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Abstract

We address the problem of reaching consensus in the presEBgeantine faults. In particular, we are inter-
ested in investigating the impact of messages relay on tlrenleconnectivity for a correct iterative approximate
Byzantine consensus algorithm to exist. The network is neabley a simple directed graph. We assume a node
can send messages to another node that is uhtps away via forwarding by the intermediate nodes on the
routes, wheré € N is a natural number. We characterize the necessary andenifffiopological conditions on
the network structure. The tight conditions we found aresegiant with the tight conditions identified in [14] for
[ = 1, where only local communication is allowed, and are siriatbaker forl > 1. Let!* denote the length of a
longest path in the given network. FHor [* and undirected graphs, our conditions hold ifand onty i 3f +1
and the node-connectivity of the given graph is at I&gst 1 , wheren is the total number of nodes arfds the
maximal number of Byzantine nodes; and for [* and directed graphs, our conditions is equivalent to tHd tig
condition found in[[11], wherein exact Byzantine conserisu®nsidered.

Our sufficiency is shown by constructing a correct algoritirherein the trim function is constructed based
on investigating a newly introduced minimal messages cpeperty. The trim function proposed also works
over multi-graphs.
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1 Introduction

Reaching consensus resiliently in the presence of Byzaffaints has been studied extensively in distributed com-
puting [8,/ 10/ 2] 5, 3]. Messages relay is the relaying of asags from its source toward its ultimate destination
through intermediate nodes. We say a messages relay is émifneach source node can only reliably/noislessly
send messages to a destination node that is Uhops away, wheré € N, termed as relay depth. Our focus is on
investigating the tradeoff between the relay dejpdimd the network connectivity for a correct iterative apjmate
Byzantine consensus algorithm to exist. Lebe the length of a longest path in the network. The two speesés,

[ > 1* andl = 1, respectively, have already been well studied.

Under the full forwarding model, i.el,> [*, a node is able to reliably send messages to another nodeeria e
possible route in the network. Letbe the total number of nodes in the network, it has been shbaingiven f
Byzantine nodes, if the network node-connectivity is asi@g+ 1 andn > 3f+1, there exist algorithmic solutions
for the fault-free nodes to reach consensus over all p@ssipluts. Conversely, if the network node-connectivity is
strictly less thar2f +1 orn < 3f+1, then reaching consensus is not guaranteed [6]. Zfidsl node-connectivity
andn > 3f + 1 are both necessary and sufficient. However, as a resulttdmmunication assumption, the pro-
posed algorithms require fault-free nodes to keep trachedntire network topology, leading to huge consumption
of both memory resource and computation power. In contiesgtive algorithms are typically characterized by
local communication (among neighbors, or near-neighbsis)ple computations performed repeatedly, and a small
amount of state per node. The purely local communicationehe.,! = 1), where a node can only send messages
to its neighbors and no message forwarding is allowed, hss atracted extensive attention among researchers
[4,19,?,[14,12] 13]. It has been shown that a correct iterative aqipiate Byzantine algorithm exists if and only if
for any node partitior, C, R, F' of a graph such that # @, R # @ and|F| < f, either there exists a nodes L
such thafN,” N (RUC)| > f + 1 or there exists a nodec R such thaiN,” N (LU C)| > f + 1, whereN; is
the collection of incoming neighbors of node

Our main contribution is to provide a family of tight suffioieand necessary conditions on the network topology
for a correct iterative consensus algorithm to exist. Otfigency is proved by constructing a new simple iterative
algorithm, whose trim function is based on investigatingea/ly introduced minimal messages cover property. Our
results bridge the existing aforementioned two streamsookw.e., wherl > [* andl = 1, respectively, and fill the
gap between these two models.

The rest of the paper is organized as follows. Sedtlon 2 ptesmir models and the structure of iterative algo-
rithms of interest. Our necessary condition is demonstrat&ectiori B, whose sufficiency is proved constructively
in Sectiori 4. We shown in Sectibn 5.1 that our results arevatgrit to the2 f + 1 node-connectivity and > 3f +1
conditions for undirected graph wheén> [*. Sectior 6 discusses possible relaxations of our fault iremtd con-
cludes the paper.

2 Problem setup and structure of iterative algorithms

Communication model The system is assumed to gnchronous The communication network is modeled as a
simpledirectedgraphG. Define two functions/(-) and&(-) over a grapltG as follows:V(G) = {1,...,n} returns
the set of» nodes, where > 2, and€(G) returns the set of directed edges between nod¥é@). Nodei can send
messages to nodeif and only if there exists an j—path of length at mogtin G, wherel € N is a natural number.

In addition, we assume each node can send messages tostsadflai.e.,(i,i) € £(G) for all i € V(G). For each
nodes, IetNZ.l‘ be the set of nodes that can reach nodia at most hops. Similarly, denote the set of nodes that are
reachable from nodévia at most hops byN!*. Due to the existence of self-loopse N/~ andi € N/ ™. When
l=1,we WriteNil‘ andNilJr asN; ande, respectively, for simplicity. Note that nodemay send a message to



nodej via differenti, j—paths. To capture this distinction in transmission rquigsrepresent a message as a tuple
m = (w, P), wherew € R and P indicates the path via which messageshould be transmitted. Four functions
are defined ovem. Let functionvalue bevalue(m) = w and letpath be path(m) = P, whose images are the first
entry and the second entry, respectively, of messagk addition, functionsource anddestination are defined by
source(m) = i anddestination(m) = j if P is ani, j—path, i.e., message is sent from nodé to node;.

Faultmodel LetF C V(G) be the collection of faulty nodes in the system. We consigeBlyzantine fault model

with up to f nodes becoming faulty, i.e.F| < f. A faulty node maymisbehaverbitrarily. Possible misbehavior
includes sending incorrect and mismatching (or inconsistmessages to different neighbors. In addition, a faulty
nodek € F may tamper message if it is in the transmission path, i.ek, € V(path(m))d. However, faulty nodes

are only able to tampenlue(m), leavingpath(m) unchanged. This assumption is placed for ease of expaditen

in Sectior 6 we relax this assumption by considering theipities that faulty nodes may also tamper messages
paths or even fake and transmit non-existing messagesyfedes are also assumed to have complete knowledge
of the execution of the algorithm, including the states batles, contents of messages the other nodes send to each
other, and the algorithm specification, so that they maymiatéy collaborate with each other adaptively.

Iterative approximate Byzantine consensus (IABC) algorihms The iterative algorithms considered in this pa-
per should have the following structure: Each nodeaintains state;, with v;[t] denoting the state of nodeat the
end of thet-th iteration of the algorithm. Initial state of nodev;[0], is equal to the initialnput provided to node.

At the start of the¢-th iteration ¢ > 0), the state of nodeéis v;[t — 1]. The IABC algorithms of interest will require
each node to perform the following three steps in iteratioywheret > 0. Note that the faulty nodes may deviate
from this specification.

1. Transmit stepTransmit messages of the forw; [t — 1], ) to nodes iV, i.e., the nodes that are reachable
from node: via at most/ hops. If node; is an intermediate node on the route of some message, then nod
forwards that message as instructed by the message path.

2. Receive stepReceive messages froivy —, i.e., the nodes that can reach nadea at most hops. Denote by
M, [t] the set of messages that nadeceived at iteration.

3. Update step:Node: updates its state using a transition functién whereZ; is a part of the specification of
the algorithm, and takes as input the ét|t].

vi[t] = Z;(Mlt]). 1)

Note that at the—th iteration, between step two and step three, by sendirgsage to itself node is able to
memorize its state in the immediate preceding iterati@, i;[t — 1]. However, at the end of update step, except
for its updated state;[t], no other information collected in current iteration or ariythe previous iteration will be
kept by node. In step three, in generak; is some trim function over the received messages collectiyfit]. The
trimming strategy may depends on message values, messdgs, rar both. In addition, different nodes are allowed
to have different trimming strategies.

LetU[t] be the largest state among the fault-free nodes at the ehdft iteration, i.e.[J[t] = max;cy_r v;[t].
Since the initial state of each node is equal to its inpyf)] is equal to the maximum value of the initial input at

'Recall thatV(+) is the vertex set of a given graph abdpath(m)) denotes the collection of vertices along the route of messag
including the source and the
destination.



the fault-free nodes. Similarly, we defipgt] to be the smallest state at theth iteration and:[0] to be the smallest
initial input. For an IABC algorithm to be correct, the follong two conditions must be satisfied:

o Validity: V¢ > 0, uft] > [0] and U[t] < U[0]

e Convergencelim o Ult] — u[t] =0

Our focus is to identify the necessary and sufficient coon#ifor the existence of eorrect IABC algorithm
(i.e., an algorithm satisfying the above validity and cagesce conditions) for a gived and a given.

3 Necessary Conditions

For a correct IABC algorithm to exist, the underlying netlw6t must satisfy the conditions presented in this section.
A couple of definitions are needed before we are able to fdyrstdte our necessary conditions.

Definition 3.1. Let TV be a set of vertices i&¥ andx be a vertex irG such thate ¢ W. AW, z—path is a path from
some vertexv € W to vertexz. A setS of vertices such that ¢ S is alV, x—vertex cutif everyW, z—path contains
a vertex inS. The minimum size of B/, z—vertex cut is called th&/, z—connectivity and is denoted 1V, x).
Similarly, a setS; of vertices is ari—restricted vertex cuf the deletion ofS; destroys alllW, z—paths of length at
mostl. Letx; (W, z) be the minimum size of such restricted vertex cu¥in

The first part of the above definition is the classical defnitof node connectivity in graph theory. However,
this definition is a global notion. In our communication mihdee implicitly assume that each fault-free node
only knows the local network topology up to itsth neighborhood. We adapt node connectivity to our model by
restricting the length of the paths under considerationteNlatx;(W,z) = (W, z) for all I > [*, and that a
1-restricted vertex cut afi¥, =) is the number of node’s incoming neighbors ifV, i.e., k1 (W, x) = [W N N |.

Definition 3.2. For non-empty disjoint sets of noddsand B in GG, we sayA =-; B if and only if there exists a node
i € B such thats;(A,7) > f +1; A+ B otherwise.

Let ' C V(G) be a set of vertices itr, denote the induced subgra:xblf G induced by vertex se¥(G) — F
by Gr. We describe the necessary and sufficient condition beldwse necessity is proved in Theorem| 3.1 and
sufficiency is shown constructively in Section 4. For eastitfre reference, we termed the conditionGandition
NC.

Condition NC: For any node partitiorl, C, R, F' of G such thatL # @, R # @ and|F| < f, in the induced
subgraph&r, at least one of the two conditions below must be trueR() C =; L; (i) LU C = R.

Intuitively, Condition NC requires that either the set ofles inR U C are able to collectively influence the state
of a node inL or vice versa. Note that whén= 1, Condition NC becomes
“ For any node partitionL, C, R, F' of G such thatL # O, R # ) and|F| < f, in the induced subgrapt¥'r, at
least one of the two conditions below must be true: (i) theistea node € L such tha(RUC) NN, | > f+1;
(i) there exists a nodg € R such that|(LUC)N N7 = f + 17, which is shown to be both necessary and
sufficient without message relay in [14].

Theorem 3.1. Suppose that a correct IABC algorithm exists ¢ar ThenG satisfies Condition NC.

2An induced subgraph oy, induced by vertex se§ C V(G), is the subgraphd with vertex setS such that§(H) = {(u,v) €
E(G) : u,v € S}. Recall that/(-) and&(-) are the vertex set and edge set, respectively, of a givetgrap



Figure 1: In this system, there are five processqr®s, p3, p4 andps; all communication links are bi-directional;
and at most one processor can be adversarial fie.].

Figure 2: In this system, there amgprocessorss, . .., p,; all communication links are bi-directional; and at most
one processor can be adversarial, ife= 1. Nodesps, ..., p, form a cycle of lengtm — 1 and these nodes are all
connected to nodg; .

We prove this theorem in Appendix] A. Our proof shares the sproef structure of Theorem 1 in [14]. The
basic idea is as follows: Suppose there exists a correct l1ABGrithm, then we are able to find a node partition
satisfying the conditions as listed in Condition NC, sucét thnder some Byzantine layout, and for some specific
initial inputs, convergence condition will be violated.

The above necessary condition is in general stronger tremékessary condition derived under single-hop
message transmission model (ile= 1) [14]. Consider the system depicted in Higl. 1. The topolobthis system
does not satisfy the necessary condition derived ih [14ic&in the node partitioh = {p1,ps}, R = {p2,p3},C =
@ andF = {ps}, neitherL U C =; Rnor RU C = L holds forl = 1. However, via enumeration it can be seen
that the above graph (depicted in Fig. 1) satisfies CondXi@hwhenl > 2. Nevertheless, increasing relay depth
does not always admit more graph structures. For instaoce, £ 4, f = 1 and anyl, the only graph that satisfy
Condition NC is the complete graph.

It follows from the definition of Condition NC that if a graph satisfies Condition NC fot € {1,...,n — 1},
thenG also satisfies Condition NC for dll > [. Let, be the smallest integer for which satisfies Condition NC,
wherely = n by convention ifG does not satisfy Condition NC for arlyc {1,...,n — 1}. We observe that in
general given a grapfi, the diameter of> can be arbitrarily smaller thag. For instance, the diameter of the graph
depicted in Fig[ R is two. However, for the depicted gralghs= "T“ when”T‘1 is odd. Sd is much larger than
two for largen.

Similar to [14], as stated in our next corollary, our CorwhitiNC for general also implies a lower bound on
both the graph size and the incoming degree of each node. Moreover, this lowmandbds independent df

Corollary 3.2. If G satisfies Condition NC, themmust be at leastf + 1, and each node must have at leagt+ 1
incoming neighbors other than itself, i.&N,” — {i}| > 2f + 1.



The proof of Corollary 3.2 can be found in Appendix A.1. NdbtattCorollary[3.P also characterizes a lower
bound on the density of, that is|E(G)| > n(2f + 2), including self-loops, which is independent of the relay
depthl as well. Proposition 313 says that fér= 1, communication over multi-hop does not imply the existeote
a sparser graph for which Condition NC holds than that witlmicmnication over single-hop. Fgr > 1 whether
there exists a graph satisfying Condition NC witi = 2f + 2 and(2f + 2)n edges or not for anyis still open.

Proposition 3.3. For f = 1 andly = 1, there exists a graplyr for anyn > 3f 4+ 1 = 4 such that (i) V,” | = 4 for
all i € V(G); and (ii) |£(G)| = 4n.

3.1 Equivalent Characterization of Condition NC

Informally speaking, Condition NC describes the inforroatpropagation property in terms of four sets partitions. In
this subsection, an equivalent condition of Condition N@rigposed, which is based on characterizing the structure
of the special subgraphs, termed as reduced graph, of therpgraphG'. The new condition suggests that all
fault-free nodes will be influence by a collection of commaalf-free nodes.

Definition 3.3. Meta-graph of SCCs:Let K1, Ks, ..., K} be the strongly connected components (i.e., SCCs) of
G. The graph of SCCs, denoted 8y““, is defined by

() Nodes areK, Ko, ..., K;; and

(i) there is an edg€ K;, K;) if there is some: € K; andv € K such that(u, v) is an edge irG.

Strongly connected componeht, is said to be asource componerif the corresponding node iG°¢“ is not
reachable from any other node G°¢C.

It is known that the>S““ is a directed acyclic graph (i.e., DAG ][ which contains no directed cycles. It can
be easily checked that due to the absence of directed cyuleirteness, there exists one nodein““ that is not
reachable from any other node. That is, a gréphas at least one source component.

Definition 3.4. Thel-th power of a graphG, denoted byG!, is a graph with the same set of verticesG@snd a
directed edge between two vertiees if and only if there is a path of lengthfrom v to v in G.

A path of length one between verticesandv in G exists if (u,v) is an edge irG. And a path of length two
between vertices, andv in G exists for every vertexv such that(u, w) and (w,v) are edges irG. Then for a
given graphG with self-loop at each node, the, v)!" element in the square of the adjacency matrixiofounts
the number of paths of length at most twodGh Similarly, the (u, v)™* element in thé—th power of the adjacency
matrix of G gives the number of paths of length at mbsetween vertices andv in G. The power graplt’ is a
muItigrapIE and there is a one-to-one correspondence between arcéag® and a path of length at moktn G.
Let e be an edge ii©:!, and letP(e) be the corresponding path @, we say an edgein G! is covered by node set
S,if V(P(e)) NS # O, i.e., pathP(e) passes through a node$h

Definition 3.5 (Reduced Graph)For a given graphG and F C V(G), letE = {e € £(G') : V(P(e)) N F # O}
be the set of edges @' that are covered by node sEt For each nodé € V(G) — F, choosel; € N'~ — {i} such
that |C;| < f. Let

E; = {e € £(G") : eis an incoming edge of nodén G' andV(P(e)) N C; # O}

be the set of incoming edges of nade G! that are covered by node sé}. A reduced graph of!, denoted by
G'r, is a subgraph of' whose node set and edge set are defined by((§\.) = V(G) — F; and (i) £(GL.) =
E(G") — E — Ujey () rEi, respectively.

A multigraph (or pseudograph) is a graph which is permitteldave multiple edges between each vertex pair, that issatigehave the
same end nodes. Thus two vertices may be connected by morenkadge.



Note that for a givenz and a givenF', multiple reduced graphs may exist. Let us defineBgtto be the
collection of all reduced graph @ for a givenF, i.e.,

Rr = {G'r: Glpisareduced graph @f'}. @)

SinceG",, thel—th power of the induced subgraghy, itself is a reduced graph 6¥, where we choos€; = @
for eachi € V(G) — F, thusRp is nonempty. In addition,Rr| is finite since the grapt¥ is finite,

Theorem 3.4. Graph G satisfies Condition NC if and only if every reduced gr;ﬁ@vbp obtained as per Definition
[3.5 must contain exactly orsmurce component

4 Sufficiency: Algorithm 1

As aforementioned, for each nogleghe collection of received messagks;[t] may contains bogus messages and/or
tampered messages due to the existence of Byzantine nbdsg; (-) is in general a trimming function. In this sec-
tion we propose an algorithm, termed Algorithm 1, using ashapdate/trimming strategy and show its correctness.
First we introduce the definition of message cover that valubed frequently in this section.

Definition 4.1. For a communication grapld7, let M be a set of messages, and 12(M) be the set of paths
corresponding to all the messages., i.e., P(M) = {path(m)|m € M}. A message cover o¥1 is a set of
nodes7T (M) C V(G), such that for each patt® € P, we haveV(P) N T(M) # O. In particular, a minimum
message cover is defined by

T(M) € argmin [T (M)].
T(M)CV(G): T(M) is a cover of M

Conversely, given a set of messagels and a set of nodeg C V(G), a maximal set of messagdd C M,
that are covered by is defined by,

M* € argmax |IM|.
MCMy: T is a cover ofM

We further need the following two definitions before we arkedb proceed to the description of our algorithm.

Recall thatM;,|t] is the collection of messages received by node iterationt. Let M.[t] = M;[t] — {(vi[t —

1], (4,4))}. Sort messages iM_[t] in an increasing order, according to their message valuesyalue(m) for

m € M[t]. Let M;s[t] € M.[t] such that (i) for alln € M.[t] — M,s[t] andm’ € M;,[t] we havevalue(m) >
value(m'); and (i) the cardinality of a minimum cover d¥1,,[t] is exactly f, i.e.,|T*(M,s[t])| = f. Similarly, we
defineM;;[t] C M.[t] as follows: (i) for allm € M.[t]— M [t] andm” € M;[t] we havevalue(m) < value(m”);
and (i) the cardinality of a minimum cover o¥1;[t] is exactly f, i.e., |T*(Mjt])] = f. In addition, define
Mi[t] = Mift] — Mult] — Malt].

Theorem 4.1. Suppose that graphr satisfies Condition NC, then the sets of messagks|t|, M;;[t] are well-
defined and\1} [¢] is nonempty.

This theorem is proved by construction, i.e., an algoriteroinstructed to find the setd ;4 [t], M, [t] for a given
M.,. Details of the algorithm and its correctness proof can beddn AppendiXxB.JL. With this trimming strategy at
hand, we will prove that there exists an IABC algorithm — jgaitarly Algorithm 1below — that satisfies thealidity
and convergenceonditions provided that the graph satisfies Condition NC. This implies that Condition NC is
also sufficient Algorithm 1has the three-step structure described in Settion 2.

Algorithm 1




1. Transmit step:Transmit messages of the forfm; [t — 1], -) to nodes inNi”. If node: is an intermediate node
of some message, then nod@rwards that message as instructed by the message patim Mitle; expects
to receive a message from a path but does not receive the gee$isa message value is assumed to be equal
to some default message.

2. Receive stepReceive messages fromf‘.

3. Update step:
Define

vilt] = Zi(Milt]) =amilt—1]+ D ajwn. (3)
meM|[t]

wherew,, = value(m) anda; = m

Recall M}[t] = M[t] — M;s[t] — M [t]. The “weight” of each term on the right-hand side[df (3)iswhere
0 < a; < 1, and these weights add to 1. For future reference, let usedefiwhich is used in Theorem 4.2, as:

a= ZGII‘I/I_D}_ a;. (4)
In Algorithm 1, each fault-free nodés state,v;[t], is updated as a convex combination of all thessages values
collected by nodeé at roundt. In particular, for each message € M'[t], its coefficient isq; if the message is
in M7[t] or the message is sent via self-loop of nadetherwise, the coefficient of: is zero. The update step
in Algorithm 1lis a generalization of the update steps proposed in[[12,vllédre the update summation is over
all the incoming neighbors of nodeinstead of over message routes. [In/[12, 16], only singledwmpmunication
is allowed, i.e.l = 1, and the fault-free nodécan receive only one message from its incoming neighborh Wit
multi-hop communication, fault-free node can possiblyeree messages from a node via multiple routes. Our trim
functions inAlgorithm 1take the possible multi-route messages into account. tnAdgorithm lalso works with
multi-graphs.

4.1 Matrix Representation of Algorithm 1

With our trimming function, the iterative update of the staf a fault-free nodeé admits a nice matrix representation
of states evolution of fault-free nodes. We use boldfaceeuppse letters to denote matrices, rows of matrices, and
their entries. For instancey. denotes a matrixA; denotes theé-th row of matrixA, andA,;; denotes the element at
the intersection of thé-th row and thej-th column of matrixA. Some useful concepts and theorems are reviewed
briefly in AppendiXB.2.

Definition 4.2. A vector is said to bstochastidf all the entries of the vector aneon-negativeand the entries add
up to 1. A matrix is said to be row stochastic if each row of tlegrix is a stochastic vector.

Recall thatF is the set of faulty nodes and| = ¢. Without loss of generality, suppose that nodes 1 through
(n — ¢) are fault-free, and i > 0, nodes(n — ¢ + 1) throughn are faulty. Denote by[0] € R"~% the column
vector consisting of the initial states of all tfeult-free nodes. Denote by/[t], wheret > 1, the column vector
consisting of the states of all tHault-free nodes at the end of theth iteration,t > 1, where thei-th element of
vectorv][t] is statev; [¢].



Theorem 4.2. We can express the iterative update of the state of a fast#iodel (1 < i < n — ¢) performed
in (3) using the matrix form i {5) below, wheM;[¢] satisfies the four conditions listed below. In additior¢to
the row vectorM;[t] may depend on the state vectdt — 1] as well as the behavior of the faulty nodesAn For
simplicity, the notatiorM;[t] does not explicitly represent this dependence.

vilt] = My[t] v[t — 1] (5)

1. M, [t] is astochastidow vector of sizg¢n — ¢). Thus,M;;[t] > 0, wherel < j < n — ¢, and

> Mt =1
1<j<n—¢
2. M”[t] > a; > a.
3. M;;[t] is non-zero only if there exists a message= M;|t] such thakource(m) = j anddestination(m) = 1.

4. For anyt > 1, there exists a reduced gra;{ﬁ 7 € Ry with adjacent matrixH[t] such thats H[t] < M]t],
wheref is some constartt < 5 < 1 to be specified in Claiin B.4.

In Appendix[B.3, we prove the correctness of Theofem 4.2 mstractingM;[t] for 1 < i < n — ¢. Our
proof follows the same line of analysis as in the proof of @I&i in [12]. Due to the complexity (in particular, the
dependency of message covers) brought up by messagesnreldiyide the universe into six cases to consider.

Theorem 4.3. Algorithm 1 satisfies the validity and the convergence conditions.

From the code oflgorithm 1, we know thatv;[t] = a;v;[t — 1] + Zmer[t] a; W, Wherea;, = ———r—

[MT+1°
Theoreni 4.2 says that we can rewrite; [t — 1] + 3 - Me[] @ Wi @S
> Myt — 1),
jEV—F

whereM;;[t]s together satisfy the preceding four conditions. By “sitagk(g) for differenti, 1 < i < n — ¢, we
can represent the state update for all the fault-free nadgsher usind (6) below, wheM[t] is a(n — ¢) x (n— ¢)
row stochastic matrix, with ité-th row being equal t&VI;[t] in (B).

v[t] = Mt v[t —1]. (6)
By repeated application dfl(6), we obtain:
vl = (I M[r]) v[o].

As the backward produdfl’ _,M][r] is a row-stochastic matrix, it holds thaf0] < v;[t] < UJ0] for all i =
1,...,n — ¢ and allt. Thus Algorithm 1 satisfies validity condition.

The convergence of;[t] depends on the convergence of the backward prodict M[7]. As a result of this,
our convergence proof uses toolkit of weak-ergodic theloay is also adopted in prior work (e.d.] [1[4] 18, 9]), with
some similarities to the arguments used_in [13, 9]. The lastlition in Theorem 412 plays an important role in the
proof. For completeness, we present the formal proof of TémaBL3 in Appendik Bl4.



5 Connection with existing work under unbounded path length

In this section, we show that Condition NC is equivalent tdRisting results on both undirected graphs and directed
graphs.

5.1 Undirected graph under unbounded path length

If G is undirected, it has been shown [in [6], that> 3f + 1 and node-connectivitg f + 1 are both necessary and
sufficient for achieving Byzantine approximate consendie. will show that wheri > [*, our Condition NC is
equivalent to the above conditions.

Theorem 5.1. Whenl > [*, if G undirected, them > 3f + 1 and the node-connectivity ¢f is at least2f + 1 if
and only ifG satisfies Condition NC.

Informally, if the node-connectivity of7, denoted by:(G), is at mostf, then we are able to show that there
exists a node partitio, R, C, F', whereL, R are both nonempty and’| < f, such that neithef. U C' =« R nor
RUC =~ L holds. Conversely, i > 3f + 1 andx(G) > 2f + 1, using Expansion Lemma we are able to show
Condition NC holds. Formal proof is given in Appendik C.

5.2 Directed graph under unbounded path length

Synchronous exact Byzantine consensus is considered]in [11

Definition 5.1 ([11]). Given disjoint subsetd, B, whereB is non-empty:

() We sayA — B if and only if setA contains at leastf + 1 distinct incoming neighbors oB. That is,
il (i,7) € E,i€ A,j € B} > f.

(i) We sayA 4 Biff A — B is not true.

A tight condition (both necessary and sufficient) over thepbrstructure is found in [11].
Theorem 5.2 ([11]). Given a graphG, exact Byzantine consensus is solvable if and only if for gamgition

L,C, R, F of V(G), such that both. and R are non-empty, antF’| < f, eitherLUC — R,or RUC — L.

We term this condition as Condition 1. Note that in order for~ B to hold, we only require that there are at
leastf + 1 incoming neighbors of sa® in setA. Itis possible that each node Bhas at mos} incoming neighbors
in A. As a result of this observation, our Condition NC witk: 1 is strictly stronger than Condition 1. However, it
can be shown that our Condition NC with> [* is equivalent to Condition 1.

Theorem 5.3. Condition NC is equivalent to Condition 1 whepr [*.

An alternative condition is shown ih[11] to be equivalentondition 1. We use this condition as a bridging to
show the equivalence of Condition 1 and Condition NC.

6 Discussion and Conclusion

Throughout this paper, we assume that faulty nodes are bldyta tamper message values, leaving message paths
unchanged. However, even when faulty nodes are able to tam@gsage paths or even fake and transmit non-
existing messages, as long as (i) the number of faked messadaite (each faulty nodé € F cannot create
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too many non-existing messages); and (ii) for each messaigenpered/faked by the faulty nodepath(m) must
satisfyk € V(path(m)), i.e., the faulty nodé: cannot conceal itself from the message path, using the samefi
arguments as in Sectidh 3 and Secfibn 4, it can be shown #h&dhdition NC is also necessary and sufficient for
the existence of approximate consensus under the relaxddimo

In this paper, we unify two streams of work by assuming thahe@ode knows the topology of up to itsth
neighborhood and can send message to nodes that aré lupp® away, where> 1. We prove a family of necessary
and sufficient conditions for the existenceitgfrative algorithms that achievapproximate Byzantine consensas
arbitrary directed graphs. The class of iterative algorigiconsidered in this paper ensures that, after each iterati
of the algorithm, the state of each fault-free node remairthé convex hullof the states of the fault-free nodes at
the end of the previous iteration.

References

[1] Jadbabaie Ali, Lin Jie, and A. Stephen Morse. Coordoratf groups of mobile autonomous agents using
nearest neighbor rulegwutomatic Control, IEEE Transactions ofi8(6):988—-1001, June 2003.

[2] Michael Ben-Or. Another advantage of free choice (edtmhabstract): Completely asynchronous agreement
protocols. InProceedings of the Second Annual ACM Symposium on Prisogdl®istributed Computing
PODC '83, pages 27-30, New York, NY, USA, 1983. ACM.

[3] Michael Ben-Or, Danny Dolev, and Ezra N. Hoch. Simpledgreast based algorithm&€oRR abs/1007.1049,
2010.

[4] Florence Bnzit, Vincent Blondel, Patrick Thiran, Johsit§iklis, and Martin Vetterli. Weighted gossip: Dis-
tributed averaging using non-doubly stochastic matritekformation Theory Proceedings (ISIT), 2010 IEEE
International Symposium opages 1753-1757, June 2010.

[5] Alan D. Fekete. Asymptotically optimal algorithms fopgroximate agreement. IRroceedings of the fifth
annual ACM symposium on Principles of distributed comgtlPODC 86, pages 73—-87, New York, NY,
USA, 1986. ACM.

[6] Michael J. Fischer, Nancy A. Lynch, and Michael Merrigtasy impossibility proofs for distributed consensus
problems. InProceedings of the fourth annual ACM symposium on Prinsipfadistributed computind®ODC
‘85, pages 59—-70, New York, NY, USA, 1985. ACM.

[7] J. Hajnal and M.S. Bartlett. Weak ergodicity in non-hayeaoeous markov chains. Mathematical Proceed-
ings of the Cambridge Philosophical Societglume 54, pages 233—-246. Cambridge Univ Press, 1958.

[8] Leslie Lamport, Robert Shostak, and Marshall Pease.byzantine generals problemPCM Trans. Program.
Lang. Syst.4(3):382—401, July 1982.

[9] Heath J. LeBlanc, Haotian Zhang, Shreyas Sundaram, ambf§n Koutsoukos. Consensus of multi-agent
networks in the presence of adversaries using only localnmdtion. InProceedings of the 1st International
Conference on High Confidence Networked Systéfi@3oNS '12, pages 1-10, New York, NY, USA, 2012.
ACM.

[10] Michael O. Rabin. Randomized byzantine generald-dundations of Computer Science, 1983., 24th Annual
Symposium grpages 403-409, Nov 1983.

11



[11] Lewis Tseng and Nitin Vaidya. Iterative approximatesensus in the presence of byzantine link failures. In
Guevara Noubir and Michel Raynal, editoMetworked Systemkecture Notes in Computer Science, pages
84-98. Springer International Publishing, 2014.

[12] Nitin H. Vaidya. Matrix representation of iterative gqoximate byzantine consensus in directed gra@iusR
abs/1203.1888, 2012.

[13] Nitin H. Vaidya, Christoforos N. Hadjicostis, and Adgjdro D. Dominguez-Garcia. Distributed algorithms for
consensus and coordination in the presence of packetidgpppmmunication links - part Il: coefficients of
ergodicity analysis approachrXiv, arXiv:1109.6392, 2011.

[14] Nitin H. Vaidya, Lewis Tseng, and Guanfeng Liang. Itara approximate byzantine consensus in arbitrary
directed graphs. IRroceedings of the 2012 ACM Symposium on Principles of ibiged ComputingPODC
'12, pages 365-374, New York, NY, USA, 2012. ACM.

[15] Jacob Wolfowitz. Products of indecomposable, apériostochastic matricesProceedings of the American
Mathematical Societyl4(5):pp. 733—737, 1963.

[16] Haotian Zhang and Shreyas Sundaram. Robustness omation diffusion algorithms to locally bounded
adversaries. Il\merican Control Conference (ACC), 20Xages 5855-5861, June 2012.

12



Appendices

A Necessity of Condition NC

Proof of Theorerh 3]11Theoren 3.1l states that if a correct IABC algorithm exists@o thenG satisfies: For any
node partitionZ, C, R, F' of G such that. # O, R #  and|F| < f, in the induced subgrapfi, at least one of
the two conditions below must be true: U C =; L; (i) LU C = R.

We prove this theorem by contradiction. Let us assume thatr@at IABC exists, and there exists a partition
L,C,R,F of V(G) such thatL # O, R # @ and|F| < f, but neitherR U C =; L nor LU C = R holds, i.e.,
RUC =% LandL U C =; R. Consider the case when all nodesfinif F' # ), are faulty, and the other nodes
in setsL, C, R are fault-free. Note that the fault-free nodes are not awéathe identities of the faulty nodes. In
addition, assume (i) each nodelfirhas initial inputy, (i) each node inR has initial inputl, such that/ > p + ¢
for some given constanrt and (iii) each node i, if C # (), has initial input in the intervalu, U].

In the Transmit stepof iteration one, suppose that each faulty néde F sendsw = p~ < p to nodes in
Nt N L, sendsw = UT > U to nodes inN;"™ N R, and sends some arbitrary value in the interfyall/] to
nodes inN,l;r N C. For messagen such that the faulty node is in its transmission path, i.ek, € V(path(m)),
if destination(m) € L, nodek resetsvalue(m) = u~; if destination(m) € R, nodek resetsvalue(m) = U™; if
destination(m) € C, nodek resetsvalue(m) to be some arbitrary value {p, U].

Consider any nodeé € L. Since|F| < f, we know|NZ.l‘ N F| < f. In addition,C U R #; L holds inGr
impliesx;(C' U R,i) < f. LetS; be a minimum restrictedC' U R, i)—cut inGr. From the perspective of node
there exist two possible cases:

(a) Both S; and N~ N F are non-empty: We knoWNV!~ N F| < f and|S;| < f. From node’s perspective, two
scenarios are possible: (1) nodestr N F are faulty, all the messages relayed via them are tamperkd an
the other nodes are fault-free, and (2) nodeS;iare faulty and the other nodes are fault-free.

In scenario (1), from nodés perspective, the untampered values are in the intéaval]. By validity condi-
tion, v;[1] > w. On the other hand, in scenario (2), the untampered val@es aand i, wherep™ < p; SO
v;[1] < p, according to validity condition. Since node&oes not know whether the correct scenario is (1) or
(2), it must update its state to satisfy the validity commtitin both cases. Thus, it follows tha{1] = ..

(b) At most one ofS; and N~ N F' is non-empty: Thusl,S; U (N~ N F)| < f. From node’s perspective, it is
possible that the nodes ) U (Nl.l‘ N F) are all faulty, the messages relayed via nodesS;io (Nl.l‘ NFE)
are tampered while the rest of the nodes are fault-free. ignsituation, the untampered values received by
nodes (which are all from nodes irNil‘ N L) are allu, and thereforey;[1] must be set ta as per the validity
condition.

At the end of iteration 1: for each nodén L v;[1] = p; similarly, for each nodg in R, v;[1] = U; if C # O,
for each node in C, v;[1] € [, U]. All these conditions are identical to the condition whea- 0. Then by a
repeated application of of above argument, it follows tleatainyt > 0, v;[t] = pfor all i € L, v;[t] = U for all
Jj € Randugft] € [, U] forallk € C, if C # O.

SinceL and R both contain fault-free nodes, the convergence requiremerot satisfied. This contradicts the
assumption that a correct iterative algorithm exists. O
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A.1 Lower bound on graph size and nodes’ incoming degrees

Proof of Corollary[3.2. Corollary[3.2 states that i satisfies Condition NC, then must be at leastf + 1, and
each node must have at leagt+ 1 incoming neighbors other than itself, i.@N,” — {i}| > 2f + 1.

The main techniques used in this proof are fairly routinel are given here largely for both concreteness and
completeness.

We first show the claim that > 3f + 1. Forf = 0,n > 3f + 1 = 1 s trivially true. Forf > 0, the proof
is by contradiction. Suppose that< n < 3f. In this case, we can partitio(G) into setsL, R, C, F' such that
1<I|LI < f,1<|R < f,0<|F| < fand|C| =0, i.e. Cisempty. Sincel < |[LUC| = |L|] < f and
1 <|RUC|=|R| < f,wehaveLUC #; RandR U C #,; L, respectively inGr. This contradicts the
assumption thafr satisfies Condition NC. Thus, > 3f + 1.

It remains to showN,” — {i}| > 2f + 1. Suppose that, contrary to our claim, there exists a ricsigch
that [N, — {i}| < 2f. Define setL = {i} and partitionN,” — {:} into two setsF’ and H such that|H| =
||V, —{i}]/2] < fand|F| = [|N; —{:}|/2] < f. Note thatH = O, F = @ if and only if f = 0. Define
R=V(G)—F—-L=VY(G)—F —{i}andC = Q. Since|V(G)| =n > max(2,3f + 1), R is non-empty. From
the construction of?, we haveN,” N R = H, and|N; N R| = |H| < f. SinceL = {i}, [N, N R| < f and
C = 0, itfollows thatR U C #; L. On the other hand, a&| = 1 < f + 1, we haveL U C' % R. This violates
the assumption thaf satisfies Condition NC. The proof is complete. O

A.2 Lower bound on graph density

Proof of Propositio_313.Proposition 3.B states that: F¢r= 1 andi, = 1, there exists a grapty for anyn >
3f +1=4suchthat (i) N, | =4foralli € V(G); and (ii) |£(G)| = 4n.

We prove this proposition by inducting en In the complete graph with = 4, |N;"| = 4 (including itself )
for all i € V(G) and the total number of edgesli6. So the base case easily follows. Assume that the propositio
holds forn > 4. Let G be a graph withV(G)| = n, |[N; | = 4forall i € V(G) and|£(G)| = 4n. Letz ¢ V(G),
add self-loop tar and connect arbitrarg nodes inG to nodez. Denote the resulting graph &&. Note that the
only outgoing edge of is its self-loop. LetL, R, C and F' be an arbitrary node partition ¢’ such thatl,, R are
nonempty andF'| < 1.

For the case wheh = {z}, sinceN, = 4 and|F| < 1, we knowRUC =-; L. Similarly we can show the case
whenR = {z}. WhenL # {z} andR # {z},letl’ = L—{z},C' = C —{z}, R = R—{z} andF’ = F — {x},
then the obtained’, R’, C’ and F” is a node partition of the original gragh such thatZ’, R’ are nonempty and
|F’| < 1. SinceG satisfies Condition NC, then eithéf U C’ =1 R’ or R UC’ =1 L'. As G’ inherits every edge
in G, we have eithel. UC =1 Ror RUC = L in G’. This completes the induction. O

A.3 Equivalence of Condition NC and single source componertondition

Proof of Theorerh 3]4Theoren{ 3.4 states that graphsatisfies Condition NC if and only if every reduced graph
G'r obtained as per Definitidn 3.5 must contain exactly sogrce component

We first show that if grapli: satisfies Condition NC, then every reduced grap&‘ofontains exactly one source
component.

For any reduced gra@F, the meta—graph@vlF)SCC is a DAG and finite. Thus, at least one source component
must exist inG'r. We now prove thati!r cannot contain more than one source component. The proof is b
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contradiction. Suppose that there exists afset V(G) with |F| < f, and a reduced grapfﬁvlp corresponding to
F, such thatG! » contains at least two source components, Kayand K5, respectively. Lefl, = K;, R = Ko,
andC = V(G) — F — L — R. ThenL, R, C together with the giver¥ form a node partition ol’(G) such that
L+#O,R#0and|F| < f.

Since graphG satisfies Condition NC, without loss of generality, assuha R U C' =; L, i.e., there exists a

nodei € L such thats;(R U C,i) > f + 1in Gr. On the other hand, since is a source component /@F by
the definition of reduced graph, we know all paths fréhw C' to node; of length at most in G are covered by
C; U F, where(; is defined preceding Definitidn 3.5. Thu; is a restricted R U C, i)—cut of Gp. However, by

construction of¢! -, the size ofC; is at mostf. So we arrive at a contradiction.

To complete the equivalence proof it remains to show thaterereduced graph contains exactly one source
component, then the graph must satisfy Condition NC.

Suppose, on the contrary, thdtdoes not satisfy Condition NC. Then there exists a nodetjoartl, R, C' and
F of G with L, R are nonempty antF’| < f such thatL. U C #; RandR U C #; L in Gr. By the definition of
the relation#, there is no path of length at maddrom L U C' to a node inR, and no path oﬂength at mokfrom

R U C to anode inL. This further implies that no nodes iR U C can reach a node ih in G and no nodes in
L U C can reach a node iR in G'f. Thus bothL and R are source components, contradicting the condition that
there is only one source component in evéfy:.

O

B Sufficiency of Condition NC

B.1 The trimming function is well-defined

Proof of Theorerh 4]1Theoreni 4.1 states that if graphsatisfies Condition NC, then the sets of messagks|t],
M [t] are well-defined andv1}[¢] is nonempty.

For ease of exposition, with a slight abuse of notation, vepdhe time indices of\}[t], M;[t], M;[t] and
M t], respectively. From Corollafy 3.2, we knaw, —{i}| > 2f+1. Since|T*(M;,)| = f and|T*(My)| = f,
the message from at least one incoming neighbor of riadenot covered by7*(M;s) U T*(M;;). SoM? is
nonempty.

We prove the existence o¥1,; and M;; by construction. The set1;; can be constructed using the following
algorithm, which can be easily adapted for the construatioset M ;. For clarity of proof, we constructA;; and
M;; sequentially, although they can be found in parallel.

As before, sort the messagesht, in an increasing order according to their messages valogsilize M, <
D, Q < ¥ and M « M.. At each round, letn; be a message with the smallest value\ih and updat&), M as
follows,

Q <+ QU {ms};
M — M —{ms}.

If |75(Q)| > f + 1, setM;s <+ Q — mg and returnM,; otherwise, repeat this procedure.

If the algorithm terminates, then by the code, it is easy ® that the returned\U,, satisfies the following
conditions: For allm € M, — M,s andm’ € M,; we havevalue(m) > value(m’); and the cardinality of a
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minimum cover ofM;, is exactly f, i.e.,|T*(M;s)| = f. It remains to show this algorithm terminates. Suppose
this algorithm does not terminate. The problem of finding aimum cover of a set of messages, i.e., computing
T*(Q), can be converted to the problem of finding a minimum cut of ewepair, by adding a new vertgxand
connectingy to every vertex inV(G) — {i}. The latter problem can be solved in polynomial time. Thum-n
termination implies that7*(M})| < f, which further implies that thé-restricted(V(G) — {i}, i)—connectivity

is less than or equal t¢. On the other hand, consider the node partition that {i}, R = V(G) — {i}, and

C = F =@, neitherLUC =; Rnor RUC =-; L holds. This contradicts the assumption tGagatisfies Condition
NC. So the above algorithm terminates.

We can adapt the above procedure to constiugt by modifying the initialization step to b€ «+ @, M <«
M — M,s. Termination can be shown similarly. Suppose this algoritfoes not terminate. Non-termination
implies that|7* (M’ — M,s)| < f, which further implies that in the node partitidh = {i}, F' = T*(M,s),

R =Y(G) - F — L, C = Q, thel-restricted(R U C, {i})—connectivity is no more thaf, i.e., RUC = L. In
addition, sincdL| = 1, L U C #; R. This contradicts the assumption tl@tsatisfies Condition NC. Therefore,
M, and M, are well-defined.

U
B.2 Matrix Preliminaries
For a row stochastic matriA, coefficients of ergodicity(A) and\(A) are defined as$ [15]:
0(A) = max max |Ai,j — As 1, ()
AMA) :=1— min > min(Ai,j , Aiy ). (8)
J

Itis easy to see th@t < §(A) < 1and0 < A\(A) < 1, and that the rows are all identical if and and only(iA) = 0.
Additionally, A(A) = 0 if and only if §(A) = 0.

The next result from[[7] establishes a relation between thedficient of ergodicitys(-) of a product of row
stochastic matrices, and the coefficients of ergodikity of the individual matrices defining the product.

Claim B.1. For anyp square row stochastic matric€3(1), Q(2),...,Q(p),
3(Q(M)Q(2) - Qp)) < II_; MQ(1)). 9)
Claim[B.1 is proved in[7]. ltimplies that if, for all A\(Q(7)) < 1—~ for somey > 0, thend(Q(1)Q(2) - - - Q(p))
will approach zero ap approachesc.

Definition B.1. A row stochastic matriH is said to be ascramblingmatrix, if \(H) < 1 [7,[15].

In a scrambling matri, since\(H) < 1, for each pair of rows$; andis, there exists a columjp (which may
depend ori; andiz) such thatt;, ; > 0 andH;, ; > 0, and vice-versd [7, 15]. As a special case, if any one column
of a row stochastic matriK contains only non-zero entries that are lower bounded byesmnstanty > 0, thenH
must be scrambling, ant(H) < 1 — ~.

Definition B.2. For matricesA andB of identical size, and a scalay, A < v B provided thatA;; < v B;; for all
i,].
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B.3 Matrix representation

Some relevant corollaries and concepts are needed befaaeevadble to proceed to the proof of Theofen 4.2.

Corollary B.2. Suppose that grapt¥ satisfies Condition NC. Then it follows that in each reduoeqbg@F € Rp,
there exists at least one node that has directed paths thalhodes irG! .

Corollary[B.2 follows immediately from Theorelm 8.4.

Corollary B.3. Suppose thafr satisfies Condition NC. Lef’| = ¢, for any@F € Rp with H as the adjacency
matrix, H*~% has at least one non-zero column.

Proof. By Corollary[B.2, in grapral r there exists at least one node, say nbdiat has a directed pathwfl‘#/ rto

all the remaining nodes i, i.e., V(G) — F. Since the length of the path fromto any other node iit:' » can
contain at most. — ¢ — 1 directed edges, the-th column of matrixH"™ ¢ will be non-zerd O

Definition B.3. We will say that an entry of a matrix is “non-trivial” if it isdwer bounded by, whereg is some
constant to be defined later.

Proof of Theoreri 412Recall that nodes 1 through- ¢ are fault-free, and the remainingnodes ¢ < f) are faulty.
Consider a fault-free nodeperforming theupdate stepn Algorithm 1 Recall thatM;[t] and M} [t] messages are
eliminated fromM;[t]. Let S;4[t] € M;[t] and Li4[t] € M t], respectively, be the sets of removed messages
that are not covered by faulty nodes. lt[t] be the set of paths corresponding to all the messagds!ift].
Untampered message representatidithe evolution ofv; and construction oM [t] differ somewhat depending on
whether sets;,[t], Sig[t] andP;[t] N F are empty or not, wher®;[t] N F = @ means that no message’ [¢]

has been tampered by faulty nodes &jdt] N F # @ means that there exists a message that is tampered by faulty
nodes. It is possible that*(Ms[t]) = T*(My[t]) = F, which means all messages.M;[t] and M;;[t] are
tampered by faulty nodes, i.&5;4[t] = © andL;4[t] = ©. We divide the possibilities into six cases:

Case IS;4[t] # O, Lig[t] # O andPf[t) N F # Q.
Case IISi;[t] # O, Ligt] # @ andP/[t] N F = Q.
Case lll: one of,,[t], Li,4[t] is empty andP; [t] N F # Q.
Case IV: one o4 [t], Li4[t] is empty andP;[t] N F = O.
Case VS;4[t] = O, Lig[t] = O andPf[t] N F # O.

o o ~ w0 NP

Case VIS [t] = O, Lig[t] = O andP/[t] N F = O.

We first describe the construction B[t in case |, wherS;,[t] # O, Li4[t] # O andP;[t] N F # O. Let
w;s[t] andw; [t] be defined as shown below. Recall that = value(m).

Zmesig [t] Wm
|Sig[t]]

Zmeﬁig [t] Wm
| Liglt]|

Wi [t] = and 1wy [t] = (10)

“That is, all the entries of the column will be non-zero (morecsely, positive, since the entries of matkikare non-negative). Also,
such a non-zero column will exist H"~?~! too. We use the loose boundwf- ¢ to simplify the presentation.
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By the definitions ofS;,[t] and L4 [t], wis < w,,y < w;;, for each message’ € M?[t]. Thus, for each message
m/, we can find convex coefficient,,,, where0 < ~,,» < 1, such that

Wyy! = Ym/Wis + (1 - ’Vm’)wil

’Ym’ Z I 1_7m’ Z Wy
|Lig[t]

mGSlg meLigt]

Recall that inAlgorithm 1 v;[t] = avit — 1] + ZmeMm a;wy,, Wherea; = W In case |, since
Pit] N F # O, there exist messages vt [t] that are tampered by faulty nodes. We need to replace these “b
messages” by “good messages” in the evolution;ofn particular,

vi[t] = avit — 1] + Z ;W (12)
meM|i]
= aui[t — 1] + Z a; Wy, + Z a; Wy, (12)
meMF[t]: V(path(m))NF=0 meM[t]: V(path(m))NF#D
= auift — 1] + > i, (13)
meMF[t]: V(path(m))ﬂ]—':@
1 — Tm
+ > : ’ 3 Z wm 0 > wn) (14)
meM:[t]: V(path(m))NF#0 W res;, Lig m/€Lig[t]

= aui[t — 1] + Z a; Wy (15)
meMt]: V(path(m))NF=0

Ai"Ym
PN 2 Sl =

m/'€S;y[t] meM;F[t]: V(path(m))NF#D

a; 1-— 'm
R I > e o

m'ELig[t] meM[t]: V(path(m))NF#D

That is,v;[t] can be represented as a convex combination of values of patach messages collected at iteration
t, wherew;[t — 1] = value(v;[t — 1], (i,4)). For future reference, we refer to the above convex combimats
untampered message representatiom;fff in case | and the convex coefficient of each message in thenpetad
message representationmsessage weight

Note that ifm is an untampered messageMt;[t] or m € S;;[t] U Li4[t], thenw,, = v;[t — 1] holds, where
nodej is the source of message, i.e.,source(m) = j. v;[t] can be further rewritten as follows, whet¢z} = 1 if
xistrue, andL{z} = 0, otherwise.

vi[t] = Z vt — 1] (ai]l{j =i} + Z a;1{source(m) = j}
JjEV-F meM[t]: V(path(m))NF=0
+ Z ( Z ’g,mﬁ‘ 1{source(m’) = j})
m'€Siglt] meM:[t]: V(path(m))NF#£0 ' 9
ai(l - ’Vm) / .
n)q =
+ Z ( Z Zotd] {source(m) j})>,

m/ELiglt] mEM:[]: V(path(m))NF#D
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Thus, for each nodg j € V — F, define the entrM;;[t] as follows,

M;;[t] = a;1{j =i} + Z a;1{source(m) = j}
meM: [t]: V(path(m))NF=0

+ Z ( Z G:g”]l{source(m’):j})

m/ESiglt] mEMZ[t]: V(path(m))NF#£D

+ Z ( Z 7ai|(2i;[;7|ﬂ)]l{source(m/):j}).

m/'€Lig[t] meMt]: V(path(m))NF#D

The third condition in Theoreiin 4.2 trivially follows fromehabove construction. By above definitidvll;; > a;,
whereM;; > a; holds when there exists a nontrivial cycle (not a self-looplength at most that contains nodeé
and no faulty nodes. In addition; > « by (4). ThusM;;[t] > «. The second condition holds. Now we show that
M, [t] is a stochastic vector. Itis easy to see ik [t] > 0. In addition, we have
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> Myl = Y (wlfi=i}+ > a;l{source(m) = j}

JEV-F JjEV-F meM[t]: V(path(m))NF=0
+ Z ( Z éﬂ%]l{source(m’):j})
m'E€Siglt] meM:[t]: V(path(m))NF#£0 ' 9
a; 1-— m
+ Z ( Z M]l{source( )—j}))
|Liglt]]

m/'€Lig[t] meMFt]: V(path(m))NF#D

= a; Z 1{i =j} + Z a; Z 1{source(m) = j}

JEV-F meMF[t]: path(m)NF=0 JEV-F

+ Z <|§:Zm Z Z 1{source(m })

meMF[t]: path(m)NF#D m'eS;y[t] JEV—-F

+ Z < \ﬁzg Z Z 1{source(m })

meMF[t]: path(m)NF#D m' €Lyt jEV—F

=a; + Z a;

meMF|t]: path(m)NF=0

+ > e D DR

meM? [t]: path(m)NF£D [Siglt]] m €8ig[t]

ai(l_’}’m)
- 2 a2 !

mEM;[t}: path(m)ﬁ}';ﬁ@ m/ Eﬁig [t]
AiYm
=a; + Z a; + Z ST 1Sig[1]]
meM;[t]: path(m)NF=0 meM: [t]: path(m)NF£@ Y
ai(l - Vm)
+ ——————=| L[t
> o ol

meMF[t]: path(m)NF#D

=a; + Z a; + Z a;

meM; [t]: path(m)NF=0 mEME[t]: path(m)NF#£QD
a; (| M3 [t]| + 1)
=1.

SoM,;[t] is row stochastic.

In case Il, sinceP;[t] N F = O, all messages i1} [t] are untampered by faulty nodes. ket be an arbitrary
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message inVI}[t], with source(mg) = j*. In order to guarantee condition 4) holds, we rewrite] as follows,
vilt] = avift — 1] + Z ;Wi
meM:]t]

= a;vi[t — 1] + a;wpm, + Z a; Wy
meM[t]—{mo}

1 1
= avift — 1] + 5 @iWmo + 5 %Wmo + Z a;Wm
meM[t]—{mo}

1
= a;vi[t — 1] + = a;wpy, —|— —a; ’ymo Z Wy + o Z Wiy
2 ﬁig [t]]

m’€Sigt] m'€Ligt]
+ Z ;W
meM;|t] —{mo}

a
_alvl[ 1] + azwm()+ Z z’Ymo Z ’Ymo)wm,

€L, [ ] 2’£7«9 ‘
+ Z Qi Wy, -
meM[t]—{mo}

Note that we did not use the above trick in case I. This is bezmain case |, by substituting tampered messages in
M[t] by untampered messagesdj [t] andL;4[t], as will be seen later, condition 4) is automatically gutead.

We refer to the above convex combination asuhtampered message representation;&f in case Il. And the
convex coefficient of each message in the above represengiveight assignedo that message. Combining the
coefficients of messages according to message sourcesbitised that

wll= 3 - U(atli=+ga1fi=+ Y wlfsource(m) = j)

jJEV—F meM; [t]—{mo}
+ i Yme Z 1{source(m’) = j} + 7%(1 —Tmo) Z 1{source(m’) = ]})
2|Siglt]]l A= 2Lt A
m’'€Siglt] m/eLiglt]

Thus, defineMl;; by

1
Myj = ail{i = j} + 5al{j = j°} + > ail{source(m) = j}
meM; [1-{mo}

aiYmo B ai(1 = Ymg) .
+ 2/, [1]] Z 1{source(m’) = J}"‘W Z 1{source(m’) = j}.

m'€S;4t] m'€Liglt]

Follow the same line as in the proof of case |, it can be shoanttie abovéM;; satisfies conditions 1), 2) and 3).

In case lll, case IV, case V and case VI, at least on&;pft] and L;,[t] is empty, without loss of generality,
assume thas,[t] is empty. By the definition of;,[t], we know that the seM,[t] is covered byF. On the other
hand, by the definition of\1,,[t], a minimum cover ofM,(t] is of size f. Since|F| < f, then we knowF is a
minimum cover ofM,,[t] and|F| = f. From the definition ofM;,[t], we know there exists a message with the
smallest value inM?[t], denoted bym, is not covered byF. So, we can use singletohn} to mimic the role
of S;4[t] in cases | and II. Similarly, we can use the same trick wiigyjt| is empty. Theuntampered message
representation of;[t] andmessage weiglare defined similarly as that in case | and case II.
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To show the above constructions satisfy the last conditiofhieorent 4.2, we need the following claim.

Claim B.4. For nodei € V — F, in the untampered message representation; @f, at most one of the ses, [t]
and L;,[t] contains messages with assigned weights lessgharneres = ﬁ

Proof. An untampered message is eitheo\uti’ [t] or in S;,[t] U L;g4[t].

For case V and case VI, both,[t] andL,4[t] are empty, all untampered messages are containddif]. For
each untampered messageMt’t], its weight in the untampered message representatian is W In
M,[t], there are at most messages were transmitted via one hop, at méshessages were transmitted via two
hops. In generalM;[t] contains at most? messages that were transmitted diiops, wherel is an integer in

{1,...,1}. Thus,

IMG[t]] + 1 < [M;[t]]
§n+n2—|—...—|—nl

~ n(nt—1)
= T

@ n(n! —1)
T3

< 2n!

Inequality (a) is true because > 2. Thus,a; > 2—;1 In cases V and VI, as boiB;,[t] and £;,[t] are empty, all

untampered messages are with weight no less fbﬁn

For case Il and case IV, WLOG, assuifig|t] is empty. An untampered message is eithekAri[t] or in £;4[t].
Since for each untampered messag@ii[t|, the weight assigned to it in the untampered message repatisa of
v;[t] is at Ieas%. Thus, onlyZ;,[t] may contain untampered messages with assigned Weighmwsi—l.

For case Il, botlS;,[t] and L;,[t] are nonempty, an untampered message is in onetpf], S;,[t] and L, [t].

In the untampered message representatian|df eithery,,,, > 1 or1 —~,,, > 1. WLOG, assume that,,,, > 1,

which implies that for each message &[], the assigned weight is at Ieaﬁ;‘i;w > ﬁ since [S;4[t]] <
IM;[t]] < 2nl. Letp = ﬁ then we can conclude that onf;,[t] may contain untampered messages with

assigned weights less than

It can be shown similarly that the above claim also holds &srecl.

Now we are ready to show the following property is also true.

Claim B.5. For anyt > 1, there exists a reduced gra@; € Rr suchthatB H[t] < MJt].

Proof. We construct the desired reduced gr@l} as follows. Let
E={ec &G : V(P(e)NF+#0}

be the set of edges i@’ that are covered by node sBt

For a fault-free nodé: (i) if both S;,[t] and L;,[t] are empty, then choosg; = ©; (ii) if one of S;,4[t] and
Lig[t] is empty, WLOG, assume tha},[t] is empty, then choos@; = 7*(M;[t]); (iii) if both S;,[t] andL;,[t] are
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nonempty, WLOG, assume that the weight assigned to evergagesns;,[t] is lower bounded by, then choose
Ci = T*(Mlt]). Let

E; = {e € £(G") : eis an incoming edge of noden G' andV(P(e)) N C; # O}
be the set of incoming edges of nodia G! that are covered by node Sgt.
SetV(Gly) = V(G) — F. And let&(Gly) = E(G) — E — Uey_rE;.

From claimB.4, for node, at most one of the setS;,;[t] and L;,[t] contains messages with assigned weights
less than3. Then it is easy to see that the adjacency matrix of the obdaieduced grapl[t], has the property
that3 H[t|] < M]t].

O

O

B.4 Correctness of Algorithm 1

Lemma B.6. In the product below oH[t] matrices for consecutive(n — ¢) iterations, at least one column is
non-zero.

=z
Proof. Since the above product consistsdf: — ¢) matrices inRp, at least one of the distinct connectivity
matrices inRx, say matrixH.,, will appear in the above product at least- ¢ times.

Now observe that: (i) By LemniaB.31"? contains a non-zero column, say th¢h column is non-zero, and
(i) all the H[t] matrices in the product contain a non-zero diagonal. Thes@bservations together imply that the
k-th column in the above product is non-zero. O

Let us now define a sequence of matri€@g) such that each of these matrices is a produet(ef— ¢) of the
M][t] matrices. Specifically,

N 1rit(n—9)
Qi) = Ht:(i—l)r(n—¢)+l Mt]

Observe that
vikr(n —9)] = (T, Q) ) V(o] (18)

Lemma B.7. For i > 1, Q(¢) is a scrambling row stochastic matrix, andQ(i)) is bounded from above by a
constant smaller than 1.

Proof. Q(i) is a product of row stochastic matricé€l(t]), therefore Q(7) is row stochastic.

From Lemm&B.b, for each
SH[t] < MJt]

Therefore,

7(n— iT(n—¢) .
5( ? Ht:(i—l)r(n—¢)+1 H[t] < Q(i)

By usingz = (i — 1)(n — ¢) + 1 in LemmaB.6, we conclude that the matrix product on the et of the above
inequality contains a non-zero column. Therefd®¥;) contains a non-zero column as well. Therefdig;) is a
scrambling matrix.
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Observe that(n — ¢) is finite, therefore 37("~%) is non-zero. Since the non-zero termsHift] matrices are
all 1, the non-zero entries Hi;(g:f))T(n_erH[t] must each b& 1. Therefore, there exists a non-zero column in
Q(4) with all the entries in the column being 57("~%). Therefore\(Q(i)) < 1 — g7(»=9), O

Proof of Theorern 413Sincev|t| = M[t] v]t — 1], andM]¢] is a row stochastic matrix, it follows thatigorithm 1
satisfies the validity condition.

By Claim[B.1,
Jim ST M) < Jim T A7) (19)
< Jm T AQM) (20)
~ 0 1)

The above argument makes use of the facts X(id([t]) < 1 andA\(Q(i)) < (1 — f7(»=%)) < 1. Thus, the rows
of IT!_, M|t] become identical in the limit. This observation, and the fhatv|t] = (IT'_, M[i])v[t — 1] together
imply that the state of the fault-free nodes satisfies the@gence condition.

Now, the validity and convergence conditions together jntpat there exists a positive scatasuch that

lim v[t] = tlggo (IT_, M[i])) v[0] = c1

t—o0

wherel denotes a column with all its entries being 1. O

C Connection to existing work

C.1 Undirected graph whenl > [*

Proof of Theorerh 5l1First we show “Condition NC implies > 3f + 1 and node connectivity at lea®f + 1”. It
has already been shown in Corollary]3.2 that 3f + 1. It remains to show the node connectivity @fis at least
2f + 1. We prove this by contradiction. Suppose the node-conrigcis no more thar2f. Let .S be a min cut of
G, then|S| < 2f. Let K; and K, be two connected componentsdy, the subgraph of7 induced by node set
V(G) - S.

Construct a node partition @ as follows: LetL = K1,R = Ko andC =V — F — L — R, where (1) if
S| > f+1,let F C SsuchthatF| = f; (2) otherwise, letF" = S. For the later case, there is no path between
LuCandRin Gp,thenk(LUC,i) =0 < fforanyi € Rin Gg. Similarly, s(RUC,j) =0 < fforanyj € L.
On the other hand, we know th@tsatisfies Condition NC. Thus, we arrive at a contradiction.

For the former case, i.el; C S, sinceG satisfies Condition NC, WLOG, assunieU C =« L in G, i.e.,
there exists a nodec L such that there are at legstt 1 disjoint paths from sek U C to nodei in Gr. Add an
additional nodey and connect nodg to all nodes inR U C'. Denote the resulting graph y,. From Menger’s
Theorem we know that a mig, i-cut in graphG’. has size at least + 1. On the other hand, sincgis a cut ofG,
then we knowS — F'is ay, i—cut inG’.. In addition, we knowS — F| = |S| — |F| < 2f — f < f. Thus we arrive
at a contradiction.

Next we show that7t > 3f + 1 and2f + 1 node-connectivity also imply Condition NC”. Consider abittary
node partitionL, R, C, F' such thatL, # O, R # O and|F| < f. Sincen > 3f 4+ 1 and|F| < f, either
ILUC|> f+1or|[RUC| > f+1. WLOG, assume thalR U C| > f + 1. Add a nodey connecting to all nodes
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in RU C' U F and denote the newly obtained graph@®y. By Expansion Lemn& G"is |F| + f + 1 connected.
Thus, fixi € L. There are at least’| + f + 1 internally disjointy, i—paths. So there are at legst- 1 internally
disjointy, i—paths inG’.. ThusRUC == L in Gr. Since this holds for all partitions of the forfn R, C, F’ where
L # 0, R+# ¢ and|F| < f, then we conclude that Condition NC holds. This completesptioof.

O

C.2 Directed graph whenl > [*

We first state the alternative condition of Condition 1.
Definition C.1. Given disjoint subsetd, B, F' of V(G) such thatl F'| < f, setA is said to propagate i’ — F to
setB if either (i) B = @, or (ii) for each node € B, there exist at leasf + 1 disjoint (A, b)—paths excluding".

We will denote the fact that set propagates iV — F to setB by the notation
AYS B
When it is not true thatl Y=<~ B, we will denote that fact by
V—F
A 4 B.
Theorem C.1. Given graphG, for any node partitionA, B, F' of V, where A and B are both non-empty, and

IF| < f, then eitherd "~ B or B " A holds <= for any partition L, C, R, F of V, such that bott. and R
are non-empty, antF’| < f,eitherLUC — R,or RUC — L.

For ease of future reference, we term the first condition énaihove theorem as Condition Propagate.

Proof of Theorerh 513We first show that Condition NC implies Condition 1.

For any node partitior, C, R, F' of G such thatl. # @, R # @ and|F| < f, in the induced subgrapfiz, at
least one of the two conditions below must be true:Ri) C =; L; (i) L U C =; R. Without loss of generality,
assume thaR U C' =; L and node € L has at leasf + 1 disjoint paths fromR U C. For each such path, there
exist at least an edge that goes fréinu C to a node inL. Since all the paths considered are disjoint, thus C
contains at leasft + 1 incoming neighbors of..

We next show that Condition Propagate implies Condition W&.prove this by contradiction. Suppose, on the
contrary, that Condition NC does not hold. There exists &tjgar L, C, R, F' of G such thatl. # @, R # (¢ and
|F| < f,inthe induced subgrapfip, (i) RUC #; L; (i) LUC #; R. For each nodéin L, there are at most

V-F
disjoint (R U C, i) paths excluding”. ThusRUC ~~ L.

On the other hand, a6 U C #; R, for each nodej € R, there are at mosf disjoint paths fromL U C
to j excluding F', which further implies that there are at mgsuisjoint paths fromZ to j excluding F'. Thus,

V-F
L + RUC. This contradicts the assumption that Condition Propagalds. Thus we conclude that Condition
Propagate implies Condition NC.

In addition, we know Condition Propagate—- Condition 1. Therefore, Condition NC<—- Condition
Propagate<=- Condition 1. O

SExpansion Lemma If G is ak-connected graph, ar@’ is formed fromG by adding a vertex having at leask neighbors inG, then
G’ is k-connected.
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