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Abstract. Betweenness centrality is one of the basic concepts in the
analysis of social networks. Initial definition for the betweenness of a
node in a graph is based on the fraction of the number of geodesics
(shortest paths) between any two nodes that given node lies on, to the
total number of the shortest paths connecting these nodes. This method
has quadratic complexity and does not take into account indirect paths.
We propose a new concept of betweenness centrality for weighted net-
work, beta current flow centrality, based on Kirchhoff’s law for electric
circuits. In comparison with the original current flow centrality and al-
pha current flow centrality, this new measure can be computed for larger
networks. The results of numerical experiments for some examples of net-
works, in particular, for the popular social network VKontakte as well
as the comparison with PageRank method are presented.

Keywords: beta current flow centrality, betweenness centrality,
PageRank, weighted graph, social networks.

1 Introduction

The online social networks gave impulse to the development of new graph-
theoretical methods for network analysis. Furthermore, social network analysis
methods are applied in many other fields such as: economics, physics, biology
and information technologies.

One of the basic concepts in the analysis of social networks is betweenness
centrality, a measure of centrality that is based on how well a node i is situated
in terms of the paths that it lies on [11]:

cB(i) =
1

nB

∑

s,t∈V

σs,t(i)

σs,t

, (1)

where σs,t is the total number of geodesics (shortest paths) between nodes s
and t, σs,t(i) is the number of geodesics between s and t that i lies on. The
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denominator nB captures that the node i could lie on paths between as many
as nB = (n − 1)(n − 2)/2 pairs of other nodes. The complexity of the fastest
algorithm to find cB(i) is O(mn) where m is the number of edges and presented
in [8].

One of shortcomings of the betweenness centrality is that it takes into ac-
counts only the shortest paths, ignoring the paths that might be one or two
steps longer, while the edges on such paths can be important for communication
processes in the network. In order to take such paths into account, Brandes and
Fleischer [9] and Newman [19] introduced the current flow betweenness central-
ity (CF-centrality, for short). In [9, 19] the graph is regarded as an electrical
network with edges being unit resistances. The CF-centrality of an edge is the
amount of current that flows through it, averaged over all source-destination
pairs, when one unit of current is induced at the source, and the destination
(sink) is connected to the ground.

However, the modification proposed in [9,19] comes with a cost. In compari-
son with the original betweenness centrality, the bottleneck in the computation
of CF-centrality is the matrix inversion with complexity O(n3). To mitigate this
high complexity, in [2] the authors suggested a modification of CF-centrality,
where in addition to the grounded sink, every node is attached to the ground
with some small conductance proportional to the node degree.

The proposal in [2] makes the underlying linear system strongly diagonally
dominant and reduces the computational cost of CF-centrality significantly but
still needs to apply averaging over all source-destination pairs. In the current
work, we go further and suggest to ground all nodes equally, which leads to
averaging only over source nodes and reduces further computational cost. We
refer to our new method as beta current flow centrality (βCF-centrality, for
short).

Additionally, in contrast to the works [2,9,19], we consider weighted networks.
Of course, the original betweenness centrality can easily be extended to weighted
networks with integer weights. Namely, transform each link of the weight k into
k parallel links of weight 1. We obtain a multigraph. The shortest path between
two nodes is determined the same way as in unweighted graph. But the number
of geodesics becomes larger because of the multi-links. For instance, if the nodes
i1 and i2 are connected by k links and the nodes i2 and i3 are connected by
l links, then the nodes i1 and i3 are connected by k · l paths. Applying the
formula (1) to the nodes of multigraph we derive the centrality value for weighted
graph, but with a very significant increase in computation cost. In the worst case
scenario of k links between any two nodes the complexity of the algorithm to
find cB(i) is O(mnk). In contrast, we note that our proposed method has the
same computational complexity for weighted and non-weighted graphs.

Finally, we would like to note that, due to its relatively small computational
cost, the proposed βCF-centrality is very well suited to serve as a characteristic
function in the Myerson vector [1, 18]. The concept of betweenness centrality
via the Myerson vector was proposed in [12–14]. Considering the nodes in the
network as players and the links as connections between players they formulate
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a communication game. The imputation of the general payoff in this cooperative
game can be used for ranking of players and, respectively, for nodes of the graph.
In [17] for the communication game with special characteristic function it was
proposed a fairly simple imputation procedure based on the generating function
and was shown that the resulting imputation agrees with the Myerson value.
The advantage of the Myerson value is in taking into account the impact of all
coalitions. Using the current flow betweenness centrality as a weight of any subset
of the network it is possible to determine a new characteristic function and then
rank the nodes as the Myerson value. This approach extends the game-theoretic
approach from non-weighted to weighted graphs.

2 Beta current flow centrality based on Kirchhoff’s law

Consider a weighted graph G = (V,E,W ), where V is the set of nodes, E is the
set of edges, and W is the matrix of weights, i.e.,

W (G) =











0 w1,2 . . . w1,n

w2,1 0 . . . w2,n

...
...

. . .
...

wn,1 wn,2 . . . 0











,

where wi,j > 0 is weight of the edge connecting the nodes i and j, n = |V |
is the number of nodes. Note that wi,j = 0 if nodes i and j are not adjacent.
Here we assume that G is undirected graph, i.e. wi,j = wj,i. By random walk
interpretation, the method can in fact be extended to directed networks.

Next we introduce the diagonal degree matrix:

D(G) =











d1 0 . . . 0
0 d2 . . . 0
...

...
. . .

...
0 0 . . . dn











,

where di =
∑n

j=1
wi,j is the sum of weights of the edges which are adjacent to

node i in graph G. The Laplacian matrix L(G) for weighted graph G is defined
as follows:

L(G) = D(G)−W (G) =











d1 −w1,2 . . . −w1,n

−w2,1 d2 . . . −w2,n

...
...

. . .
...

−wn,1 −wn,2 . . . dn











. (2)

Let the graph G′ be converted from the graph G by extension with an ad-
ditional node n + 1 connected with all nodes of the graph G with the links of
constant conductance β. Thus, we obtain the Laplacian matrix for the modified
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graph G′ as:

L(G′) = D(G′)−W (G′) =















d1 + β −w1,2 . . . −w1,n −β
−w2,1 d2 + β . . . −w2,n −β

...
...

. . .
...

...
−wn,1 −wn,2 . . . dn + β −β
−β −β . . . −β βn















. (3)

Suppose that a unit of current enters into the node s ∈ V and the node n + 1
is grounded. Let ϕs

i be the electric potential at node i when an electric charge
is located at node s. The vector of all potentials ϕs(G′) = [ϕs

1, . . . , ϕ
s
n, ϕ

s
n+1]

T

for the nodes of graph G′ is determined by the following system of equations
(Kirchhoff’s current law):

L(G′)ϕs(G′) = b′s, (4)

where b′s is the vector of n+ 1 components with the values:

b′s(i) =

{

1 i = s,

0 otherwise.
(5)

The Laplacian matrix (2) is singular. The potential values can be determined up
to a constant. Hence, without loss of generality, we can assume that the potential
in node n+ 1 is equal to 0 (grounded node). Then, from (3) it follows that

ϕ̃s(G′) = L̃(G′)−1bs, (6)

where ϕ̃s(G′), L̃(G′) and bs are obtained from (3) by deleting the last row and
column corresponding to node n+1. Notice that in ϕs(G′) and b′s zero elements
are deleted. This yields

ϕ̃s(G′) = [D(G)−W (G) + βI]−1bs, (7)

where I is a unity matrix of size n.
Thus we can consider the vector ϕ̃s(G′) as the vector of potential values for

the nodes of graph G, that is,

ϕ̃s(G) = [L(G) + βI]−1bs.

Rewrite (7) in the following form:

ϕ̃s(G) = [(D(G) + βI)−W (G)]−1bs =

= [I − (D(G) + βI)−1D(G)D−1(G)W (G)]−1(D(G) + βI)−1bs.

The matrices (D(G) + βI)−1 and (D(G) + βI)−1D(G) are diagonal with the
elements 1

di+β
and di

di+β
, i = 1, ..., n, denote these matrices as D1 and D2, re-

spectively. The matrixD−1(G)W (G) is stochastic. Denote it as P . Consequently,
we have

ϕ̃s(G) = [I −D2P ]−1D1bs =

∞
∑

k=0

(D2P )kD1bs. (8)
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From (8) it follows that the potential vector can be calculated by the recursion:

ϕ̃s
k+1(G) = D2Pϕ̃s

k(G) +D1bs, ϕ̃s
0(G) = 0.

Note that the convergence is guaranteed since the matrix D2P is substochastic.
The rate of convergence can be easily regulated by the value of β.

The current let-through the link e = (i, j) according to Ohm’s law is xs
e =

|ϕs
i − ϕs

j | · wi,j . Consequently, given that the electric charge is in node s, the
mean value of the current passing through node i is:

xs(i) =
1

2
(bs(i) +

∑

e:i∈e

xs
e), (9)

where

bs(i) =

{

1 i = s,

0 otherwise.

Finally, we define beta current flow centrality (βCF-centrality) of node i as
follows:

CFβ(i) =
1

n

∑

s∈V

xs(i). (10)

We note that the above equation and the law of large numbers can be used to
make a simple, light complexity, Monte Carlo type method for quick estimation
of βCF-centrality. Specifically, we can take a small subset of nodes, V1 ⊂ V ,
chosen independently and uniformly as source nodes in order to approximate
βCF-centrality:

CFβ(i) ≈
1

|V1|

∑

s∈V1

xs(i). (11)

Let us now investigate the limiting cases of large and small values of β. First,
assume that β is large. Then, we can derive the following asymptotics for the
potential vector.

ϕ̃s = [L+ βI]−1bs =
1

β
[I +

1

β
L]−1bs =

1

β
bs −

1

β2
Lbs + o

(

1

β2

)

From the above asymptotics, we can conclude that xs(s) = 1/2(1+ds/β)+o(1/β)
and xs(i) = o(1), for i 6= s, and consequently,

CFβ(i) =
1

2n
+ o(1), as β → ∞,

which does not give informative ranking. Now for the other case β → 0, we can
derive the following asymptotics

ϕ̃s = [L+ βI]−1bs =

[

1

β

1

n
11T + L♯ +O(β)

]

bs =
1

β

1

n
1 + L♯

⋆,s +O(β),
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where we have used the Laurent series expansion for inversion of singularly
perturbed matrices (see e.g., [4, Chapter 2]) with 1 denoting vector of ones of
appropriate dimension, and L♯ = [L − 1/n11T ]−1 − 1/n11T denoting the group
inverse of the Laplacian. Thus, we have

xs
e = |L♯

i,s − L♯
j,s|wi,j + o(1),

and hence a well-defined and non-trivial limit for βCF-centrality exists when
β → 0.

3 Illustrative examples

3.1 Weighted network of six nodes

Fig. 1. Weighted network of six nodes.

Let us start with a simple six nodes network example which nicely explains
the properties of the beta current flow centrality (see Fig.1). We compute all
main measures of centrality for that weighted graph with six nodes. The results
of computation are presented in Table 1. We see that classical betweenness cen-
trality evaluates only the nodes A and D and gives 0 to other four nodes, even
though they are obviously also important. The PageRank method ranks all nodes
with equal values and thus it is indiscriminatory in this particular case. The cur-
rent flow betweenness centrality and the βCF-centrality evaluate all nodes in
quite similar manner. In particular, they both give rather high values to nodes
A and D. As we mentioned in the introduction, the comparative advantage of
the βCF-centrality in its small computational costs.

Table 1. Measures of centrality for weighted graph with six nodes

Nodes A B C D E F

Original betweenness centrality 6 0 0 6 0 0

PageRank centrality α = 0.85 1/6 1/6 1/6 1/6 1/6 1/6

Current flow betweenness centrality 1.12 0.66 0.66 1.12 0.66 0.66

βCF-centrality β = 1 0.27 0.19 0.19 0.27 0.19 0.19
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3.2 Star graph

Consider a graph G of n nodes in the form of a star. Let node 1 be the center
of the star. The modified Laplacian matrix in this case is given by

L̃ = L+ βI = D(G)−W (G) + βI

=











n− 1 + β −1 . . . −1
−1 1 + β . . . 0
...

...
. . .

...
−1 0 . . . 1 + β











.

Its inverse matrix is
L̃−1 = (L+ βI)−1

=
1

β(1 + β)(n + β)















(1 + β)2 1 + β 1 + β . . . 1 + β
1 + β 1 + β(n+ β) 1 + β . . . 1
1 + β 1 1 + β(n+ β) . . . 1

...
...

...
. . .

...
1 + β 1 1 . . . 1 + β(n+ β)















.

If we take as a source node s = 1, we find from (9) that

xs(1) =
1

2

(

1 +
n− 1

n+ β

)

,

and

xs(i) =
1

2(n+ β)
, i = 2, ..., n.

And for a source node s 6= 1, we obtain

xs(1) =
2n− 3 + β

2(1 + β)(n+ β)
,

xs(s) =
1

2

(

1 +
n− 1 + β

(1 + β)(n + β)

)

,

xs(i) =
1

2(1 + β)(n+ β)
, i 6= 1, s.

The latter yields that the βCF-centrality for the star graph is

CFβ(1) =
1

2n

(

1 +
n− 1

n+ β
+ (n− 1)

2n− 3 + β

(1 + β)(n+ β)

)

=
1

2n
+
(n− 1)(n− 1 + β)

n(1 + β)(n + β)
,

CFβ(i) =
1

2n

(

1

n+ β
+ 1 +

n− 1 + β

(1 + β)(n + β)
+ (n− 2)

1

(1 + β)(n + β)

)
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=
1

2n
+

n− 1 + β

n(1 + β)(n+ β)
, i = 2, ..., n.

In particular, we can conclude from the above expressions that if β → ∞ all
nodes obtain the same value 1/(2n). And if β → 0 and n is large, the central
node obtains a value very close to one and the other nodes have nearly zero
value. This is in agreement with the general asymptotics derived in the previous
section.

This example also shows that the βCF-centrality can be viewed as a flexible
characteristic function and thus efficiently used in the calculation of the Myerson
vector.

3.3 The results of computer experiments with online social network

VKontakte

In this subsection we consider the weighted graph extracted from the popular
Russian social network VKontakte. The graph corresponds to the online com-
munity devoted to game theory. This community consists of 483 participants.
As a weight of a link we take the number of common friends between the par-
ticipants. In fact, the probability that two participants are familiar depends on
the number of common friends [14]. This approach is often used in online social
networks for link recommendation.

Fig. 2. Principal component of the community Game Theory in the social network
VKontakte (number of nodes: 275, number of edges: 805 and mean path’s length:
3.36).

In Fig. 2 we show the principal component of the community Game Theory,
which consists of 275 nodes. It is difficult to see from Fig. 2 which nodes are
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Fig. 3. Principal component of the community Game Theory in the social network
VKontakte after deleting the links weighted less than 3 (number of nodes: 71, number
of edges: 116 and mean path’s length: 3.75).

more important with respect to the community connection structure. Then, we
have converted this graph to another modified graph by deleting the links whose
weights are less than three. This new weighted graph is presented in Fig. 3. The
thickness of a link depends on the link weight, i.e. on the number of common
friends.

The results of computing the βCF-centrality for the social network VKon-
takte are given in Table 2. Here we take β = 0.3. It is useful to compare these
values of βCF-centrality with the results corresponding to the PageRank and
classical notation of centrality using the shortest paths [20] for the parameter
α = 1.5. We present in the table only the lists of top-10 nodes for each centrality
measure.

From Table 2 we find that all four methods ranked two main nodes 1 and 8
in the same order. We can already see that, as in the six node network example,
βCF-centrality is more similar to CF-centrality and betweenness centrality than
to PageRank.

On Figure 3 we can see that node 52 connects the subgraph {3, 4, 6, 7, 17, 20}
with the rest of the graph. Thus, we can expect that node 52 deserves high cen-
trality rank. Similarly, we also expect that node 7 should have high centrality
rank. The ranking according to βCF-centrality confirms this intuitive expecta-
tion, as they take positions 3 and 7, respectively (See Table 2). We also note
that nodes 4, 20, 6, 17 and 3 took positions 22, 24, 36, 68 and 69, respectively.
However, PageRank gives to nodes 52 and 7 only positions 22 and 12, respec-
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tively. Furthermore, under PageRank ranking nodes 4, 20 and 6 took positions
6, 8 and 10, respectively. Namely, PageRank ranks nodes 4, 20 and 6 higher than
node 52. This does not correspond at all to our intuition.

Finally, in Table 3 we present the results of the Monte Carlo approach (see
equation (11)) with sampling only 10% of the nodes as sources. Nodes 1 and 8
as before lead the ranking and there are 6 correct elements in the top-10 basket
of nodes [3]. Monte Carlo approach also determines correctly the ranks of the
key nodes 52 and 7.

4 Conclusion

Betweenness centrality measure is an important tool in the analysis of social
networks. The structure of a network is represented by a graph. The original
betweenness centrality measure is based on the assumption that the information
is transmitted along geodesics (shortest paths) between any two nodes. There
is a criticism of this approach that it does not take into account information
spread along non-shortest paths. The current flow betweenness centrality based
on electric circuit interpretation tries to mitigate this shortcoming. However,
this comes with the increase of computational cost. We introduce here the βCF-
centrality method which depends on the parameter β. This method is versatile,
has lower computational complexity and can be easily used as characteristic
function in the Myerson vector.

Table 2. Measures of centrality for top nodes of social network VKontakte.

Nodes βCF-centrality Nodes PageRank Nodes Weighted Nodes CF-centrality

betweenness

(β = 0.3) centrality centrality “tnet”

(α = 0.85) (α = 1.5)

1 0.4168 1 0.1359 1 1846 1 0.6406

8 0.3143 8 0.1189 8 1398 8 0.4919

52 0.1463 56 0.0432 52 500 69 0.2946

69 0.1454 28 0.0366 69 494 52 0.2748

28 0.1299 44 0.0277 47 384 28 0.2095

56 0.1273 4 0.0267 44 331 56 0.1942

7 0.1002 32 0.0252 63 331 47 0.1880

15 0.0931 20 0.0244 7 325 44 0.1649

66 0.0922 63 0.0228 55 265 15 0.1645

63 0.0896 6 0.0212 15 228 7 0.1642
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Table 3. The results of the Monte Carlo approach with sampling only 10% of
the nodes as sources

Nodes βCF-centrality Nodes Monte Carlo

(β = 0.3) approach

10% of the nodes

1 0.4168 1 0.5043

8 0.3143 8 0.4134

52 0.1463 52 0.2468

69 0.1454 23 0.2307

28 0.1299 28 0.2255

56 0.1273 20 0.2003

7 0.1002 7 0.1982

15 0.0931 24 0.1871

66 0.0922 63 0.1789

63 0.0896 10 0.1786

47 0.0889 15 0.1763

24 0.0880 55 0.1756

44 0.0842 36 0.1613

55 0.0801 69 0.1565

49 0.0725 12 0.1457

23 0.0702 39 0.1438

13 0.0699 45 0.1403

10 0.0610 56 0.1397

14 0.0598 3 0.1360

25 0.0564 4 0.1234

Acknowledgements

This research is supported by Russian Humanitarian Science Foundation (project
15-02-00352), the Division of Mathematical Sciences of Russian Academy of
Sciences, EU Project Congas FP7-ICT-2011-8-317672 and Campus France.



12 K.E. Avrachenkov, V.V. Mazalov and B.T. Tsynguev

References

1. Aumann, R., Myerson, R.: Endogenous formation of links between players and coali-
tions: an application of the Shapley value. In: The Shapley value, Cambridge Uni-
versity Press, pp.175-191 (1988)

2. Avrachenkov, K., Litvak, N., Medyanikov, V., Sokol, M.: Alpha current flow be-
tweenness centrality. In Proceedings of WAW 2013, LNCS v.8305, pp.106-117 (2013)

3. Avrachenkov, K., Litvak, N., Nemirovsky, D., Smirnova, E., Sokol, M.: Quick de-
tection of top-k personalized pagerank lists. In Proceedings of WAW 2011, LNCS
v.6732, pp.50-61 (2011)

4. Avrachenkov, K.E., Filar J.A., Howlett, P.G.: Analytic Perturbation Theory and
its Applications, SIAM (2013).

5. Borgatti, S.P., Everett, M.G., Freeman, L.C.: Ucinet for Windows: Software for
Social Network Analysis. Harvard (2002)

6. Borm, P., Owen, G., Tijs, S.: On the position value for communication situations.
SIAM J. on Disc. Math., v.5(3), pp.305-320 (1992)

7. Borm, P., van den Nouweland, A., Tijs, S.: Cooperation and communication restric-
tions: a survey. In: Imperfections and Behavior in Economic Organizations. Kluwer
(1994)

8. Brandes, U.: A faster algorithm for betweenness centrality. Journal of Mathematical
Sociology, v.25, pp.163-177 (2001)

9. Brandes, U., Fleischer, D.: Centrality measures based on current flow. In Proceed-
ings of the 22nd annual conference on Theoretical Aspects of Computer Science,
pp.533-544 (2005)

10. Calvo, E., Lasaga, J., van den Nouweland, A.: Values of games with probabilistic
graphs. Math. Social Sci., v.37, pp.79-95 (1999)

11. Freeman, L.C.: A set of measures of centrality based on betweenness. Sociometry,
v.40, pp.35-41 (1977)

12. Jackson, M.O.: Allocation rules for network games. Games and Econ. Behav.,
v.51(1), pp.128-154 (2005)

13. Jackson, M.O., Wolinsky, J.: A strategic model of social and economic networks.
J. Econ. Theory, v.71(1), pp.44-74 (1996)

14. Jackson, M.O.: Social and economic networks. Princeton University Press (2008)
15. Jamison, R.E.: Alternating Whitney sums and matchings in trees. Part 1. Disc.

Math., v.67, pp.177-189 (1987)
16. Mazalov, V.: Mathematical Game Theory and Applications. Wiley (2014)
17. Mazalov, V.V., Trukhina, L.I.: Generating functions and the Myerson vector in

communication networks. Disc. Math. and Appl. v.24(5), pp.295-303 (2014)
18. Myerson, R.B.: Graphs and cooperation in games. Math. Oper. Res., v.2, pp.225-

229 (1977)
19. Newman, M.E.J.: A measure of betweenness centrality based on random walks.

Social networks, v.27, pp.39-54 (2005)
20. Opsahl, T., Agneessens, F., Skvoretz, J.: Node centrality in weighted networks:

generalizing degree and shortest paths. Social Networks, v.32, pp.245-251 (2010)
21. Slikker, M.: Link monotonic allocation schemes. Int. Game Theory Review, vol.

7(4), pp.473-489 (2005)
22. Slikker, M., Gilles, R.P., Norde, H., Tijs, S.: Directed networks, allocation proper-

ties and hierarchy formation. Math. Social Sci., v.49(1), pp.55-80 (2005)
23. Talman, D., Yamamoto, Y.: Average tree solutions and subcore for acyclic graph

games. J. Oper. Res. Soc. Japan, v.51(3), pp.187-201 (2008)


