimal
(unique) DAG (directed acyclic graph) that represents the tree. For usual XML docu-
ments the minimal DAG is about 1/10 of the size of the original tree [BGK03]. As an
example, consider the treec(c(a, a), c(a, a)) consisting of seven nodes and six edges.
The minimal DAG for this tree has three nodesu, v, w and four edges (‘first-child’ and
‘second-child’ edges fromu to v and fromv to w). The minimal DAG can also be
seen as the minimal regular tree grammar that generates the tree [MB04]: the shared
nodes correspond to nonterminals of the grammar. For example, the above DAG is gen-
erated by the regular tree grammar with productionsU → c(V, V ), V → c(W,W ), and
W → a.

A generalization of sharing of subtrees is the sharing of arbitrary patterns, i.e., con-
nected subgraphs of the tree. In a graph model it leads to the well-known notion of shar-
ing graphs [Lam90] (which are graphs with special “begin-sharing” and “end-sharing”
edges, called fan-ins and fan-outs in [Lam90]). As opposed to DAGs which can be at
most exponentially smaller than the represented trees, sharing graphs can be at most
double-exponentially smaller than the tree. A sharing graph can be seen as a context-
free (cf) tree grammar [MB04]. In a cf tree grammar nonterminals can appear inside of
a tree (as opposed to at the leaves in the regular case); formal parametersy1, y2, . . . are
used in productions in order to indicate where to glue the subtrees of the nonterminal
to which the production is applied. Finding the smallest sharing graph for a given tree
is equivalent to finding the smallest cf tree grammar that generates the tree. Unfortu-
nately, the latter problem is NP-hard because finding the smallest cf (string) grammar
for a given string is a well-known NP-complete problem [LS02]. The first main result
of this paper is a linear time algorithm for finding a small cf tree grammar for a given
tree. On usual XML documents the algorithm performs well, obtaining a grammar that
is 1.5-2 times smaller than the minimal DAG. As an example, consider the tree

t = c(c(a, a), d(c(a, a), c(c(a, a), d(c(a, a), c(a, a)))))

which has 18 edges. The minimal DAG, written as tree grammar, can be seen on the left

S →

c

........................�
.......................s

...........................................................

...........................................................

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

.............................................

.............................................

....

....

....

....

....

....

....

....

....

....

....

.

....

....

....

....

....

....

....

....

....

....

....

.

d c d C

CCCC
1

2

pat

S → B(B(C))

C → c(A, A) C → c(A, A)
A → a A → a

B(y1) → c(C, d(C, y1))

Fig. 1.Regular and cf tree grammars generating{t}.

of Fig. 1. It is the starting point of our algorithm which tries to transform the grammar
into a smaller cf tree grammar. This is done by going bottom-up through the right-hand
side of productions, looking for multiple (non-overlapping) occurrences of patterns. In

2



our example, the tree pattern pat (consisting of two nodes labeledc andd and their
left children labeledC) appears twice in the right-hand side of the first production. A
patternp in a tree can conveniently be represented by a treetp with formal parameters
y1, . . . , yr at leaves: simply add totp all children of nodes of p (and the edges), and label
thejth such node (in preoder) byyj . Thus,tpat = c(C, d(C, y1)). This tree becomes the
right-hand side of a new nonterminalB and the right-hand side of the first production
becomesB(B(C)). The resulting minimal cf tree grammar is shown on the right of
Fig. 1.

The BPLEX algorithm is presented in Section 3. In Section 4 we discuss the ap-
plication of BPLEX to XML documents and present experimental results which were
obtained by running BPLEX on various benchmark XML documents. In Section 5 we
study two problems for our tree grammarsG that are important for XML documents:
(1) to validate against an XML type and (2) to test equivalence. In fact, we consider
both of these problems for so called “straight-line” (for short, SL) context-free tree
grammmars, which are grammars that are guaranteed to generate at most one tree; the
“straight-line” notion is well-known from string grammars (see, e.g., [Ryt04,Pla94]).
Since BPLEX generates grammars of a more restricted form (namely, they additionally
are linear in the paramters) we also consider problems (1) and (2) for the case that the
SL cf tree grammar is linear. It is shown that for an XML typeT represented by a (de-
terministic) bottom-up tree automaton we can test whether or notL(G) has typeT in
timeO(am × |G|), wherem is the maximal number parameters of the nonterminals of
G anda is the size of the automaton. Note that running a tree automaton is similar to
evaluating a query; in [BGK03] it was shown that a ‘Core XPath query’Q can be eval-
uated on an XML document represented by its minimal DAGD in timeO(|Q| × |D|).
Moreover, in the string case a similar result ofO(a × |G|) is well-known (see, e.g.,
Theorem 28(b) of [Ryt99]). Next it is proved that testing the equivalence of two SL
cf tree grammars can be done in polynomial space w.r.t. the sum of sizes of the two
grammars. If the grammars are linear then testing their equivalence can even be done in
polynomial time.

2 Preliminaries

Fork ∈ N, we denote the set{1, . . . , k}with [k]. A finite setΣ together with a mapping
rank : Σ → N is called aranked alphabet. The set of all (ordered, rooted) ranked trees
overΣ is denoted byTΣ . For a setA, TΣ(A) is the set of all trees overΣ ∪ A, where
all elements ofA have rank0. We fix a set of parametersY = {y1, y2, . . . } and, for
k ≥ 0, Yk = {y1, . . . , yk}. For a ranked treet, V (t) denotes its set of nodes andE(t)
denotes its set of edges. Each node inV (t) can be represented by a sequenceu of
integers describing the path from the root oft to the desired node (Dewey notation), the
node itself is denoted withtu; for example,1.1.1 denotes the left-most leaf of the tree
t from the Introduction (labeleda). The label at nodeu is denotedt[u] and the subtree
rooted atu is denotedt/u. For symbolsa1, . . . , an of rank zero and treest1, . . . , tn,
[a1 ← t1, . . . , an ← tn] denotes the substitution of replacing each leaf labeledai by
the treeti, 1 ≤ i ≤ n.

3



Context-free (cf) tree grammars are a natural generalization of cf grammars to
ranked trees (see, e.g., Section 15 in [GS97]). A cf tree grammarG consists of ranked
alphabetsN andΣ of nonterminal and terminal symbols, respectively, of a start symbol
(of rank zero), and of a finite set of productions of the formA(y1, . . . , yk) → t. The
right-hand sidet of a production of the nonterminalA is a tree over nonterminal and
terminal symbols and over the parameters inYk which may appear at leaves, wherek
is the rank ofA. Sentential forms are treess, s′ in TN∪Σ ands⇒G s′ if s′ is obtained
from s by replacing a subtreeA(s1, . . . , sk) by the treet[y1 ← s1, . . . , yk ← sk] where
t is the right-hand side of anA-production. Thus, the parameters are used to indicate
where to glue the subtrees of a nonterminal, when applying a production to it. The lan-
guage generated byG is {s ∈ TΣ | S ⇒∗

G s}. Note that a parameter can cause copying
(if it appears more than once in a rhs) or deletion (if it does not appear). For example,
the cf tree grammar with productions

S → A(a), A(y1)→ A(c(y1, y1)), A(y1)→ y1

generates the language of all full binary trees over the binary symbolc and the constant
symbola.

A cf tree grammar isregular if all nonterminals have rank0. It is straight-line
(for short, SL) if each nonterminalA has exactly one production (with right-hand side
denotedrhs(A)) and the nonterminals can be ordered asA1, . . . , An in such a way that
rhs(Ai) has no occurrences ofAj for j < i. Thus, an SL cf tree grammar can be defined
by a tuple(N,Σ, rhs) whereN is ordered and rhs is a mapping fromN to right-hand
sides. A grammar islinear if for every productionA(y1, . . . , yk) → t, each parameter
yi occurs at most once int.

3 BPLEX: A Bottom-Up Algorithm for Grammar-Based Tree
Compression

Grammar-based tree compression means to find a small grammar that generates a given
tree. The size of such a grammar can be considerably smaller than the size of the tree,
depending on the grammar formalism chosen. For example, finding the smallest regular
tree grammar that generates a given tree can be done in linear time, and the resulting
grammar is isomorphic to the minimal DAG of the tree. The minimal regular tree gram-
mar is also straight-line (SL) and, in general, any grammar that generates exactly one
element can be turned into an SL grammar. Our starting point for compressing a tree is
an SL regular tree grammar, and our algorithm takes such a grammar as input and gener-
ates as output a (smaller) SL cf tree grammar. As mentioned in the Introduction, moving
from regular to cf tree grammars corresponds to generalizing the sharing of common
subtrees to the sharing of arbitrary tree patterns (which are connected subgraphs of a
tree).

The basic idea of the algorithm is to find tree patterns that appear more than once
in the input grammar (in a non-overlapping way), and to replace them by new nonter-
minals which generate the corresponding patterns. We call this techniquemultiplexing
because multiple occurrences of the replaced patterns are represented only once in the

4



output. The algorithm is called BPLEX (forbottom-up multiplexing) since the right-
hand sides of productions in the input grammar are scanned bottom-up while searching
for patterns. Note that a tree pattern can be conveniently described by a tree with param-
eters at leaves (parameters denote connected subtrees that are not part of the pattern).
Formally, a (tree) patternp (of rankk) is a ranked tree in which eachy ∈ Yk occurs
exactly once. Given a treet and a nodeu of t, the patternp matchest in u if there
are treest1, . . . , tk and a patternp′ isomorphic top such thatt/u = p′Θ whereΘ is
the substitution[y1 ← t1, . . . , yk ← tk]. The pair(p′, Θ) is called amatchof p (in t)
at u. Given a matchm, pm denotes the corresponding pattern. Two matches(p′, Θ′),
(p′′, Θ′′), areoverlappingif p′ andp′′ have at least one common node. Two matches
m′ = (p′, [y1 ← t′1, . . . , yk ← t′k]), m′′ = (p′′, [y1 ← t′′1 , . . . , yk ← t′′k ]) of the same
patternp aremaximalif, for all i ∈ [k], t′i[ε] 6= t′′i [ε] (intuitively: there is no possibility
to extendm′, m′′ to matches of some larger common pattern).

We now discuss how the size of a cf tree grammar changes when occurrences of a
tree pattern are replaced by a nonterminal that generates the pattern. The size of a tree
(without parameters) is its number of edges. Since the SL cf tree grammars that are
generated by BPLEX have the property that allk parameters of a nonterminal appear
exactly once in the right-hand side of its rule, and in the ordery1, y2, . . . , yk, we do
not need to explicitely represent the parameters as nodes of the tree. Hence, we do
not count the edges to parameters; thus in general, for a treet, size(t) is defined as
|E(t)| − |Ey(t)| whereEy(t) are the edges to parameters int. For a tree grammar
G, size(G) is the sum of sizes of the right-hand sides of the productions ofG. Let
G be an SL cf tree grammar,p a pattern of rankk with a corresponding production
A(y1, . . . , yk) → p in G, andm = (p′, [y1 ← t1, . . . , yk ← tk]) a match ofp in
the right-hand side of some other production ofG. The matchm is replaced byA by
deleting the subtree rooted at the root ofp′ and replacing it by the treeA(t1, . . . , tk).
The resulting grammar is denoted byG[m ← A]. Similarly, for two non-overlapping
matchesm1, m2 of p in G, G[m1,m2 ← A] is the grammar obtained fromG by
replacing each matchm1 andm2 by A. Clearly,size(G)− size(G[m← A]) = size(p)
andsize(G)− size(G[m1,m2 ← A]) = 2× size(p). For a production prod we denote
by add(G, prod) the grammar obtained fromG by adding prod. Clearly, if prod is not
in G already, then the size ofadd(G, prod) is size(G) + size(rhs(prod)). If G is a cf
tree grammar, we denote byfresh(G, k) a nonterminal of rankk that does not occur in
G.

The execution of our algorithm produces a sequenceG1, . . . , Gh of SL cf tree gram-
mars that generate the same tree and share the nonterminalsA1, . . . , Al. G1 = G is
the SL cf tree grammar that the algorithm takes as input;Gh is the result. New non-
terminalsAl+1, Al+2, . . . may appear inG2, . . . , Gh. Given a grammarGi, i ∈ [h],
scanning the nodes of the treesrhsGi

(Al) throughrhsGi
(A1) in postorder induces a

total order on the set of nodes

V l
Gi

=
⋃

j∈[l]

V (rhsGi
(Aj))

denoted by<l
Gi

. The reflexive closure of<l
Gi

is denoted by≤l
Gi

. Scanning the input
regular grammar in this order corresponds to scanning the generated tree bottom-up.

5



Let i ∈ [h]. For j ∈ [l], a node inV (rhsGi
(Aj)) is denoted by theaddressz = (j, u),

whereu is the path to that node in the treerhsGi
(Aj). If z is a node inV l

Gi
that is not

the root ofrhsGi
(A1), thennext(<l

Gi
, z) is the node followingz in the order<l

Gi
. The

execution of the algorithm on an input grammarG can be described by a sequence of
configurations(G1, z1), . . . , (Gh, zh), whereG = G1, . . . , Gh are SL cf tree grammars
and, for eachi ∈ [h], zi is the address of some node inV l

Gi
, called thecurrent node,

which is examined during thei-th step. Addressz1 is the left-most leaf ofrhsG1(Al)
andzh = (1, ε) is the root ofrhsGh

(A1). A patternp matchesgrammarG in z = (j, u)
if p matchesrhs(Aj) in u; if m = (p′, Θ) is the match ofp in z = (j, u), z is the
address ofm in G.

At stepi ∈ [h], the algorithm computes the setM1(Gi, zi,KP ) of all matches in
zi of patterns that are isomorphic to a right-hand siderhsGi

(Aj) for somej > l. The
parameterKP ∈ N is introduced for efficiency reasons, and indicates that only the latest
KP productions with index greater thanl are considered. This is similar to the idea
of a sliding window as it is used in many implementations of the LZ77 compression
scheme, cf. also the discussion in Section 6. Note that one can check whetherp =
rhsGi(Aj) matchesGi in zi in at mostsize(p) steps by comparing the two trees top-
down and binding parameters ofp to descendants ofzi. The total cost of computing
M1(Gi, zi,KP ) is bounded byKS × KP , whereKS (see below) is the maximum
size for a production with indexj > l. Additionally, the algorithm computes the set
M2(Gi, zi,KN ,KS) of all matches inzi such that, for eachm ∈M2(Gi, zi,KN ,KS),
we have

– there exists a (non-overlapping)companion matchcm of the same pattern in some
nodew among the lastKN nodes precedingzi in the order<l

Gi
, and

– 0 < size(pm) ≤ KS and, ifsize(pm) < KS , thenm andcm are maximal.

The setM2(Gi, zi,KN ,KS) can be computed by comparing top-down the tree
rooted atzi with trees rooted at nodes precedingzi. The cost of computingM2(Gi, zi,
KN ,KS) is bounded byKS ×KN . After computing the two sets of matches, the algo-
rithm chooses a matchm ∈M1(Gi, zi,KP )∪M2(Gi, zi,KN ,KS) with maximal size
denoted bymax(M1,M2). If the chosen matchm belongs toM1(Gi, zi,KP ), then the
match is replaced by the right-hand side of the corresponding production. Ifm belongs
to M2(Gi, zi,KN ,KS), a new production with a nonterminalA andrhsGi

(A) = pm

is added to the grammar, and the matchesm, cm are replaced byA. In both cases, the
size of the grammar is reduced bysize(pm). If M = ∅, we move the current node to
the next node with respect to the order<l

Gi
. This procedure is repeated until the root of

rhsGi
(A1) is reached. The linearity of the algorithm derives from the fact that, for an

input grammarG, the body of the loop cannot be executed more than2× |G| (each run
through the body either moves the address forward or reduces the size of the grammar),
and from the fact that the two setsM1(Gi, zi,KP ) andM2(Gi, zi,KN ,KS) can be
computed in constant time.

The algorithm is shown in Fig. 2. Let us consider its behavior on the regular tree
grammar on the left of Fig. 1. A postorder traversal of the grammar goes through the
third and second production without finding any pair of matches that can be replaced.
It then continues scanning the first production. When the highestd is encountered (ad-
dress(1, 2)) a matchm of patternd(C, y1) is found, together with a companioncm

6



G := input grammar
z := leftmost leaf ofrhsG(Al)
while true do

M1 := M1(G, z, KP )
M2 := M2(G, z, KN , KS)
if M1 6= ∅ or M2 6= ∅ then

m := max(M1, M2)
if m ∈M1 then

G := G[m← A], with rhsG(A) = pm

else
k := rank(pm)
A := fresh(G, k)
G := add(G, A(y1, . . . , yk)→ pm)
G := G[m, cm ← A]

endif
elif ∃w ∈ V l

G : z <l
G w then

z := next(<l
G, z)

else
break

endif
enddo

Fig. 2.The complete algorithm

matching in(1, 2.2.2). This has size1 and is chosen for replacement. The new non-
terminal D of rank 1 is added to the grammar together with productionD(y1) →
d(C, y1), and the two matches are replaced so that the first production becomesS →
c(C,D(c(C,D(C)))). The new patternrhs(D) does not match the new grammar in
z = (1, 2) and no pairs of new matches are found either. Thereforez is changed to
the root of theS production (z = (1, ε)). Here, the right-hand side ofD does not
match, while the maximal patternc(C,D(y1)) matches in(1, ε) and in(1, 2.1). There-
fore a new nonterminalE of rank 1 is added together with the productionE(y1) →
c(C,D(y1)), and the matches are replaced byE, producing the output grammar shown
in Fig. 3. This grammar and the cf tree grammar on the right of Fig. 1 have both size

S → E(E(C)) D(y1) → d(C, y1)
C → c(A, A) E(y1) → c(C, D(y1))
A → a

Fig. 3.Cf tree grammar generating{t}.

7. Note, however, that the algorithm has split the patternp = c(C, d(C, y1)) into two
sub-patterns, since patternd(C, y1) is detected and replaced before the larger patternp
is scanned completely.

7



4 XML Compression using BPLEX

An XML document is a sequential representation of a nested list structure. As men-
tioned in the Introduction, there are different data models for XML, which vary in their
sizes. For example, DOM trees contain bidirectional pointers between a node and its
children, its parent node, and its direct left and right sibling; the resulting size is ap-
proximately 4-5 times more than the size of the original XML document. Another data
model are (ordered) unranked trees which are like DOM trees, but without pointers be-
tween siblings. As an example, consider the following XML document skeleton (i.e.,
without data values).

<agenda>
<person> <name/> <street/> </person>
<person> <name/> <street/> </person>
<person> <name/> <street/> </person>
<person> <name/> <street/> </person>
<person> <name/> <street/> </person>

</agenda>

An (ordered) unranked tree representation of this XML document consists of a root
node labeledagenda which has associated with it an array of five pointers, each to
a node labeledperson which in turn has an array of two pointers to nodes labeled
name andstreet , respectively. For each pointer to a child node we can additionally
also keep the inverse pointer from the child to its parent node. This doubles the number
of pointers in the representation. Our investigations are independent of this choice: we
always count in number of edges (these numbers have to be multiplied by the imple-
mentation cost of an edge, which possibly involves the cost of two pointers). The size
of the unranked tree representation of the above XML document is 15 edges.

The BPLEX algorithm works on ranked trees; on the other hand every unranked tree
can be turned into a binary ranked tree without changing the number of edges: delete
all edges to non-first children, and add a (second child) edge from any node to its next
sibling. Note that a leaf (resp. the last sibling) in the unranked tree has no left (resp.
no right) child edge in the binary tree representation; this is denoted by the superscript
2 (resp. 1), and by 0 for a last sibling leaf. In Fig. 4 the binary representation of the
unranked tree for the XML document of above is shown (with second child edges drawn

street0

agenda1

person person1

name2

personpersonperson

name2 name2 name2 name2

street0 street0 street0 street0

Fig. 4.Binary tree representation of an unranked tree.

horizontally). As before, we first turn a (ranked) tree into its minimal DAG, represented

8



as a regular tree grammar, and then apply BPLEX to the grammar. For the example the
corresponding grammarG5 has the two productions

S → agenda1(person(A, person(A, person(A, person(A, person1(A))))))
A→ name2(street0).

and its size is 11. Consider theS-production of this grammar. Its right-hand side con-
tains four occurrences of the patternp = person(A, y1). Thus, given a production
C(y1) → person(A, y1), each of the occurrences can be replaced by the nontermi-
nal C. However, there is one further occurrence of a similar patternp′ = person1(A),
which can be obtained by removing the parametery1 from the patternp. Note that, since
A is a first child inp, removingy1 changes person into person1. In general, we allow a
nonterminalK of rankm to appear with any rank0 ≤ r ≤ m in the right-hand sides of
productions, provided it is indicated which parameters are to be deleted; in the imple-
mentation, missing parameters are marked by a special “empty tree marker”. With this
“overloading” semantics of productions in mind, BPLEX turns the above regular tree

S → agenda1(C(D(D))) C(y1) → person(A, y1)
A → name2(B) D(y1) → C(C(y1))
B → street0

Fig. 5.Output of BPLEX onG5.

grammar into the cf tree grammar shown in Fig. 5. In this grammar, theD-productions
generates copies along a path of the binary tree. Repeated applications of such copying
productions cause exponential size increase. In this way, the size of the input grammar
can, in certain cases, be reduced exponentially. Consider our example, but now with
10000 person entries (thus, a binary tree with30000 edges). The corresponding min-
imal regular tree grammarG10000 has size20001 while BPLEX outputs the grammar
shown in Fig. 6, which has size20. In this grammar, the symbolA3 generates the tree
person(name(street, y1)). More generally, forj = 3, . . . , 15, Aj generates a chain with
2j−3 occurrences of this pattern and one parametery1 at the end of the chain. It is easy
to see thatS generates the correct tree with10000 person entries.

S → agenda1(A7(A11(A12(A13(A15(A15)))))) A8(y1) → A7(A7(y1))
A1 → street0 A9(y1) → A8(A8(y1))
A2 → name2(A1) A10(y1) → A9(A9(y1))
A3(y1) → person(A2, y1) A11(y1) → A10(A10(y1))
A4(y1) → A3(A3(y1)) A12(y1) → A11(A11(y1))
A5(y1) → A4(A4(y1)) A13(y1) → A12(A12(y1))
A6(y1) → A5(A5(y1)) A14(y1) → A13(A13(y1))
A7(y1) → A6(A6(y1)) A15(y1) → A14(A14(y1))

Fig. 6.Output of BPLEX onG10000.

Before presenting experimental results with BPLEX, we discuss its relation to an-
other tree compression method that has been applied to XML. Recall that we applied

9



BPLEX to the minimal regular tree grammar of a binary tree representation of an un-
ranked tree. An unranked tree has itself a unique minimal DAG (minimal regular tree
grammar) which can be obtained in the same way as for ranked trees. However, the
size of the minimal DAG of an unranked tree can be different from the one of the min-
imal DAG of its binary representation! In most cases the minimal unranked DAG is
smaller than the binary one. The reason is that chains of second child edges in the bi-
nary tree become sibling subtrees in the unranked tree. To see this, consider the binary
tree in Fig 4. Clearly, its minimal DAG has only one copy of the subtree name2(street)
and hence has only 11 edges. On the other hand, the minimal DAG of the correspond-
ing unranked tree has only one copy of the subtree person(name, street) and there-
fore has only 7 edges. As an example of a binary tree with a minimal DAG that is
smaller than the one of the corresponding unranked tree, consider the unranked tree
tu = u(p(x, b, c, b, c), p(y, b, c, b, c), p(z, b, c, b, c)). Its minimal unranked DAG has 18
edges, but the minimal binary DAG has only 12, because only one copy of the subtree
b2(c2(b2(c0))) appears.

In fact, the size of the minimal DAG representation can even be further reduced by
using “multiplicity” counters for consecutive equal subtrees [BGK03]. Then the DAG
for the unranked tree of the agenda-example can be represented using only 3 edges,
or equivalently, by an (unranked) regular tree grammar with multiplicity counters and
productionsA → agenda([5]P ), P → person(name, street). Of course, multiplicity
counters take up space, but following Koch et al. this space is neglected (similar to the
fact that we do not count edges to parameters in cf tree grammars, see Section 3). Thus,
BPLEX produces the grammar of Fig. 5 that is smaller (size6) than the minimal DAG
of the unranked tree (size7), but such a minimal DAG has a smaller representation (size
3) when multiplicity counters are added. From now on, we call this DAG representation
for an unranked tree its mDAG (minimal DAG with multiplicities). Such representation
can easily be turned into a regular tree grammar with thesame sizethat generates the
binary representation of the original unranked tree. This grammar also contains multi-
plicity counters at nodes, which are expanded to chains of nodes. We implemented a
version of BPLEX which works on such grammars (and does not change the multiplic-
ity counters). As it turns out, only in a few cases we obtained small improvements over
BPLEX on the binary regular tree grammar corresponding to the minimal DAG. Thus,
the advantage of counters is compensated for, by the ability of BPLEX to exponentially
compress chains of nodes. On a few files, the minimal binary DAG was even smaller
than the mDAG, due to similar chains as in the treetu of above; cf. in Table 1 the two
catalog files and the file NCBIgene.chr1.

Experimental results

We tested BPLEX on three different sets of XML documents. The first one contains
most of the documents used in [BGK03], namely SProt (protein data), DBLP (a biblio-
graphic database), Treebank (a linguistic database), and 1998statistics (baseball statis-
tics). The second set contains XML documents generated with the XBench bench-
mark [YÖK04]. The third set contains documents from the Japanese Single Nucleotide
Polymorphism database [HTH+02]. BPLEX was implemented in C on a Linux plat-
form and the tests were run withKN = 50000, KP unbounded, andKS = 500; the

10



results are shown in Fig. 1. For each XML document, the table shows the size (number
of edges) of its skeleton, the size and compression ratio of the corresponding minimal
binary DAG, the size and compression ratio of the mDAG, and finally the size and
compression ratio of the output of BPLEX.

On the larger files from the first group, the output of BPLEX has approximately
half the size of the corresponding mDAG. On the files of the second group BPLEX
performs even better, producing in most cases a grammar whose size is one third of the
corresponding mDAG. In many of the files from the snp repository, BPLEX produces
an output with at most half the size of the corresponding mDAG (see the NCBIgene
files in the table). On other files (e.g. JSTsnp.chr1) BPLEX improves the compression
ratio by about1.5 only. On other files (like NCBIsnp.chr1) the construction of the
mDAG already provides an exponential size reduction; on these files BPLEX also gives
exponential compression.

Input file size(t) Min. binary Min. unranked BPLEX output
reg. gr. reg. gr. (mDAG)

SwissProt 10, 903, 568 1, 664, 451 15.0% 1, 100, 648 10.1% 337, 129 3.1%
DBLP 2, 611, 931 533, 188 20.0% 222, 755 8.5% 115, 954 4.4%
Treebank 2, 447, 727 1, 456, 707 60.0% 1, 301, 690 53.2% 550, 230 22.0%
1998statistics 28, 306 2, 404 8.5% 727 2.6% 411 1.5%

catalog-02 2, 240, 231 58, 529 2.6% 74, 165 3.3% 30, 451 1.4%
catalog-01 225, 194 9, 581 4.3% 20, 298 9.0% 4, 916 2.2%
dictionary-02 2, 731, 764 681, 155 25.0% 547, 834 20.0% 161, 611 5.9%
dictionary-01 277, 072 77, 555 28.0% 58, 573 21.0% 20, 193 7.3%

JSTsnp.chr1 655, 946 44, 321 6.8% 25, 047 3.8% 15, 807 2.4%
JSTgene.chr1 216, 401 15, 314 7.1% 7, 386 3.4% 4, 839 2.2%
NCBI snp.chr1 3, 642, 225 809, 395 22.0% 15 < 0.1% 49 < 0.1%
NCBI gene.chr1 360, 350 19, 715 5.5% 22491 6.2% 9, 506 2.6%

Table 1.Experimental results with BPLEX.

5 Algorithms on SL Context-Free Tree Grammars

As our experimental results show, SL cf tree grammars are well suited to efficiently
represent XML documents; especially if the underlying tree model is that of a binary
tree (unlike, e.g., DOM). Consider now a grammar in memory which represents a large
XML document. How can we process the XML tree that is represented, without decom-
pressing the grammar?

Any read access to the tree like, e.g., reading the label of the root node, or moving
along an edge from one node to another node, can be realized on the grammar represen-
tation with an additional per-step overhead of at most the sizeh of the grammar [MB04].
Additionally, a stack of height at mosth must be maintained at all times. Thus, the price
to be payed for the fact that we have a small representation that can be accessed without

11



decompression, is a slow down for each read operation. For some special applications,
however, it is possible to eliminate the slow-down, or to even achieve drastic speed ups.
In this section we investigate such applications.

5.1 XML Type Validation

The first application we consider is XML type validation: an XML document repre-
sented by an SL cf tree grammar should be validated against an XML type. There are
several formalisms for describing XML types, with varying expressiveness, e.g., DTDs,
XML Schema, or RELAX NG. All of these can conveniently be modeled by the regular
tree languages [MLM00], a classical concept well known from formal language theory
[GS97]. Our first result states that XML type checking can be done in time linear in the
size of the grammarG, if the maximal number of parametersm is fixed. The involved
constant depends on the size of the XML type definition, and on the maximal number
m of parameters of the nonterminals inG; in fact,m appears as an exponent. Note that
our algorithm can easily be adapted to takem as an input parameter. Practical exper-
iments show that small values ofm already achieve competitive compression rates. It
can therefore be assumed thatm is very small with respect to the size ofG (the average
value ofm w.r.t. the size ofG in Table 1 is around10−4). As formal model for regular
tree languages we use (deterministic bottom-up finite) tree automata. Such an automa-
ton can be defined by a tupleA = (Q,Σ, {δσ}σ∈Σ , F ) whereQ is a finite set of states,
Σ is a ranked alphabet,δσ : Qk → Q for σ ∈ Σ of rank k, andF ⊆ Q is a set of
final states. The transition functionδ of A is extended to trees overΣ in the usual way:
δ(σ(t1, . . . , tk)) = δσ(δ(t1), . . . , δ(tk)) for σ ∈ Σ of rankk andt1, . . . , tk ∈ TΣ . The
language accepted byA is {s ∈ TΣ | δ(s) ∈ F}.

Theorem 1. Given an SL cf tree grammarG and a tree automatonB it can be checked
whether or notL(G)∩L(B) = ∅ in timeO(sm×|G|), wheres is the number of states
of B andm is the maximal number of parameters of the nonterminals ofG.

Proof. Let G = (N,Σ, rhs) with N = {A1, . . . , An} and B = (Q,Σ, δ, F ). We
assume thatG is reduced, i.e., each nonterminal is used in a (successful) derivation of
G. We now run the tree automatonB on the right-hand sides ofG, starting bottom-up
with the right-hand siderhs(An) of the last nonterminal ofG. For parametersy1, . . . , yk

which (possibly) appear inrhs(An) we do not yet know the actual trees; we therefore
try all possible combinations(q1, . . . , qk) of states ofB, and store this in the function
ΨAn

(q1, . . . , qk) = δ(rhs(An)[y1 ← q1, . . . , yk ← qk]). In a similar way we compute
ΨAn−1 , usingΨAn

at occurrences ofAn in rhs(An−1). Continuing in this way, we
obtain aftern steps the constant functionΨA1() ∈ Q which is the state in whichB
arrives for the treet with L(G) = {t}.

For each nonterminal of rankk, |Q|k many values ofΨ are computed. Hence, in
total at mostsm × |G| computations steps are needed. ut

Note that it is not necessary to computeΨAi
for all combinations of(q1, . . . , qk); rather,

this computation can be deferred until a concrete tuple of states has been determined.
In this ‘lazy’ manner, the factorsm can be reduced significantly. Note further that in
order to use Theorem 1 in the context of XML types, the corresponding type definition

12



has to first be transformed into a (deterministic bottom-up finite) tree automaton. If the
type is given as DTD or as XML Schema, then the transformation into a tree automaton
can be done in time linear in the size of the representation; the reason is that these
formalisms are deterministic: there is only one rule per nonterminal, and the regular
expressions which are used in right-hand sides are also deterministic (which implies that
the corresponding Glushkov automaton is deterministic, which can be constructed in
time linear in the size of the expression). Hence, the algorithm of the proof of Theorem 1
is highly practical for DTDs and XML Schemas. For RELAX NG (which employs full
regular tree languages) it might be less practical, because the size of the corresponding
tree automaton can be exponential in the size of the representationr. However, if the SL
cf tree grammar is linear (which it is, if it was produced by BPLEX), then Theorem 1
can be extended to the case that the automatonB is nondeterministic: theΨA are now
functions fromQk to 2Q, wherek is the rank ofA; they are computed by checking
for every statep and statesp1, . . . , pk of B whether there is a run onrhs(An)[y1 ←
p1, . . . , yk ← pk] arriving inp. Thus the problem can be solved in timeO(sm+1×|G|).

Validation of an XML document against a type description can also be done in an
approximative way. In fact, in [MdR95] it was shown that it can be decided in constant
time whether an XML document validates, or if is “far” from it. As distance measure
they use the tree edit distance with moves. Let us now show that their approximative
validation can also be done on compressed XML documents. The proof of Theorem 1
can easily be adapted in order to construct a finite tree automaton which runs on a
tree representation of the grammar (such a tree is simply an abstract derivation tree in
which copies of nonterminals are not taken into account, i.e., the rank of a production
equals the number of different nonterminals in its right-hand side). The states of the
automaton are finite functions fromQm toQ and the transitions are computed in exactly
the same way as in the proof of Theorem 1. Note that this result can also be formulated
in terms of MSO (monadic second-order) logic: every MSO-definable property on trees
is also MSO definable on (SL cf grammar-) compressed trees. Even though the above
constructed automaton allows to do approximative validation, it is not clear yet how
good the approximation is with respect to one on the original tree. Therefore it should be
investigated how edit distances on trees change when moving to a compressed structure.

5.2 Testing Equivalence of SL Context-Free Tree Grammars

Consider two SL cf tree grammarsG1 andG2. Is it possible to test whether bothG1 and
G2 generate the same treet, without fully uncompressing the grammars, i.e., without
deriving the treet? More precisely, we are interested in the time complexity of testing
equivalence ofG1 andG2.

In the string case, i.e., ifG1, G2 are SL cf string grammars, then the problem can be
solved in polynomial time with respect to the sum of the sizes ofG1 andG2 [Pla94].
The proof relies on the fact that, for an SL cf string grammarG (in Chomsky nf) of size
n, the length of the string derivable from a nonterminal ofG is≤ 2n, and therefore can
be stored inn bits. Since basic operations (comparing, addition, subtraction, multiplica-
tion, etc.) on such numbers work in polynomial time with respect ton, we can compute
in polynomial time the length of the word generated by any nonterminal ofG. Since
in the tree case this property doesnot hold anymore (because the size oft generated

13



by an SL cf tree grammar of sizen can be22n

) it looks unlikely that the equivalence
problem can also be solved by an algorithm running in polynomial time. In fact, we
do not know whether such an algorithm exists. The following theorem shows that the
problem can be solved using polynomial space, and hence in exponential time. On the
other hand, if the grammarsG1, G2 are linear, then they can be transformed into SL
cf string grammars generating a depth-first left-to-right traversal of the corresponding
tree; then, the result of [Pla94] can be used to show that in this case testing equivalence
can be done in polynomial time.

Theorem 2. Testing equivalence of two SL cf tree grammarsG1 andG2 can be done
in PSPACE, and in polynomial time ifG1 andG2 are linear.

Proof. Let G1 = ({A1, . . . , Am}, Σ, rhs1), G2 = ({B1, . . . , Bn}, Σ, rhs2) be SL cf
tree grammars. By Savitch’s Theorem (see, e.g., [Pap94]) and the complement closure
of PSPACE, it suffices to give a nondeterministic algorithm that testsinequivalence.
Roughly speaking, the algorithm guesses a nodeu in d1 (the DAG represented byG1)
and accepts if the label ofu in d1 is different fromu’s label ind2 (the DAG represented
by G2). The key issue is that a node ind1 (d2) can be represented in polynomial space
w.r.t. the size ofG1 (G2). This representation is discussed in the end of [MB04]. It
consists of a sequence

(i1, u1), (i2, u2) . . . , (ip, up)

wherei1 = 1, i1 < · · · < ip are indices in{1, . . . , n}, and for1 ≤ ν ≤ p, uν is a node
in rhs1(Aiν

) with label Aiν+1 ; moreoverrhs1(Aip
)[up] ∈ Σ. The first pair(1, u1)

denotes that we start a derivation ofG1 with the right-hand side ofA1 and nodeu1

marked; the next pair(i2, u2) meansu1 is labeledAi2 and that we apply its production
with u2 is marked, etc. Sinceup is terminal, the sequence represents a derivation of a
node oft1. Given such a sequenceh representing a nodeu of t1 it is straightforward
to construct a sequenceh′ representing thei-th child ui of u in t1 [MB04]. Note that
any such sequence has length< n. The algorithm starts with two empty sequences. It
then generates the sequencesh1, h2 representing the root nodes oft1, t2, respectively.
If their labels are different we accept. Otherwise, we guess a child numberi and move
down to thei-th child, resulting inh′1, h

′
2. If the corresponding labels are different we

accept, etc. If there is no child number (we are at a leaf) we reject.
Now let G1, G2 be linear. This means that for any nonterminalA of G1, G2, of

rank k, the treeA(y1, . . . , yk) derives to a treet over Σ ∪ Yk in which yj occurs
at most once,1 ≤ j ≤ k. In fact, it is straightforward to change the grammars in
such a way that (1) everyyj occurs exactly once int and (2) the order of the param-
eters int (going depth-first left-to-right) isy1, . . . , yk. The idea is now to construct
cf string grammarsH1,H2 which generate depth-first left-to-right traversals oft1 and
t2, respectively. Leti ∈ {1, 2}. For every nonterminalX of Gi of rank k > 0 let
X0,1, X1,2, . . . , Xk−1,k, Xk,0 be new nonterminals ofHi, and for everyσ ∈ Σ of rank
k > 0 let σ0,1, σ1,2, . . . , σk−1,k, σk,0 be new terminals ofHi. Nonterminals and ter-
minals of rank zero are taken over toHi. The nonterminalA0,1 generates the traversal
starting at the root node of the corresponding right-hand side (indicated by the index
0) up to the first parametery1 of the right-hand side (indicated by the index1). The

14



nonterminalAν,ν+1 generates the traversal starting atyν (and going up), until the pa-
rameteryν+1 is encountered. Similarly, a terminal symbolg2,3 means thatg was entered
coming from its second child and was exited by moving to its third child. It should be
clear how to construct the productions ofHi. As an example, consider the tree grammar
production

A(y1, y2, y3)→ B(g(y1, a, b), h(B(y2, y3)))

and the nonterminalA1,2 of the constructed string grammar; its production is

A1,2 → g1,2 a g2,3 b g3,0 B1,2 h0,1 B0,1.

Clearly,t1 = t2 if and only if the stringw1 generated byH1 equalsw2 (gen. byH2).
Moreover,H1,H2 are SL cf string grammars of polynomial size w.r.t.G1, G2, respec-
tively. By the result of [Pla94], testingw1 = w2 can be done in polynomial time w.r.t.
the sizes ofH1,H2. ut

6 Conclusions and Further Research Topics

We have presented a linear time algorithm which can be used to find a small SL cf tree
grammar for a given (ranked) tree. The size of the resulting grammar is usually75%-
50% of the size of the unique minimal DAG of the tree. We have adapted the algorithm
to compress memory representations of XML documents, obtaining for large files about
half the size of the representation of Koch et. al. [BGK03].

Consider the problem of finding the smallest cf string grammar for a given string.
This problem is NP-complete and various approximation algorithms have been stud-
ied [LS02]. In particular, the size of the smallest cf grammar is lower bounded by
the size of the smallest LZ77 representation of the string (when no sliding window
is used) [CLL+02,Ryt02]. The question arises whether a similar result holds in the tree
case. But, what is an LZ77 representation of a tree? For LZ77 on strings, the prefix to
the current position is considered for finding the longest substring that matches at the
current position; often, only a fixed length prefix – the sliding window – is considered.
For example, the stringabbbaabbabbb is compressed by LZ77 intoabbba[1, 3][1, 4],
where a pair[i, j] represents the substring starting at positioni of lengthj. In the tree
case there is no accepted version of LZ77. The problem is thati should be replaced by
a pathp, andj should be replaced by an unlabeled treet with parameters at leaves (or,
alternatively, by a list of paths to parameters) [Che04], but such pairs[p, t] require too
much space in order to obtain good compression. The main idea of [Ryt02] is to ob-
tain grammars with balanced derivation trees, called “AVL-grammars”. This technique
seems to be applicable to cf tree grammars too, and it remains to be checked whether it
gives rise to better approximation algorithms than the one presented here.

Another variation of Lempel-Zip compression, known as LZ78, can more readily
be extended to trees. For LZ78 on strings, new patterns are composed by adding a letter
to already existing patterns. A pattern is specified as a pair(i, a) wherei is the index of
a previous pattern anda is a letter. The casei = 0 represents the one-letter patterna. In
this scheme the stringabbbaabbabbb is compressed to(0, a)(0, b)(2, b)(1, a)(3, a)(3, b).
Thus, the pair(2, b) is the concatenationbb of b (the second pattern) andb, and sim-
ilarly (3, a) is bba. A simple extension to trees is to consider complete subtrees as

15



patterns [CR96]. It seems however, that the size of such a representation will be lower-
bounded by the size of the minimal DAG. A more powerful extension is to consider
trees with parameters as patterns and to compress a tree into a “pattern substitution
tree” which has edges labeled by substitutions [Che98].

There are also succinct tree representations that do not use pointers to represent
edges, see, e.g., [KM90,DCW93]. Recently it has been shown that ann-node tree can
be represented by2n + o(n) bits, while allowingO(1) time for most read operations
on the tree [GRR04]. Also in the context of XML pointerless representations exists; for
example, in XPRESS [MPC03] label paths in an XML document are encoded by real
number intervals following an arithmetic encoding technique; this allows to run path
queries directly on the compressed instance.

It should be mentioned that context-free tree grammars are inspired by macro gram-
mars [Fis68] which are cf grammars with parameters. Such grammars can be used for
grammar-based string compression and support at most double exponential compres-
sion. It remains further research to investigate whether our algorithm can be used to
find small macro grammars for given strings.

References

[BGK03] P. Buneman, M. Grohe, and C. Koch. Path queries on compressed XML. In J. C. Frey-
tag et al., editor,Proc. VLDB’2003, pages 141–152. Morgan Kaufmann, 2003.

[Che98] J. R. Cheney. First-order term compression: techniques and applications. Master’s
thesis, Carnegie Mellon University, August 1998.

[Che04] J. R. Cheney. Personal communication. 2004.
[CLL+02] M. Charikar, E. Lehman, D. Liu, R. Panigrahy, M. Prabhakaran, A. Rasala, A. Sahai,

and A. Shelat. Approximating the smallest grammar: Kolmogorov complexity in
natural models. InProc. STOC’02, pages 792–801. ACM Press, 2002.

[CR96] S. Chen and J. H. Reif. Efficient lossless compression of trees and graphs. In J. A.
Storer and M. Cohn, editors,Proceedings of the 6th Data Compression Conference –
DCC ’96, page 428. IEEE Computer Society Press, 1996.

[DCW93] J. J. Darragh, J. G. Cleary, and I. H. Witten. Bonsai: a compact representation of trees.
Softw., Pract. Exper, 23:277–291, 1993.

[Fis68] M.J. Fischer.Grammars with macro-like productions. PhD thesis, Harvard University,
Massachusetts, May 1968.

[FSC+03] M. F. Fernandez, J. Siḿeon, B. Choi, A. Marian, and G. Sur. Implementing xquery
1.0: The galax experience. In J. C. Freytag et al., editor,Proc. VLDB’2003, pages
1077–1080. Morgan Kaufmann, 2003.

[GRR04] R. F. Geary, R. Raman, and V. Raman. Succinct ordinal trees with level-ancestor
queries. InProc. SODA’2004, pages 1–10, 2004.

[GS97] F. Ǵecseg and M. Steinby. Tree languages. In G. Rozenberg and A. Salomaa, editors,
Handbook of Formal Languages, Volume 3, chapter 1. Springer-Verlag, 1997.

[HTH+02] M. Hirakawa, T. Tanaka, Y. Hashimoto, M. Kuroda, T. Takagi, and Y. Nakamura.
JSNP : a database of common gene variations in the japanese population.Nucleic
Acids Research, 30:158–162, 2002.

[KM90] J. Katajainen and E. M̈akinen. Tree compression and optimization with applications.
Intern. J. of Foundations of Comput. Sci., 1:425–447, 1990.

[Lam90] J. Lamping. An algorithm for optimal lambda calculus reductions. InProc.
POPL’1990, pages 16–30. ACM Press, 1990.

16



[LS02] E. Lehman and A. Shelat. Approximation algorithms for grammar-based compres-
sion. InProceedings of the 13th Annual ACM-SIAM Symposium on Discrete Algo-
rithms (SODA’2002), pages 205–212. SIAM Press, 2002.

[MB04] S. Maneth and G. Busatto. Tree transducers and tree compressions. In I. Walukiewicz,
editor,Foundations of Software Science and Computation Structures - FOSSACS’04,
volume 2987 ofLNCS, pages 363–377, Barcelona, Spain, 2004. Springer-Verlag.

[MdR95] F. Magniez and M. de Rougemont. Property testing of regular tree languages. InProc.
ICALP 2004, volume 3142 ofLNCS, pages 932–944. Springer-Verlag, 1995.

[MLM00] M Murata, D. Lee, and M. Mani. Taxonomy of XML schema languages using formal
language theory. InProc. Extreme Markup Languages ’2000, 2000.

[MPC03] J. Min, M. Park, and C. Chung. XPRESS: A queriable compression for XML data. In
Proc. SIGMOD 2003, pages 122–133. ACM Press, 2003.

[MSV03] T. Milo, D. Suciu, and V. Vianu. Typechecking for XML transformers.J. of Comp.
Syst. Sci., 66:66–97, 2003.

[Pap94] Christos H. Papadimitriou.Computational Complexity. Addison-Wesley, New York,
1994.

[Pla94] W. Plandowski. Testing equivalence of morphisms on context-free languages. In Jan
van Leeuwen, editor,Proc. Second European Symposium on Algorithms – ESA’94,
volume 855 ofLNCS, pages 460–470. Springer-Verlag, 1994.

[Ryt99] W. Rytter. Algorithms on compressed strings and arrays. InProc. SOFSEM 1999,
volume 1725 ofLNCS, pages 48–65. Springer-Verlag, 1999.

[Ryt02] W. Rytter. Application of lempel-ziv factorization to the approximation of grammar-
based compression.Theoret. Comput. Sci., 302:211–222, 2002.

[Ryt04] W. Rytter. Grammar compression, LZ-encodings, and string algorithms with implicit
input. In J. Diaz, J. Karhum̈aki, A. Lepisẗo, and D. Sannella, editors,Proceedings
of the 31st International Colloquium on Automata, Languages and Programming
(ICALP 2004), volume 3142 ofLNCS, pages 15–27, 2004.

[YÖK04] B. B. Yao, M. T.Özsu, and N. Khandelwal. XBench benchmark and performance
testing of XML DBMSs. InProc. ECDE 2004, pages 621–633. IEEE Computer
Society, 2004.

17


