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Abstract

We address the problem of reaching consensus in the presenceof Byzantine faults. In particular, we are inter-
ested in investigating the impact of messages relay on the network connectivity for a correct iterative approximate
Byzantine consensus algorithm to exist. The network is modeled by a simple directed graph. We assume a node
can send messages to another node that is up tol hops away via forwarding by the intermediate nodes on the
routes, wherel ∈ N is a natural number. We characterize the necessary and sufficient topological conditions on
the network structure. The tight conditions we found are consistent with the tight conditions identified in [14] for
l = 1, where only local communication is allowed, and are strictly weaker forl > 1. Let l∗ denote the length of a
longest path in the given network. Forl ≥ l∗ and undirected graphs, our conditions hold if and only ifn ≥ 3f +1
and the node-connectivity of the given graph is at least2f + 1 , wheren is the total number of nodes andf is the
maximal number of Byzantine nodes; and forl ≥ l∗ and directed graphs, our conditions is equivalent to the tight
condition found in [11], wherein exact Byzantine consensusis considered.

Our sufficiency is shown by constructing a correct algorithm, wherein the trim function is constructed based
on investigating a newly introduced minimal messages coverproperty. The trim function proposed also works
over multi-graphs.
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1 Introduction

Reaching consensus resiliently in the presence of Byzantine faults has been studied extensively in distributed com-
puting [8, 10, 2, 5, 3]. Messages relay is the relaying of a message from its source toward its ultimate destination
through intermediate nodes. We say a messages relay is bounded if each source node can only reliably/noislessly
send messages to a destination node that is up tol hops away, wherel ∈ N, termed as relay depth. Our focus is on
investigating the tradeoff between the relay depthl and the network connectivity for a correct iterative approximate
Byzantine consensus algorithm to exist. Letl∗ be the length of a longest path in the network. The two specialcases,
l ≥ l∗ andl = 1, respectively, have already been well studied.

Under the full forwarding model, i.e.,l ≥ l∗, a node is able to reliably send messages to another node via every
possible route in the network. Letn be the total number of nodes in the network, it has been shown that givenf
Byzantine nodes, if the network node-connectivity is at least2f+1 andn ≥ 3f+1, there exist algorithmic solutions
for the fault-free nodes to reach consensus over all possible inputs. Conversely, if the network node-connectivity is
strictly less than2f+1 orn < 3f+1, then reaching consensus is not guaranteed [6]. Thus2f+1 node-connectivity
andn ≥ 3f + 1 are both necessary and sufficient. However, as a result of this communication assumption, the pro-
posed algorithms require fault-free nodes to keep track of theentirenetwork topology, leading to huge consumption
of both memory resource and computation power. In contrast,iterative algorithms are typically characterized by
local communication (among neighbors, or near-neighbors), simple computations performed repeatedly, and a small
amount of state per node. The purely local communication model (i.e.,l = 1), where a node can only send messages
to its neighbors and no message forwarding is allowed, has also attracted extensive attention among researchers
[4, 9, ?, 14, 12, 13]. It has been shown that a correct iterative approximate Byzantine algorithm exists if and only if
for any node partitionL,C,R, F of a graph such thatL 6= Ø, R 6= Ø and|F | ≤ f , either there exists a nodei ∈ L
such that|N−

i ∩ (R ∪ C)| ≥ f + 1 or there exists a nodei ∈ R such that|N−
i ∩ (L ∪ C)| ≥ f + 1, whereN−

i is
the collection of incoming neighbors of nodei.

Our main contribution is to provide a family of tight sufficient and necessary conditions on the network topology
for a correct iterative consensus algorithm to exist. Our sufficiency is proved by constructing a new simple iterative
algorithm, whose trim function is based on investigating a newly introduced minimal messages cover property. Our
results bridge the existing aforementioned two streams of work, i.e., whenl ≥ l∗ andl = 1, respectively, and fill the
gap between these two models.

The rest of the paper is organized as follows. Section 2 presents our models and the structure of iterative algo-
rithms of interest. Our necessary condition is demonstrated in Section 3, whose sufficiency is proved constructively
in Section 4. We shown in Section 5.1 that our results are equivalent to the2f +1 node-connectivity andn ≥ 3f +1
conditions for undirected graph whenl ≥ l∗. Section 6 discusses possible relaxations of our fault model and con-
cludes the paper.

2 Problem setup and structure of iterative algorithms

Communication model The system is assumed to besynchronous. The communication network is modeled as a
simpledirectedgraphG. Define two functionsV(·) andE(·) over a graphG as follows:V(G) = {1, . . . , n} returns
the set ofn nodes, wheren ≥ 2, andE(G) returns the set of directed edges between nodes inV(G). Nodei can send
messages to nodej if and only if there exists ani, j–path of length at mostl in G, wherel ∈ N is a natural number.
In addition, we assume each node can send messages to itself as well, i.e.,(i, i) ∈ E(G) for all i ∈ V(G). For each
nodei, letN l−

i be the set of nodes that can reach nodei via at mostl hops. Similarly, denote the set of nodes that are
reachable from nodei via at mostl hops byN l+

i . Due to the existence of self-loops,i ∈ N l−
i andi ∈ N l+

i . When
l = 1, we writeN1−

i andN1+
i asN−

i andN+
i , respectively, for simplicity. Note that nodei may send a message to
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nodej via differenti, j–paths. To capture this distinction in transmission routes, we represent a message as a tuple
m = (w,P ), wherew ∈ R andP indicates the path via which messagem should be transmitted. Four functions
are defined overm. Let functionvalue bevalue(m) = w and letpath bepath(m) = P , whose images are the first
entry and the second entry, respectively, of messagem. In addition, functionssource anddestination are defined by
source(m) = i anddestination(m) = j if P is ani, j–path, i.e., messagem is sent from nodei to nodej.

Fault model LetF ⊆ V(G) be the collection of faulty nodes in the system. We consider the Byzantine fault model
with up tof nodes becoming faulty, i.e.,|F| ≤ f . A faulty node maymisbehavearbitrarily. Possible misbehavior
includes sending incorrect and mismatching (or inconsistent) messages to different neighbors. In addition, a faulty
nodek ∈ F may tamper messagem if it is in the transmission path, i.e.,k ∈ V(path(m))1. However, faulty nodes
are only able to tampervalue(m), leavingpath(m) unchanged. This assumption is placed for ease of exposition, later
in Section 6 we relax this assumption by considering the possibilities that faulty nodes may also tamper messages
paths or even fake and transmit non-existing messages. Faulty nodes are also assumed to have complete knowledge
of the execution of the algorithm, including the states of all nodes, contents of messages the other nodes send to each
other, and the algorithm specification, so that they may potentially collaborate with each other adaptively.

Iterative approximate Byzantine consensus (IABC) algorithms The iterative algorithms considered in this pa-
per should have the following structure: Each nodei maintains statevi, with vi[t] denoting the state of nodei at the
end of thet-th iteration of the algorithm. Initial state of nodei, vi[0], is equal to the initialinput provided to nodei.
At the start of thet-th iteration (t > 0), the state of nodei is vi[t− 1]. The IABC algorithms of interest will require
each nodei to perform the following three steps in iterationt, wheret > 0. Note that the faulty nodes may deviate
from this specification.

1. Transmit step:Transmit messages of the form(vi[t− 1], ·) to nodes inN l+
i , i.e., the nodes that are reachable

from nodei via at mostl hops. If nodei is an intermediate node on the route of some message, then node i
forwards that message as instructed by the message path.

2. Receive step:Receive messages fromN l−
i , i.e., the nodes that can reach nodei via at mostl hops. Denote by

Mi[t] the set of messages that nodei received at iterationt.

3. Update step:Nodei updates its state using a transition functionZi, whereZi is a part of the specification of
the algorithm, and takes as input the setMi[t].

vi[t] = Zi(Mi[t]). (1)

Note that at thet–th iteration, between step two and step three, by sending message to itself nodei is able to
memorize its state in the immediate preceding iteration, i.e,. vi[t − 1]. However, at the end of update step, except
for its updated statevi[t], no other information collected in current iteration or anyof the previous iteration will be
kept by nodei. In step three, in general,Zi is some trim function over the received messages collectionMi[t]. The
trimming strategy may depends on message values, message routes, or both. In addition, different nodes are allowed
to have different trimming strategies.

LetU [t] be the largest state among the fault-free nodes at the end of thet-th iteration, i.e.,U [t] = maxi∈V−F vi[t].
Since the initial state of each node is equal to its input,U [0] is equal to the maximum value of the initial input at

1Recall thatV(·) is the vertex set of a given graph andV(path(m)) denotes the collection of vertices along the route of message m,
including the source and the

destination.
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the fault-free nodes. Similarly, we defineµ[t] to be the smallest state at thet–th iteration andµ[0] to be the smallest
initial input. For an IABC algorithm to be correct, the following two conditions must be satisfied:

• Validity: ∀ t > 0, µ[t] ≥ µ[0] and U [t] ≤ U [0]

• Convergence:lim t→∞ U [t]− µ[t] = 0

Our focus is to identify the necessary and sufficient conditions for the existence of acorrect IABC algorithm
(i.e., an algorithm satisfying the above validity and convergence conditions) for a givenG and a givenl.

3 Necessary Conditions

For a correct IABC algorithm to exist, the underlying network G must satisfy the conditions presented in this section.
A couple of definitions are needed before we are able to formally state our necessary conditions.

Definition 3.1. LetW be a set of vertices inG andx be a vertex inG such thatx /∈W . AW,x–path is a path from
some vertexw ∈W to vertexx. A setS of vertices such thatx /∈ S is aW,x–vertex cutif everyW,x–path contains
a vertex inS. The minimum size of aW,x–vertex cut is called theW,x–connectivity and is denoted byκ(W,x).
Similarly, a setSl of vertices is anl–restricted vertex cutif the deletion ofSl destroys allW,x–paths of length at
mostl. Letκl(W,x) be the minimum size of such restricted vertex cut inG.

The first part of the above definition is the classical definition of node connectivity in graph theory. However,
this definition is a global notion. In our communication model, we implicitly assume that each fault-free node
only knows the local network topology up to itsl–th neighborhood. We adapt node connectivity to our model by
restricting the length of the paths under consideration. Note thatκl(W,x) = κ(W,x) for all l ≥ l∗, and that a
1–restricted vertex cut of(W,x) is the number of nodex’s incoming neighbors inW , i.e.,κ1(W,x) = |W ∩N−

x |.

Definition 3.2. For non-empty disjoint sets of nodesA andB in G, we sayA⇒l B if and only if there exists a node
i ∈ B such thatκl(A, i) ≥ f + 1; A ;l B otherwise.

Let F ⊆ V(G) be a set of vertices inG, denote the induced subgraph2 of G induced by vertex setV(G) − F
by GF . We describe the necessary and sufficient condition below, whose necessity is proved in Theorem 3.1 and
sufficiency is shown constructively in Section 4. For ease offuture reference, we termed the condition asCondition
NC.

Condition NC: For any node partitionL,C,R, F of G such thatL 6= Ø, R 6= Ø and |F | ≤ f , in the induced
subgraphGF , at least one of the two conditions below must be true: (i)R ∪ C ⇒l L; (ii) L ∪ C ⇒l R.

Intuitively, Condition NC requires that either the set of nodes inR∪C are able to collectively influence the state
of a node inL or vice versa. Note that whenl = 1, Condition NC becomes
“ For any node partitionL,C,R, F of G such thatL 6= Ø, R 6= Ø and |F | ≤ f , in the induced subgraphGF , at
least one of the two conditions below must be true: (i) there exists a nodei ∈ L such that

∣∣(R ∪ C) ∩N−
i

∣∣ ≥ f +1;

(ii) there exists a nodej ∈ R such that
∣∣∣(L ∪ C) ∩N−

j

∣∣∣ ≥ f + 1.” , which is shown to be both necessary and

sufficient without message relay in [14].

Theorem 3.1. Suppose that a correct IABC algorithm exists forG. ThenG satisfies Condition NC.

2An induced subgraph ofG, induced by vertex setS ⊆ V(G), is the subgraphH with vertex setS such thatE(H) = {(u, v) ∈
E(G) : u, v ∈ S}. Recall thatV(·) andE(·) are the vertex set and edge set, respectively, of a given graph.
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Figure 1: In this system, there are five processorsp1, p2, p3, p4 andp5; all communication links are bi-directional;
and at most one processor can be adversarial, i.e.,f = 1.

p2
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p4
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Figure 2: In this system, there aren processorsp1, . . . , pn; all communication links are bi-directional; and at most
one processor can be adversarial, i.e.,f = 1. Nodesp2, . . . , pn form a cycle of lengthn− 1 and these nodes are all
connected to nodep1.

We prove this theorem in Appendix A. Our proof shares the sameproof structure of Theorem 1 in [14]. The
basic idea is as follows: Suppose there exists a correct IABCalgorithm, then we are able to find a node partition
satisfying the conditions as listed in Condition NC, such that under some Byzantine layout, and for some specific
initial inputs, convergence condition will be violated.

The above necessary condition is in general stronger than the necessary condition derived under single-hop
message transmission model (i.e.,l = 1) [14]. Consider the system depicted in Fig. 1. The topology of this system
does not satisfy the necessary condition derived in [14]. Since in the node partitionL = {p1, p4}, R = {p2, p3}, C =
Ø andF = {p5}, neitherL ∪ C ⇒l R norR ∪ C ⇒l L holds forl = 1. However, via enumeration it can be seen
that the above graph (depicted in Fig. 1) satisfies ConditionNC whenl ≥ 2. Nevertheless, increasing relay depth
does not always admit more graph structures. For instance, for n = 4, f = 1 and anyl, the only graph that satisfy
Condition NC is the complete graph.

It follows from the definition of Condition NC that if a graphG satisfies Condition NC forl ∈ {1, . . . , n − 1},
thenG also satisfies Condition NC for alll′ ≥ l. Let l0 be the smallest integer for whichG satisfies Condition NC,
wherel0 = n by convention ifG does not satisfy Condition NC for anyl ∈ {1, . . . , n − 1}. We observe that in
general given a graphG, the diameter ofG can be arbitrarily smaller thanl0. For instance, the diameter of the graph
depicted in Fig. 2 is two. However, for the depicted graph,l0 = n+1

4 when n−1
2 is odd. Sol0 is much larger than

two for largen.

Similar to [14], as stated in our next corollary, our Condition NC for generall also implies a lower bound on
both the graph sizen and the incoming degree of each node. Moreover, this lower bound is independent ofl.

Corollary 3.2. If G satisfies Condition NC, thenn must be at least3f +1, and each node must have at least2f +1
incoming neighbors other than itself, i.e.,|N−

i − {i}| ≥ 2f + 1.
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The proof of Corollary 3.2 can be found in Appendix A.1. Note that Corollary 3.2 also characterizes a lower
bound on the density ofG, that is |E(G)| ≥ n(2f + 2), including self-loops, which is independent of the relay
depthl as well. Proposition 3.3 says that forf = 1, communication over multi-hop does not imply the existenceof
a sparser graph for which Condition NC holds than that with communication over single-hop. Forf > 1 whether
there exists a graph satisfying Condition NC withN−

i = 2f + 2 and(2f + 2)n edges or not for anyl is still open.

Proposition 3.3. For f = 1 and l0 = 1, there exists a graphG for anyn ≥ 3f + 1 = 4 such that (i)|N−
i | = 4 for

all i ∈ V(G); and (ii) |E(G)| = 4n.

3.1 Equivalent Characterization of Condition NC

Informally speaking, Condition NC describes the information propagation property in terms of four sets partitions. In
this subsection, an equivalent condition of Condition NC isproposed, which is based on characterizing the structure
of the special subgraphs, termed as reduced graph, of the power graphGl. The new condition suggests that all
fault-free nodes will be influence by a collection of common fault-free nodes.

Definition 3.3. Meta-graph of SCCs:Let K1,K2, . . . ,Kk be the strongly connected components (i.e., SCCs) of
G. The graph of SCCs, denoted byGSCC , is defined by
(i) Nodes areK1,K2, . . . ,Kk; and
(ii) there is an edge(Ki,Kj) if there is someu ∈ Ki andv ∈ Kj such that(u, v) is an edge inG.
Strongly connected componentKh is said to be asource componentif the corresponding node inGSCC is not
reachable from any other node inGSCC .

It is known that theGSCC is a directed acyclic graph ( i.e., DAG ) [?], which contains no directed cycles. It can
be easily checked that due to the absence of directed cycles and finiteness, there exists one node inGSCC that is not
reachable from any other node. That is, a graphG has at least one source component.

Definition 3.4. Thel–th power of a graphG, denoted byGl, is a graph with the same set of vertices asG and a
directed edge between two verticesu, v if and only if there is a path of lengthl fromu to v in G.

A path of length one between verticesu andv in G exists if (u, v) is an edge inG. And a path of length two
between verticesu andv in G exists for every vertexw such that(u,w) and (w, v) are edges inG. Then for a
given graphG with self-loop at each node, the(u, v)th element in the square of the adjacency matrix ofG counts
the number of paths of length at most two inG. Similarly, the(u, v)th element in thel–th power of the adjacency
matrix ofG gives the number of paths of length at mostl between verticesu andv in G. The power graphGl is a
multigraph3 and there is a one-to-one correspondence between an edgee in Gl and a path of length at mostl in G.
Let e be an edge inGl, and letP (e) be the corresponding path inG, we say an edgee in Gl is covered by node set
S, if V(P (e)) ∩ S 6= Ø, i.e., pathP (e) passes through a node inS.

Definition 3.5 (Reduced Graph). For a given graphG andF ⊆ V(G), letE = {e ∈ E(Gl) : V(P (e)) ∩ F 6= Ø}
be the set of edges inGl that are covered by node setF . For each nodei ∈ V(G)−F , chooseCi ⊆ N l−

i −{i} such
that |Ci| ≤ f . Let

Ei = {e ∈ E(G
l) : e is an incoming edge of nodei in Gl andV(P (e)) ∩ Ci 6= Ø}

be the set of incoming edges of nodei in Gl that are covered by node setCi. A reduced graph ofGl, denoted by

G̃l
F , is a subgraph ofGl whose node set and edge set are defined by (i)V(G̃l

F ) = V(G) − F ; and (ii) E(G̃l
F ) =

E(Gl)− E − ∪i∈V(G)−FEi, respectively.

3A multigraph (or pseudograph) is a graph which is permitted to have multiple edges between each vertex pair, that is, edges that have the
same end nodes. Thus two vertices may be connected by more than one edge.

6



Note that for a givenG and a givenF , multiple reduced graphs may exist. Let us define setRF to be the
collection of all reduced graph ofGl for a givenF , i.e.,

RF = {G̃l
F : G̃l

F is a reduced graph ofGl}. (2)

SinceGl
F , thel–th power of the induced subgraphGF , itself is a reduced graph ofGl, where we chooseCi = Ø

for eachi ∈ V(G) − F , thusRF is nonempty. In addition,|RF | is finite since the graphG is finite,

Theorem 3.4. GraphG satisfies Condition NC if and only if every reduced graph̃Gl
F obtained as per Definition

3.5 must contain exactly onesource component.

4 Sufficiency: Algorithm 1

As aforementioned, for each nodei, the collection of received messagesMi[t] may contains bogus messages and/or
tampered messages due to the existence of Byzantine nodes, thusZi(·) is in general a trimming function. In this sec-
tion we propose an algorithm, termed Algorithm 1, using a novel update/trimming strategy and show its correctness.
First we introduce the definition of message cover that will be used frequently in this section.

Definition 4.1. For a communication graphG, letM be a set of messages, and letP(M) be the set of paths
corresponding to all the messages inM, i.e.,P(M) = {path(m)|m ∈ M}. A message cover ofM is a set of
nodesT (M) ⊆ V(G), such that for each pathP ∈ P, we haveV(P ) ∩ T (M) 6= Ø. In particular, a minimum
message cover is defined by

T ∗(M) ∈ argmin
T (M)⊆V(G): T (M) is a cover ofM

|T (M)|.

Conversely, given a set of messagesM0 and a set of nodesT ⊆ V(G), a maximal set of messagesM ⊆ M0

that are covered byT is defined by,

M∗ ∈ argmax
M⊆M0: T is a cover ofM

|M|.

We further need the following two definitions before we are able to proceed to the description of our algorithm.
Recall thatMi[t] is the collection of messages received by nodei at iterationt. LetM′

i[t] = Mi[t] − {(vi[t −
1], (i, i))}. Sort messages inM′

i[t] in an increasing order, according to their message values, i.e., value(m) for
m ∈ M′

i[t]. LetMis[t] ⊆ M
′
i[t] such that (i) for allm ∈ M′

i[t] −Mis[t] andm′ ∈ Mis[t] we havevalue(m) ≥
value(m′); and (ii) the cardinality of a minimum cover ofMis[t] is exactlyf , i.e.,|T ∗(Mis[t])| = f . Similarly, we
defineMil[t] ⊆M

′
i[t] as follows: (i) for allm ∈ M′

i[t]−Mil[t] andm′′ ∈ Mil[t] we havevalue(m) ≤ value(m′′);
and (ii) the cardinality of a minimum cover ofMil[t] is exactlyf , i.e., |T ∗(Mil[t])| = f . In addition, define
M∗

i [t] =M
′
i[t]−Mis[t]−Mil[t].

Theorem 4.1. Suppose that graphG satisfies Condition NC, then the sets of messagesMis[t], Mil[t] are well-
defined andM∗

i [t] is nonempty.

This theorem is proved by construction, i.e., an algorithm is constructed to find the setsMis[t],Mil[t] for a given
M′

i. Details of the algorithm and its correctness proof can be found in Appendix B.1. With this trimming strategy at
hand, we will prove that there exists an IABC algorithm – particularly Algorithm 1below – that satisfies thevalidity
andconvergenceconditions provided that the graphG satisfies Condition NC. This implies that Condition NC is
also sufficient.Algorithm 1has the three-step structure described in Section 2.

Algorithm 1

7



1. Transmit step:Transmit messages of the form(vi[t− 1], ·) to nodes inN l+
i . If nodei is an intermediate node

of some message, then nodei forwards that message as instructed by the message path. When nodei expects
to receive a message from a path but does not receive the message, the message value is assumed to be equal
to some default message.

2. Receive step:Receive messages fromN l−
i .

3. Update step:

Define

vi[t] = Zi(Mi[t]) = aivi[t− 1] +
∑

m∈M∗
i [t]

aiwm. (3)

wherewm = value(m) andai = 1
|M∗

i [t]|+1 .

RecallM∗
i [t] =M

′
i[t]−Mis[t]−Mil[t]. The “weight” of each term on the right-hand side of (3) isai, where

0 < ai ≤ 1, and these weights add to 1. For future reference, let us defineα, which is used in Theorem 4.2, as:

α = min
i∈V−F

ai. (4)

In Algorithm 1, each fault-free nodei’s state,vi[t], is updated as a convex combination of all themessages values
collected by nodei at roundt. In particular, for each messagem ∈ M′[t], its coefficient isai if the message is
in M∗

i [t] or the message is sent via self-loop of nodei; otherwise, the coefficient ofm is zero. The update step
in Algorithm 1 is a generalization of the update steps proposed in [12, 16],where the update summation is over
all the incoming neighbors of nodei instead of over message routes. In [12, 16], only single-hopcommunication
is allowed, i.e.,l = 1, and the fault-free nodei can receive only one message from its incoming neighbor. With
multi-hop communication, fault-free node can possibly receive messages from a node via multiple routes. Our trim
functions inAlgorithm 1take the possible multi-route messages into account. In fact, Algorithm 1also works with
multi-graphs.

4.1 Matrix Representation of Algorithm 1

With our trimming function, the iterative update of the state of a fault-free nodei admits a nice matrix representation
of states evolution of fault-free nodes. We use boldface upper case letters to denote matrices, rows of matrices, and
their entries. For instance,A denotes a matrix,Ai denotes thei-th row of matrixA, andAij denotes the element at
the intersection of thei-th row and thej-th column of matrixA. Some useful concepts and theorems are reviewed
briefly in Appendix B.2.

Definition 4.2. A vector is said to bestochasticif all the entries of the vector arenon-negative, and the entries add
up to 1. A matrix is said to be row stochastic if each row of the matrix is a stochastic vector.

Recall thatF is the set of faulty nodes and|F| = φ. Without loss of generality, suppose that nodes 1 through
(n − φ) are fault-free, and ifφ > 0, nodes(n − φ + 1) throughn are faulty. Denote byv[0] ∈ R

n−φ the column
vector consisting of the initial states of all thefault-freenodes. Denote byv[t], wheret ≥ 1, the column vector
consisting of the states of all thefault-freenodes at the end of thet-th iteration,t ≥ 1, where thei-th element of
vectorv[t] is statevi[t].

8



Theorem 4.2. We can express the iterative update of the state of a fault-free nodei (1 ≤ i ≤ n − φ) performed
in (3) using the matrix form in (5) below, whereMi[t] satisfies the four conditions listed below. In addition tot,
the row vectorMi[t] may depend on the state vectorv[t − 1] as well as the behavior of the faulty nodes inF . For
simplicity, the notationMi[t] does not explicitly represent this dependence.

vi[t] = Mi[t] v[t− 1] (5)

1. Mi[t] is astochasticrow vector of size(n− φ). Thus,Mij [t] ≥ 0, where1 ≤ j ≤ n− φ, and

∑

1≤j≤n−φ

Mij [t] = 1

2. Mii[t] ≥ ai ≥ α.

3. Mij [t] is non-zero only if there exists a messagem ∈ Mi[t] such thatsource(m) = j anddestination(m) = i.

4. For anyt ≥ 1, there exists a reduced graph̃Gl
F ∈ RF with adjacent matrixH[t] such thatβH[t] ≤ M[t],

whereβ is some constant0 < β ≤ 1 to be specified in Claim B.4.

In Appendix B.3, we prove the correctness of Theorem 4.2 by constructingMi[t] for 1 ≤ i ≤ n − φ. Our
proof follows the same line of analysis as in the proof of Claim 2 in [12]. Due to the complexity (in particular, the
dependency of message covers) brought up by messages relay,we divide the universe into six cases to consider.

Theorem 4.3. Algorithm 1satisfies the validity and the convergence conditions.

From the code ofAlgorithm 1, we know thatvi[t] = aivi[t − 1] +
∑

m∈M∗
i [t]

ai wm, whereai = 1
|M∗

i [t]|+1 .

Theorem 4.2 says that we can rewriteaivi[t− 1] +
∑

m∈M∗
i [t]

aiwm as

∑

j∈V−F

Mij [t]vj [t− 1],

whereMij [t]s together satisfy the preceding four conditions. By “stacking” (5) for different i, 1 ≤ i ≤ n − φ, we
can represent the state update for all the fault-free nodes together using (6) below, whereM[t] is a(n−φ)× (n−φ)
row stochastic matrix, with itsi-th row being equal toMi[t] in (5).

v[t] = M[t] v[t− 1]. (6)

By repeated application of (6), we obtain:

v[t] =
(
Πt

τ=1M[τ ]
)
v[0].

As the backward productΠt
τ=1M[τ ] is a row-stochastic matrix, it holds thatµ[0] ≤ vi[t] ≤ U [0] for all i =

1, . . . , n− φ and allt. Thus Algorithm 1 satisfies validity condition.

The convergence ofvi[t] depends on the convergence of the backward productΠt
τ=1M[τ ]. As a result of this,

our convergence proof uses toolkit of weak-ergodic theory that is also adopted in prior work (e.g., [1, 4, 13, 9]), with
some similarities to the arguments used in [13, 9]. The last condition in Theorem 4.2 plays an important role in the
proof. For completeness, we present the formal proof of Theorem 4.3 in Appendix B.4.

9



5 Connection with existing work under unbounded path length

In this section, we show that Condition NC is equivalent to the existing results on both undirected graphs and directed
graphs.

5.1 Undirected graph under unbounded path length

If G is undirected, it has been shown in [6], thatn ≥ 3f + 1 and node-connectivity2f + 1 are both necessary and
sufficient for achieving Byzantine approximate consensus.We will show that whenl ≥ l∗, our Condition NC is
equivalent to the above conditions.

Theorem 5.1. Whenl ≥ l∗, if G undirected, thenn ≥ 3f + 1 and the node-connectivity ofG is at least2f + 1 if
and only ifG satisfies Condition NC.

Informally, if the node-connectivity ofG, denoted byκ(G), is at most2f , then we are able to show that there
exists a node partitionL,R,C, F , whereL,R are both nonempty and|F | ≤ f , such that neitherL ∪ C ⇒l∗ R nor
R ∪ C ⇒l∗ L holds. Conversely, ifn ≥ 3f + 1 andκ(G) ≥ 2f + 1, using Expansion Lemma we are able to show
Condition NC holds. Formal proof is given in Appendix C.

5.2 Directed graph under unbounded path length

Synchronous exact Byzantine consensus is considered in [11].

Definition 5.1 ([11]). Given disjoint subsetsA,B, whereB is non-empty:
(i) We sayA → B if and only if setA contains at leastf + 1 distinct incoming neighbors ofB. That is,
|{i| (i, j) ∈ E , i ∈ A, j ∈ B}| > f .
(ii) We sayA 6→ B iff A→ B is not true.

A tight condition (both necessary and sufficient) over the graph structure is found in [11].

Theorem 5.2 ([11]). Given a graphG, exact Byzantine consensus is solvable if and only if for anypartition
L,C,R, F of V(G), such that bothL andR are non-empty, and|F | ≤ f , eitherL ∪ C → R, or R ∪C → L.

We term this condition as Condition 1. Note that in order forA → B to hold, we only require that there are at
leastf+1 incoming neighbors of setB in setA. It is possible that each node inB has at mostf incoming neighbors
in A. As a result of this observation, our Condition NC withl = 1 is strictly stronger than Condition 1. However, it
can be shown that our Condition NC withl ≥ l∗ is equivalent to Condition 1.

Theorem 5.3. Condition NC is equivalent to Condition 1 whenl ≥ l∗.

An alternative condition is shown in [11] to be equivalent toCondition 1. We use this condition as a bridging to
show the equivalence of Condition 1 and Condition NC.

6 Discussion and Conclusion

Throughout this paper, we assume that faulty nodes are only able to tamper message values, leaving message paths
unchanged. However, even when faulty nodes are able to tamper message paths or even fake and transmit non-
existing messages, as long as (i) the number of faked messages is finite (each faulty nodek ∈ F cannot create
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too many non-existing messages); and (ii) for each messagem tampered/faked by the faulty nodek, path(m) must
satisfyk ∈ V(path(m)), i.e., the faulty nodek cannot conceal itself from the message path, using the same line of
arguments as in Section 3 and Section 4, it can be shown that the Condition NC is also necessary and sufficient for
the existence of approximate consensus under the relaxed model.

In this paper, we unify two streams of work by assuming that each node knows the topology of up to itsl–th
neighborhood and can send message to nodes that are up tol hops away, wherel ≥ 1. We prove a family of necessary
and sufficient conditions for the existence ofiterative algorithms that achieveapproximate Byzantine consensusin
arbitrary directed graphs. The class of iterative algorithms considered in this paper ensures that, after each iteration
of the algorithm, the state of each fault-free node remains in theconvex hullof the states of the fault-free nodes at
the end of the previous iteration.
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Appendices

A Necessity of Condition NC

Proof of Theorem 3.1.Theorem 3.1 states that if a correct IABC algorithm exists for G, thenG satisfies: For any
node partitionL,C,R, F of G such thatL 6= Ø, R 6= Ø and|F | ≤ f , in the induced subgraphGF , at least one of
the two conditions below must be true: (i)R ∪C ⇒l L; (ii) L ∪ C ⇒l R.

We prove this theorem by contradiction. Let us assume that a correct IABC exists, and there exists a partition
L,C,R, F of V(G) such thatL 6= Ø, R 6= Ø and|F | ≤ f , but neitherR ∪ C ⇒l L norL ∪ C ⇒l R holds, i.e.,
R ∪ C ;l L andL ∪ C ;l R. Consider the case when all nodes inF , if F 6= Ø, are faulty, and the other nodes
in setsL,C,R are fault-free. Note that the fault-free nodes are not awareof the identities of the faulty nodes. In
addition, assume (i) each node inL has initial inputµ, (ii) each node inR has initial inputU , such thatU > µ + ǫ
for some given constantǫ, and (iii) each node inC, if C 6= Ø, has initial input in the interval[µ,U ].

In the Transmit stepof iteration one, suppose that each faulty nodek ∈ F sendsw = µ− < µ to nodes in
N l+

k ∩ L, sendsw = U+ > U to nodes inN l+
k ∩ R, and sends some arbitrary value in the interval[µ,U ] to

nodes inN l+
k ∩ C. For messagem such that the faulty nodek is in its transmission path, i.e.,k ∈ V(path(m)),

if destination(m) ∈ L, nodek resetsvalue(m) = µ−; if destination(m) ∈ R, nodek resetsvalue(m) = U+; if
destination(m) ∈ C, nodek resetsvalue(m) to be some arbitrary value in[µ,U ].

Consider any nodei ∈ L. Since|F | ≤ f , we know|N l−
i ∩ F | ≤ f . In addition,C ∪ R ;l L holds inGF

impliesκl(C ∪ R, i) ≤ f . Let Sl be a minimum restricted(C ∪ R, i)–cut inGF . From the perspective of nodei,
there exist two possible cases:

(a) BothSl andN l−
i ∩ F are non-empty: We know|N l−

i ∩ F | ≤ f and|Sl| ≤ f . From nodei’s perspective, two
scenarios are possible: (1) nodes inN l−

i ∩ F are faulty, all the messages relayed via them are tampered and
the other nodes are fault-free, and (2) nodes inSl are faulty and the other nodes are fault-free.

In scenario (1), from nodei’s perspective, the untampered values are in the interval[µ,U ]. By validity condi-
tion, vi[1] ≥ µ. On the other hand, in scenario (2), the untampered values are µ− andµ, whereµ− < µ; so
vi[1] ≤ µ, according to validity condition. Since nodei does not know whether the correct scenario is (1) or
(2), it must update its state to satisfy the validity condition in both cases. Thus, it follows thatvi[1] = µ.

(b) At most one ofSl andN l−
i ∩ F is non-empty: Thus,|Sl ∪ (N l−

i ∩ F )| ≤ f . From nodei’s perspective, it is
possible that the nodes inSl ∪ (N l−

i ∩ F ) are all faulty, the messages relayed via nodes inSl ∪ (N l−
i ∩ F )

are tampered while the rest of the nodes are fault-free. In this situation, the untampered values received by
nodei (which are all from nodes inN l−

i ∩L) are allµ, and therefore,vi[1] must be set toµ as per the validity
condition.

At the end of iteration 1: for each nodei in L vi[1] = µ; similarly, for each nodej in R, vj [1] = U ; if C 6= Ø,
for each nodei in C, vi[1] ∈ [µ,U ]. All these conditions are identical to the condition whent = 0. Then by a
repeated application of of above argument, it follows that for anyt ≥ 0, vi[t] = µ for all i ∈ L, vj [t] = U for all
j ∈ R andvk[t] ∈ [µ,U ] for all k ∈ C, if C 6= Ø.

SinceL andR both contain fault-free nodes, the convergence requirement is not satisfied. This contradicts the
assumption that a correct iterative algorithm exists.
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A.1 Lower bound on graph size and nodes’ incoming degrees

Proof of Corollary 3.2.Corollary 3.2 states that ifG satisfies Condition NC, thenn must be at least3f + 1, and
each node must have at least2f + 1 incoming neighbors other than itself, i.e.,|N−

i − {i}| ≥ 2f + 1.

The main techniques used in this proof are fairly routine, and are given here largely for both concreteness and
completeness.

We first show the claim thatn ≥ 3f + 1. For f = 0, n ≥ 3f + 1 = 1 is trivially true. Forf > 0, the proof
is by contradiction. Suppose that2 ≤ n ≤ 3f . In this case, we can partitionV(G) into setsL,R,C, F such that
1 ≤ |L| ≤ f , 1 ≤ |R| ≤ f , 0 ≤ |F | ≤ f and |C| = 0, i.e.,C is empty. Since1 ≤ |L ∪ C| = |L| ≤ f and
1 ≤ |R ∪ C| = |R| ≤ f , we haveL ∪ C 6⇒l R andR ∪ C 6⇒l L, respectively inGF . This contradicts the
assumption thatG satisfies Condition NC. Thus,n ≥ 3f + 1.

It remains to show|N−
i − {i}| ≥ 2f + 1. Suppose that, contrary to our claim, there exists a nodei such

that |N−
i − {i}| ≤ 2f . Define setL = {i} and partitionN−

i − {i} into two setsF andH such that|H| =
⌊|N−

i − {i}|/2⌋ ≤ f and |F | = ⌈|N−
i − {i}|/2⌉ ≤ f . Note thatH = Ø, F = Ø if and only if f = 0. Define

R = V(G)− F − L = V(G) − F − {i} andC = Ø. Since|V(G)| = n ≥ max(2, 3f + 1), R is non-empty. From
the construction ofR, we haveN−

i ∩ R = H, and|N−
i ∩ R| = |H| ≤ f . SinceL = {i}, |N−

i ∩ R| ≤ f and
C = Ø, it follows thatR ∪ C 6⇒l L. On the other hand, as|L| = 1 < f + 1, we haveL ∪ C 6⇒l R. This violates
the assumption thatG satisfies Condition NC. The proof is complete.

A.2 Lower bound on graph density

Proof of Proposition 3.3.Proposition 3.3 states that: Forf = 1 and l0 = 1, there exists a graphG for anyn ≥
3f + 1 = 4 such that (i)|N−

i | = 4 for all i ∈ V(G); and (ii) |E(G)| = 4n.

We prove this proposition by inducting onn. In the complete graph withn = 4, |N−
i | = 4 ( including i itself )

for all i ∈ V(G) and the total number of edges is16. So the base case easily follows. Assume that the proposition
holds forn > 4. LetG be a graph with|V(G)| = n, |N−

i | = 4 for all i ∈ V(G) and|E(G)| = 4n. Let x /∈ V(G),
add self-loop tox and connect arbitrary3 nodes inG to nodex. Denote the resulting graph asG′. Note that the
only outgoing edge ofx is its self-loop. LetL,R,C andF be an arbitrary node partition ofG′ such thatL,R are
nonempty and|F | ≤ 1.

For the case whenL = {x}, sinceN−
x = 4 and|F | ≤ 1, we knowR∪C ⇒1 L. Similarly we can show the case

whenR = {x}. WhenL 6= {x} andR 6= {x}, letL′ = L−{x}, C ′ = C−{x}, R′ = R−{x} andF ′ = F −{x},
then the obtainedL′, R′, C ′ andF ′ is a node partition of the original graphG such thatL′, R′ are nonempty and
|F ′| ≤ 1. SinceG satisfies Condition NC, then eitherL′ ∪ C ′ ⇒1 R′ or R′ ∪ C ′ ⇒1 L′. AsG′ inherits every edge
in G, we have eitherL ∪ C ⇒1 R orR ∪ C ⇒1 L in G′. This completes the induction.

A.3 Equivalence of Condition NC and single source componentcondition

Proof of Theorem 3.4.Theorem 3.4 states that graphG satisfies Condition NC if and only if every reduced graph

G̃l
F obtained as per Definition 3.5 must contain exactly onesource component.

We first show that if graphG satisfies Condition NC, then every reduced graph ofGl contains exactly one source
component.

For any reduced graph̃Gl
F , the meta-graph(G̃l

F )
SCC is a DAG and finite. Thus, at least one source component

must exist inG̃l
F . We now prove that̃Gl

F cannot contain more than one source component. The proof is by
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contradiction. Suppose that there exists a setF ⊆ V(G) with |F | ≤ f , and a reduced graph̃Gl
F corresponding to

F , such that̃Gl
F contains at least two source components, sayK1 andK2, respectively. LetL = K1, R = K2,

andC = V(G) − F − L − R. ThenL,R,C together with the givenF form a node partition ofV(G) such that
L 6= Ø, R 6= Ø and|F | ≤ f .

Since graphG satisfies Condition NC, without loss of generality, assume thatR ∪ C ⇒l L, i.e., there exists a

nodei ∈ L such thatκl(R ∪ C, i) ≥ f + 1 in GF . On the other hand, sinceL is a source component iñGl
F , by

the definition of reduced graph, we know all paths fromR ∪ C to nodei of length at mostl in G are covered by
Ci ∪ F , whereCi is defined preceding Definition 3.5. Thus,Ci is a restricted(R ∪ C, i)–cut ofGF . However, by

construction of̃Gl
F , the size ofCi is at mostf . So we arrive at a contradiction.

To complete the equivalence proof it remains to show that if every reduced graph contains exactly one source
component, then the graph must satisfy Condition NC.

Suppose, on the contrary, thatG does not satisfy Condition NC. Then there exists a node partition L,R,C and
F of G with L,R are nonempty and|F | ≤ f such thatL ∪ C 6⇒l R andR ∪ C 6⇒l L in GF . By the definition of
the relation6⇒l, there is no path of length at mostl from L ∪ C to a node inR, and no path of length at mostl from

R ∪ C to a node inL. This further implies that no nodes inR ∪ C can reach a node inL in G̃l
F and no nodes in

L ∪ C can reach a node inR in G̃l
F . Thus bothL andR are source components, contradicting the condition that

there is only one source component in everyG̃l
F .

B Sufficiency of Condition NC

B.1 The trimming function is well-defined

Proof of Theorem 4.1.Theorem 4.1 states that if graphG satisfies Condition NC, then the sets of messagesMis[t],
Mil[t] are well-defined andM∗

i [t] is nonempty.

For ease of exposition, with a slight abuse of notation, we drop the time indices ofM′
i[t],Mis[t],Mil[t] and

M∗
i [t], respectively. From Corollary 3.2, we know|N−

i −{i}| ≥ 2f+1. Since|T ∗(Mis)| = f and|T ∗(Mil)| = f ,
the message from at least one incoming neighbor of nodei is not covered byT ∗(Mis) ∪ T

∗(Mil). SoM∗
i is

nonempty.

We prove the existence ofMis andMil by construction. The setMis can be constructed using the following
algorithm, which can be easily adapted for the constructionof setMil. For clarity of proof, we constructMis and
Mil sequentially, although they can be found in parallel.

As before, sort the messages inM′
i in an increasing order according to their messages values. InitializeMis ←

Ø, Q← Ø andM←M′
i. At each round, letms be a message with the smallest value inM, and updateQ,M as

follows,

Q← Q ∪ {ms};

M←M− {ms}.

If |T ∗(Q)| ≥ f + 1, setMis ← Q−ms and returnMis; otherwise, repeat this procedure.

If the algorithm terminates, then by the code, it is easy to see that the returnedMis satisfies the following
conditions: For allm ∈ M′

i − Mis andm′ ∈ Mis we havevalue(m) ≥ value(m′); and the cardinality of a
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minimum cover ofMis is exactlyf , i.e., |T ∗(Mis)| = f . It remains to show this algorithm terminates. Suppose
this algorithm does not terminate. The problem of finding a minimum cover of a set of messages, i.e., computing
T ∗(Q), can be converted to the problem of finding a minimum cut of a vertex pair, by adding a new vertexy and
connectingy to every vertex inV(G) − {i}. The latter problem can be solved in polynomial time. Thus, non-
termination implies that|T ∗(M′

i)| ≤ f , which further implies that thel–restricted(V(G) − {i}, i)–connectivity
is less than or equal tof . On the other hand, consider the node partition thatL = {i}, R = V(G) − {i}, and
C = F = Ø, neitherL∪C ⇒l R norR∪C ⇒l L holds. This contradicts the assumption thatG satisfies Condition
NC. So the above algorithm terminates.

We can adapt the above procedure to constructMil by modifying the initialization step to beQ ← Ø,M ←
M′

i − Mis. Termination can be shown similarly. Suppose this algorithm does not terminate. Non-termination
implies that|T ∗(M′

i − Mis)| ≤ f , which further implies that in the node partitionL = {i}, F = T ∗(Mis),
R = V(G) − F − L, C = Ø, thel–restricted(R ∪ C, {i})–connectivity is no more thanf , i.e.,R ∪ C ;l L. In
addition, since|L| = 1, L ∪ C ;l R. This contradicts the assumption thatG satisfies Condition NC. Therefore,
Mis andMil are well-defined.

B.2 Matrix Preliminaries

For a row stochastic matrixA, coefficients of ergodicityδ(A) andλ(A) are defined as [15]:

δ(A) := max
j

max
i1,i2

|Ai1 j −Ai2 j |, (7)

λ(A) := 1−min
i1,i2

∑

j

min(Ai1 j ,Ai2 j). (8)

It is easy to see that0 ≤ δ(A) ≤ 1 and0 ≤ λ(A) ≤ 1, and that the rows are all identical if and and only ifδ(A) = 0.
Additionally, λ(A) = 0 if and only if δ(A) = 0.

The next result from [7] establishes a relation between the coefficient of ergodicityδ(·) of a product of row
stochastic matrices, and the coefficients of ergodicityλ(·) of the individual matrices defining the product.

Claim B.1. For anyp square row stochastic matricesQ(1),Q(2), . . . ,Q(p),

δ(Q(1)Q(2) · · ·Q(p)) ≤ Πp
i=1 λ(Q(i)). (9)

Claim B.1 is proved in [7]. It implies that if, for alli, λ(Q(i)) ≤ 1−γ for someγ > 0, thenδ(Q(1)Q(2) · · ·Q(p))
will approach zero asp approaches∞.

Definition B.1. A row stochastic matrixH is said to be ascramblingmatrix, ifλ(H) < 1 [7, 15].

In a scrambling matrixH, sinceλ(H) < 1, for each pair of rowsi1 andi2, there exists a columnj (which may
depend oni1 andi2) such thatHi1 j > 0 andHi2 j > 0, and vice-versa [7, 15]. As a special case, if any one column
of a row stochastic matrixH contains only non-zero entries that are lower bounded by some constantγ > 0, thenH
must be scrambling, andλ(H) ≤ 1− γ.

Definition B.2. For matricesA andB of identical size, and a scalarγ, A ≤ γB provided thatAij ≤ γBij for all
i, j.
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B.3 Matrix representation

Some relevant corollaries and concepts are needed before weare able to proceed to the proof of Theorem 4.2.

Corollary B.2. Suppose that graphG satisfies Condition NC. Then it follows that in each reduced graphG̃l
F ∈ RF ,

there exists at least one node that has directed paths to all the nodes iñGl
F .

Corollary B.2 follows immediately from Theorem 3.4.

Corollary B.3. Suppose thatG satisfies Condition NC. Let|F | = φ, for anyG̃l
F ∈ RF with H as the adjacency

matrix,Hn−φ has at least one non-zero column.

Proof. By Corollary B.2, in graph̃Gl
F there exists at least one node, say nodek, that has a directed path iñGl

F to

all the remaining nodes inVF , i.e.,V(G) − F . Since the length of the path fromk to any other node iñGl
F can

contain at mostn− φ− 1 directed edges, thek-th column of matrixHn−φ will be non-zero.4

Definition B.3. We will say that an entry of a matrix is “non-trivial” if it is lower bounded byβ, whereβ is some
constant to be defined later.

Proof of Theorem 4.2.Recall that nodes 1 throughn−φ are fault-free, and the remainingφ nodes (φ ≤ f ) are faulty.
Consider a fault-free nodei performing theupdate stepin Algorithm 1. Recall thatMis[t] andMil[t] messages are
eliminated fromMi[t]. Let Sig[t] ⊆ Mis[t] andLig[t] ⊆ Mil[t], respectively, be the sets of removed messages
that are not covered by faulty nodes. LetP∗

i [t] be the set of paths corresponding to all the messages inM∗
i [t].

Untampered message representationof the evolution ofvi and construction ofMi[t] differ somewhat depending on
whether setsLig[t],Sig[t] andP∗

i [t] ∩ F are empty or not, whereP∗
i [t] ∩ F = Ø means that no message inM∗

i [t]
has been tampered by faulty nodes andP∗

i [t] ∩ F 6= Ø means that there exists a message that is tampered by faulty
nodes. It is possible thatT ∗(Mis[t]) = T ∗(Mil[t]) = F , which means all messages inMis[t] andMil[t] are
tampered by faulty nodes, i.e.,Sig[t] = Ø andLig[t] = Ø. We divide the possibilities into six cases:

1. Case I:Sig[t] 6= Ø,Lig[t] 6= Ø andP∗
i [t] ∩ F 6= Ø.

2. Case II:Sig[t] 6= Ø,Lig[t] 6= Ø andP∗
i [t] ∩ F = Ø.

3. Case III: one ofSig[t],Lig[t] is empty andP∗
i [t] ∩ F 6= Ø.

4. Case IV: one ofSig[t],Lig[t] is empty andP∗
i [t] ∩ F = Ø.

5. Case V:Sig[t] = Ø,Lig[t] = Ø andP∗
i [t] ∩ F 6= Ø.

6. Case VI:Sig[t] = Ø,Lig[t] = Ø andP∗
i [t] ∩ F = Ø.

We first describe the construction ofMi[t] in case I, whenSig[t] 6= Ø,Lig[t] 6= Ø andP∗
i [t] ∩ F 6= Ø. Let

w̄is[t] andw̄il[t] be defined as shown below. Recall thatwm = value(m).

w̄is[t] =

∑
m∈Sig[t]

wm

|Sig[t]|
and w̄il[t] =

∑
m∈Lig [t]

wm

|Lig[t]|
. (10)

4That is, all the entries of the column will be non-zero (more precisely, positive, since the entries of matrixH are non-negative). Also,
such a non-zero column will exist inHn−φ−1 too. We use the loose bound ofn− φ to simplify the presentation.
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By the definitions ofSig[t] andLig[t], w̄is ≤ wm′ ≤ w̄il, for each messagem′ ∈ M∗
i [t]. Thus, for each message

m′, we can find convex coefficientγm′ , where0 ≤ γm′ ≤ 1, such that

wm′ = γm′w̄is + (1− γm′)w̄il

=
γm′

|Sig[t]|

∑

m∈Sig[t]

wm +
1− γm′

|Lig[t]|

∑

m∈Lig[t]

wm.

Recall that inAlgorithm 1, vi[t] = aivi[t − 1] +
∑

m∈M∗
i [t]

aiwm, whereai = 1
|M∗

i [t]|+1 . In case I, since

P∗
i [t] ∩ F 6= Ø, there exist messages inM∗

i [t] that are tampered by faulty nodes. We need to replace these “bad
messages” by “good messages” in the evolution ofvi. In particular,

vi[t] = aivi[t− 1] +
∑

m∈M∗
i [t]

aiwm (11)

= aivi[t− 1] +
∑

m∈M∗
i
[t]: V(path(m))∩F=Ø

aiwm +
∑

m∈M∗
i
[t]: V(path(m))∩F6=Ø

aiwm (12)

= aivi[t− 1] +
∑

m∈M∗
i [t]: V(path(m))∩F=Ø

aiwm (13)

+
∑

m∈M∗
i [t]: V(path(m))∩F6=Ø

ai(
γm
|Sig[t]|

∑

m′∈Sig [t]

wm′ +
1− γm
|Lig[t]|

∑

m′∈Lig[t]

wm′) (14)

= aivi[t− 1] +
∑

m∈M∗
i
[t]: V(path(m))∩F=Ø

aiwm (15)

+
∑

m′∈Sig[t]

( ∑

m∈M∗
i
[t]: V(path(m))∩F6=Ø

aiγm
|Sig[t]|

)
wm′ (16)

+
∑

m′∈Lig[t]

( ∑

m∈M∗
i [t]: V(path(m))∩F6=Ø

ai(1− γm)

|Lig[t]|

)
wm′ . (17)

That is,vi[t] can be represented as a convex combination of values of untampered messages collected at iteration
t, wherevi[t − 1] = value(vi[t − 1], (i, i)). For future reference, we refer to the above convex combination as
untampered message representation ofvi[t] in case I and the convex coefficient of each message in the untampered
message representation asmessage weight.

Note that ifm is an untampered message inM∗
i [t] or m ∈ Sig[t] ∪ Lig[t], thenwm = vj[t − 1] holds, where

nodej is the source of messagem, i.e.,source(m) = j. vi[t] can be further rewritten as follows, where1{x} = 1 if
x is true, and1{x} = 0, otherwise.

vi[t] =
∑

j∈V−F

vj [t− 1]
(
ai1{j = i}+

∑

m∈M∗
i [t]: V(path(m))∩F=Ø

ai1{source(m) = j}

+
∑

m′∈Sig[t]

( ∑

m∈M∗
i [t]: V(path(m))∩F6=Ø

aiγm
|Sig[t]|

1{source(m′) = j}
)

+
∑

m′∈Lig[t]

( ∑

m∈M∗
i [t]: V(path(m))∩F6=Ø

ai(1− γm)

|Lig[t]|
1{source(m′) = j}

))
,
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Thus, for each nodei, j ∈ V − F , define the entryMij[t] as follows,

Mij[t] = ai1{j = i}+
∑

m∈M∗
i [t]: V(path(m))∩F=Ø

ai1{source(m) = j}

+
∑

m′∈Sig[t]

( ∑

m∈M∗
i [t]: V(path(m))∩F6=Ø

aiγm
|Sig[t]|

1{source(m′) = j}
)

+
∑

m′∈Lig[t]

( ∑

m∈M∗
i [t]: V(path(m))∩F6=Ø

ai(1− γm)

|Lig[t]|
1{source(m′) = j}

)
.

The third condition in Theorem 4.2 trivially follows from the above construction. By above definition,Mij ≥ ai,
whereMij > ai holds when there exists a nontrivial cycle (not a self-loop)of length at mostl that contains nodei
and no faulty nodes. In addition,ai ≥ α by (4). Thus,Mii[t] ≥ α. The second condition holds. Now we show that
Mi[t] is a stochastic vector. It is easy to see thatMij [t] ≥ 0. In addition, we have
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∑

j∈V−F

Mij[t] =
∑

j∈V−F

(
ai1{j = i}+

∑

m∈M∗
i [t]: V(path(m))∩F=Ø

ai1{source(m) = j}

+
∑

m′∈Sig[t]

( ∑

m∈M∗
i [t]: V(path(m))∩F6=Ø

aiγm
|Sig[t]|

1{source(m′) = j}
)

+
∑

m′∈Lig[t]

( ∑

m∈M∗
i [t]: V(path(m))∩F6=Ø

ai(1− γm)

|Lig[t]|
1{source(m′) = j}

))

= ai
∑

j∈V−F

1{i = j}+
∑

m∈M∗
i [t]: path(m)∩F=Ø

ai
∑

j∈V−F

1{source(m) = j}

+
∑

m∈M∗
i [t]: path(m)∩F6=Ø

( aiγm
|Sig[t]|

∑

m′∈Sig[t]

∑

j∈V−F

1{source(m′) = j}
)

+
∑

m∈M∗
i [t]: path(m)∩F6=Ø

(ai(1− γm)

|Lig[t]|

∑

m′ ∈Lig[t]

∑

j∈V−F

1{source(m′) = j}
)

= ai +
∑

m∈M∗
i [t]: path(m)∩F=Ø

ai

+
∑

m∈M∗
i [t]: path(m)∩F6=Ø

aiγm
|Sig[t]|

∑

m′ ∈Sig [t]

1

+
∑

m∈M∗
i [t]: path(m)∩F6=Ø

ai(1− γm)

|Lig[t]|

∑

m′ ∈Lig[t]

1

= ai +
∑

m∈M∗
i [t]: path(m)∩F=Ø

ai +
∑

m∈M∗
i [t]: path(m)∩F6=Ø

aiγm
|Sig[t]|

|Sig[t]|

+
∑

m∈M∗
i [t]: path(m)∩F6=Ø

ai(1− γm)

|Lig[t]|
|Lig[t]|

= ai +
∑

m∈M∗
i [t]: path(m)∩F=Ø

ai +
∑

m∈M∗
i [t]: path(m)∩F6=Ø

ai

= ai(|M
∗
i [t]|+ 1)

= 1.

SoMi[t] is row stochastic.

In case II, sinceP∗
i [t] ∩ F = Ø, all messages inM∗

i [t] are untampered by faulty nodes. Letm0 be an arbitrary
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message inM∗
i [t], with source(m0) = j∗. In order to guarantee condition 4) holds, we rewritevi[t] as follows,

vi[t] = aivi[t− 1] +
∑

m∈M∗
i [t]

aiwm

= aivi[t− 1] + aiwm0 +
∑

m∈M∗
i [t]−{m0}

aiwm

= aivi[t− 1] +
1

2
aiwm0 +

1

2
aiwm0 +

∑

m∈M∗
i
[t]−{m0}

aiwm

= aivi[t− 1] +
1

2
aiwm0 +

1

2
ai(

γm0

|Sig[t]|

∑

m′∈Sig[t]

wm′ +
1− γm0

|Lig[t]|

∑

m′∈Lig[t]

wm′)

+
∑

m∈M∗
i
[t]−{m0}

aiwm

= aivi[t− 1] +
1

2
aiwm0 +

∑

m′∈Sig[t]

aiγm0

2|Sig[t]|
wm′ +

∑

m′∈Lig[t]

ai(1− γm0)

2|Lig[t]|
wm′

+
∑

m∈M∗
i [t]−{m0}

aiwm.

Note that we did not use the above trick in case I. This is because, in case I, by substituting tampered messages in
M∗

i [t] by untampered messages inSig[t] andLig[t], as will be seen later, condition 4) is automatically guaranteed.

We refer to the above convex combination as theuntampered message representation ofvi[t] in case II. And the
convex coefficient of each message in the above representation asweight assignedto that message. Combining the
coefficients of messages according to message sources, it isobtained that

vi[t] =
∑

j∈V−F

vj[t− 1]
(
ai1{i = j}+

1

2
ai1{j = j∗}+

∑

m∈M∗
i
[t]−{m0}

ai1{source(m) = j}

+
aiγm0

2|Sig[t]|

∑

m′∈Sig [t]

1{source(m′) = j}+
ai(1− γm0)

2|Lig[t]|

∑

m′∈Lig[t]

1{source(m′) = j}
)
.

Thus, defineMij by

Mij = ai1{i = j} +
1

2
ai1{j = j∗}+

∑

m∈M∗
i
[t]−{m0}

ai1{source(m) = j}

+
aiγm0

2|Sig[t]|

∑

m′∈Sig[t]

1{source(m′) = j}+
ai(1 − γm0)

2|Lig[t]|

∑

m′∈Lig[t]

1{source(m′) = j}.

Follow the same line as in the proof of case I, it can be shown that the aboveMij satisfies conditions 1), 2) and 3).

In case III, case IV, case V and case VI, at least one ofSig[t] andLig[t] is empty, without loss of generality,
assume thatSig[t] is empty. By the definition ofSig[t], we know that the setMis[t] is covered byF . On the other
hand, by the definition ofMis[t], a minimum cover ofMis[t] is of sizef . Since|F| ≤ f , then we knowF is a
minimum cover ofMis[t] and |F| = f . From the definition ofMis[t], we know there exists a message with the
smallest value inM∗

i [t], denoted byms is not covered byF . So, we can use singleton{ms} to mimic the role
of Sig[t] in cases I and II. Similarly, we can use the same trick whenLig[t] is empty. Theuntampered message
representation ofvi[t] andmessage weightare defined similarly as that in case I and case II.

21



To show the above constructions satisfy the last condition in Theorem 4.2, we need the following claim.

Claim B.4. For nodei ∈ V − F , in the untampered message representation ofvi[t], at most one of the setsSig[t]
andLig[t] contains messages with assigned weights less thanβ, whereβ = 1

16n2l .

Proof. An untampered message is either inM∗
i [t] or in Sig[t] ∪ Lig[t].

For case V and case VI, bothSig[t] andLig[t] are empty, all untampered messages are contained inM∗
i [t]. For

each untampered message inM∗
i [t], its weight in the untampered message representation isai = 1

|M∗
i [t]|+1 . In

Mi[t], there are at mostn messages were transmitted via one hop, at mostn2 messages were transmitted via two
hops. In general,Mi[t] contains at mostnd messages that were transmitted viad hops, whered is an integer in
{1, . . . , l}. Thus,

|M∗
i [t]|+ 1 ≤ |Mi[t]|

≤ n+ n2 + . . .+ nl

=
n(nl − 1)

l∗

(a)

≤
n(nl − 1)

n
2

≤ 2nl.

Inequality(a) is true becausen ≥ 2. Thus,ai ≥ 1
2nl . In cases V and VI, as bothSig[t] andLig[t] are empty, all

untampered messages are with weight no less than1
2nl .

For case III and case IV, WLOG, assumeSig[t] is empty. An untampered message is either inM∗
i [t] or inLig[t].

Since for each untampered message inM∗
i [t], the weight assigned to it in the untampered message representation of

vi[t] is at least 1
2nl . Thus, onlyLig[t] may contain untampered messages with assigned weights lessthan 1

2nl .

For case II, bothSig[t] andLig[t] are nonempty, an untampered message is in one ofM∗
i [t], Sig[t] andLig[t].

In the untampered message representation ofvi[t], eitherγm0 ≥
1
2 or 1− γm0 ≥

1
2 . WLOG, assume thatγm0 ≥

1
2 ,

which implies that for each message inSig[t], the assigned weight is at leastai4|Sig[t]|
≥ 1

16n2l , since |Sig[t]| ≤

|Mi[t]| ≤ 2nl. Let β = 1
16n2l , then we can conclude that onlyLig[t] may contain untampered messages with

assigned weights less thanβ.

It can be shown similarly that the above claim also holds for case I.

Now we are ready to show the following property is also true.

Claim B.5. For anyt ≥ 1, there exists a reduced graph̃Gl
F ∈ RF such thatβH[t] ≤ M[t].

Proof. We construct the desired reduced graphG̃l
F as follows. Let

E = {e ∈ E(Gl) : V(P (e)) ∩ F 6= Ø}

be the set of edges inGl that are covered by node setF .

For a fault-free nodei: (i) if both Sig[t] andLig[t] are empty, then chooseCi = Ø; (ii) if one of Sig[t] and
Lig[t] is empty, WLOG, assume thatSig[t] is empty, then chooseCi = T

∗(Mil[t]); (iii) if both Sig[t] andLig[t] are
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nonempty, WLOG, assume that the weight assigned to every message inSig[t] is lower bounded byβ, then choose
Ci = T

∗(Mil[t]). Let

Ei = {e ∈ E(G
l) : e is an incoming edge of nodei in Gl andV(P (e)) ∩ Ci 6= Ø}

be the set of incoming edges of nodei in Gl that are covered by node setCi.

SetV(G̃l
F ) = V(G)−F . And letE(G̃l

F ) = E(G̃l)− E − ∪i∈V−FEi.

From claim B.4, for nodei, at most one of the setsSig[t] andLig[t] contains messages with assigned weights
less thanβ. Then it is easy to see that the adjacency matrix of the obtained reduced graph,H[t], has the property
thatβH[t] ≤ M[t].

B.4 Correctness of Algorithm 1

Lemma B.6. In the product below ofH[t] matrices for consecutiveτ(n − φ) iterations, at least one column is
non-zero.

Π
z+τ(n−φ)−1
t=z H[t]

Proof. Since the above product consists ofτ(n − φ) matrices inRF , at least one of theτ distinct connectivity
matrices inRF , say matrixH∗, will appear in the above product at leastn− φ times.

Now observe that: (i) By Lemma B.3,Hn−φ
∗ contains a non-zero column, say thek-th column is non-zero, and

(ii) all the H[t] matrices in the product contain a non-zero diagonal. These two observations together imply that the
k-th column in the above product is non-zero.

Let us now define a sequence of matricesQ(i) such that each of these matrices is a product ofτ(n − φ) of the
M[t] matrices. Specifically,

Q(i) = Π
iτ(n−φ)
t=(i−1)τ(n−φ)+1

M[t]

Observe that

v[kτ(n − φ)] =
(
Πk

i=1 Q(i)
)

v[0] (18)

Lemma B.7. For i ≥ 1, Q(i) is a scrambling row stochastic matrix, andλ(Q(i)) is bounded from above by a
constant smaller than 1.

Proof. Q(i) is a product of row stochastic matrices (M[t]), therefore,Q(i) is row stochastic.

From Lemma B.5, for eacht,
βH[t] ≤ M[t]

Therefore,
βτ(n−φ) Π

iτ(n−φ)
t=(i−1)τ(n−φ)+1 H[t] ≤ Q(i)

By usingz = (i − 1)(n − φ) + 1 in Lemma B.6, we conclude that the matrix product on the left side of the above
inequality contains a non-zero column. Therefore,Q(i) contains a non-zero column as well. Therefore,Q(i) is a
scrambling matrix.
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Observe thatτ(n − φ) is finite, therefore,βτ(n−φ) is non-zero. Since the non-zero terms inH[t] matrices are

all 1, the non-zero entries inΠiτ(n−φ)
t=(i−1)τ(n−φ)+1H[t] must each be≥ 1. Therefore, there exists a non-zero column in

Q(i) with all the entries in the column being≥ βτ(n−φ). Thereforeλ(Q(i)) ≤ 1− βτ(n−φ).

Proof of Theorem 4.3.Sincev[t] = M[t] v[t − 1], andM[t] is a row stochastic matrix, it follows thatAlgorithm 1
satisfies the validity condition.

By Claim B.1,

lim
t→∞

δ(Πt
i=1M[t]) ≤ lim

t→∞
Πt

i=1λ(M[t]) (19)

≤ lim
i→∞

Π
⌊ t
τ(n−φ)

⌋

i=1 λ(Q(i)) (20)

= 0 (21)

The above argument makes use of the facts thatλ(M[t]) ≤ 1 andλ(Q(i)) ≤ (1 − βτ(n−φ)) < 1. Thus, the rows
of Πt

i=1M[t] become identical in the limit. This observation, and the fact thatv[t] = (Πt
i=1M[i])v[t − 1] together

imply that the state of the fault-free nodes satisfies the convergence condition.

Now, the validity and convergence conditions together imply that there exists a positive scalarc such that

lim
t→∞

v[t] = lim
t→∞

(
Πt

i=1M[i])
)
v[0] = c1

where1 denotes a column with all its entries being 1.

C Connection to existing work

C.1 Undirected graph whenl ≥ l
∗

Proof of Theorem 5.1.First we show “Condition NC impliesn ≥ 3f + 1 and node connectivity at least2f + 1”. It
has already been shown in Corollary 3.2 thatn ≥ 3f + 1. It remains to show the node connectivity ofG is at least
2f + 1. We prove this by contradiction. Suppose the node-connectivity is no more than2f . Let S be a min cut of
G, then |S| ≤ 2f . Let K1 andK2 be two connected components inGS , the subgraph ofG induced by node set
V(G) − S.

Construct a node partition ofG as follows: LetL = K1, R = K2 andC = V − F − L − R, where (1) if
|S| ≥ f + 1, let F ⊆ S such that|F | = f ; (2) otherwise, letF = S. For the later case, there is no path between
L∪C andR in GF , thenκ(L∪C, i) = 0 ≤ f for anyi ∈ R in GF . Similarly,κ(R∪C, j) = 0 ≤ f for anyj ∈ L.
On the other hand, we know thatG satisfies Condition NC. Thus, we arrive at a contradiction.

For the former case, i.e.,F ⊂ S, sinceG satisfies Condition NC, WLOG, assumeR ∪ C ⇒l∗ L in GF , i.e.,
there exists a nodei ∈ L such that there are at leastf + 1 disjoint paths from setR ∪ C to nodei in GF . Add an
additional nodey and connect nodey to all nodes inR ∪ C. Denote the resulting graph byG′

F . From Menger’s
Theorem we know that a miny, i-cut in graphG′

F has size at leastf + 1. On the other hand, sinceS is a cut ofG,
then we knowS − F is ay, i–cut inG′

F . In addition, we know|S − F | = |S| − |F | ≤ 2f − f ≤ f . Thus we arrive
at a contradiction.

Next we show that “n ≥ 3f +1 and2f +1 node-connectivity also imply Condition NC”. Consider an arbitrary
node partitionL,R,C, F such thatL 6= Ø, R 6= Ø and |F | ≤ f . Sincen ≥ 3f + 1 and |F | ≤ f , either
|L ∪C| ≥ f + 1 or |R ∪C| ≥ f + 1. WLOG, assume that|R ∪C| ≥ f + 1. Add a nodey connecting to all nodes
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in R ∪ C ∪ F and denote the newly obtained graph byG′′. By Expansion Lemma5, G′′ is |F | + f + 1 connected.
Thus, fixi ∈ L. There are at least|F | + f + 1 internally disjointy, i–paths. So there are at leastf + 1 internally
disjoint y, i–paths inG′′

F . ThusR∪C ⇒l∗ L in GF . Since this holds for all partitions of the formL,R,C, F where
L 6= Ø, R 6= Ø and|F | ≤ f , then we conclude that Condition NC holds. This completes the proof.

C.2 Directed graph whenl ≥ l
∗

We first state the alternative condition of Condition 1.

Definition C.1. Given disjoint subsetsA,B,F of V(G) such that|F | ≤ f , setA is said to propagate inV − F to
setB if either (i) B = Ø, or (ii) for each nodeb ∈ B, there exist at leastf + 1 disjoint (A, b)–paths excludingF .

We will denote the fact that setA propagates inV − F to setB by the notation

A
V−F
 B.

When it is not true thatA
V−F
 B, we will denote that fact by

A
V−F
6 B.

Theorem C.1. Given graphG, for any node partitionA,B,F of V, whereA and B are both non-empty, and

|F | ≤ f , then eitherA
V−F
 B or B

V−F
 A holds ⇐⇒ for any partitionL,C,R, F of V, such that bothL andR

are non-empty, and|F | ≤ f , eitherL ∪ C → R, or R ∪C → L.

For ease of future reference, we term the first condition in the above theorem as Condition Propagate.

Proof of Theorem 5.3.We first show that Condition NC implies Condition 1.

For any node partitionL,C,R, F of G such thatL 6= Ø, R 6= Ø and|F | ≤ f , in the induced subgraphGF , at
least one of the two conditions below must be true: (i)R ∪ C ⇒l L; (ii) L ∪ C ⇒l R. Without loss of generality,
assume thatR ∪ C ⇒l L and nodei ∈ L has at leastf + 1 disjoint paths fromR ∪ C. For each such path, there
exist at least an edge that goes fromR ∪ C to a node inL. Since all the paths considered are disjoint, thusR ∪ C
contains at leastf + 1 incoming neighbors ofL.

We next show that Condition Propagate implies Condition NC.We prove this by contradiction. Suppose, on the
contrary, that Condition NC does not hold. There exists a partition L,C,R, F of G such thatL 6= Ø, R 6= Ø and
|F | ≤ f , in the induced subgraphGF , (i) R ∪ C 6⇒l L; (ii) L ∪ C 6⇒l R. For each nodei in L, there are at mostf

disjoint (R ∪ C, i) paths excludingF . ThusR ∪ C
V−F
6 L.

On the other hand, asL ∪ C 6⇒l R, for each nodej ∈ R, there are at mostf disjoint paths fromL ∪ C
to j excludingF , which further implies that there are at mostf disjoint paths fromL to j excludingF . Thus,

L
V−F
6 R ∪ C. This contradicts the assumption that Condition Propagateholds. Thus we conclude that Condition

Propagate implies Condition NC.

In addition, we know Condition Propagate⇐⇒ Condition 1. Therefore, Condition NC⇐⇒ Condition
Propagate⇐⇒ Condition 1.

5Expansion Lemma: If G is ak-connected graph, andG′ is formed fromG by adding a vertexy having at leastk neighbors inG, then
G′ is k-connected.
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