
Non-cooperative algorithms in self-assembly

Pierre-Etienne Meunier∗

Abstract

We show the first non-trivial positive algorithmic results (i.e. programs whose output is
larger than their size), in a model of self-assembly that has so far resisted many attempts of
formal analysis or programming: the planar non-cooperative variant of Winfree’s abstract Tile
Assembly Model.

This model has been the center of several open problems and conjectures in the last fifteen
years, and the first fully general results on its computational power were only proven recently
(SODA 2014). These results, as well as ours, exemplify the intricate connections between
computation and geometry that can occur in self-assembly.

In this model, tiles can stick to an existing assembly as soon as one of their sides matches
the existing assembly. This feature contrasts with the general cooperative model, where it can
be required that tiles match on several of their sides in order to bind.

In order to describe our algorithms, we also introduce a generalization of regular expressions
called baggins expression. Finally, we compare this model to other automata-theoretic models.

1 Introduction

Self-assembly is the process by which unorganized atomic components coalesce into complex shapes
and structures in an unsupervised way. This kind of processes is ubiquitous in nature, and in
particular in the complex molecular components of life. In recent years, its study has yielded
a growing number of impressive experimental realizations, ranging from regular arrays [30] to
fractal structures [11, 23], smiling faces [21, 28], DNA tweezers [31], logic circuits [19, 24], neural
networks [20], and molecular robots [15].

Potential future applications range from more efficient, cheaper computational units to inter-
actions with natural biological processes, both for medical diagnosis and treatment, and a better
understanding of evolution and development.

Realizing that programming these processes is the keystone of atomically precise molecular en-
gineering, Winfree introduced in 1998 the abstract Tile Assembly Model [29] to program assemblies
using the components built by Seeman [25] using DNA. This model is similar to Wang tilings [27],
essentially augmented with a mechanism for sequential growth, and thus allowing mismatches be-
tween adjacent tiles. More precisely, in the abstract Tile Assembly Model, we consider square tiles
from a finite set of types, with colors and integer glue strengths on each side. The assembly starts
from a single “seed” tile, and proceeds by adding one tile at a time, asynchronously and nondeter-
ministically. At each step, a tile can stick to the current assembly if the glue strengths, on its sides
whose colors match the current assembly, sum up to at least a parameter of the model called the
temperature τ = 1, 2, 3 . . .

∗Aix Marseille Université, CNRS, LIF UMR 7279, 13288, Marseille, France, pierre-etienne.meunier@lif.

univ-mrs.fr. Supported in part by National Science Foundation Grant CCF-1219274.

1

ar
X

iv
:1

40
6.

68
89

v2
 [

cs
.C

G
]

 1
0

Ju
l 2

01
4

pierre-etienne.meunier@lif.univ-mrs.fr
pierre-etienne.meunier@lif.univ-mrs.fr

In the present work, we are mostly interested in the case of temperature 1 self-assembly, also
called non-cooperative self-assembly. In the abstract Tile Assembly Model, when the temperature
increases, fewer assemblies are possible, allowing more control over producible assemblies: for
instance, cooperative self-assembly (i.e. at temperature at least 2) is able to simulate arbitrary
Turing machines [14, 22, 29], and produce arbitrary connected shapes with a number of tile types
within a log factor of their Kolmogorov complexity [26]. More surprisingly, this model has even
been shown intrinsically universal [8], meaning that there is a single tileset capable of simulating
arbitrary tile assembly systems, modulo rescaling, even with a single tile type [6].

Despite its apparent simplicity, the non-cooperative model is far from being well understood,
and not known to be capable of general Turing computation. However, this is a fundamental and
ubiquitous form of growth in nature, as many systems, from plants to mycelium to percolation
processes, exhibit this kind of behavior by growing and branching tips.

In one of the first studies on self-assembly [22], Rothemund and Winfree conjectured it to be less
powerful than cooperative self-assembly. The first fully general separation result, without unproven
hypotheses, was only proven recently [18], in the context of intrinsic universality [7–9]. Before that,
several results had shown separations between particular cases of the model [3,10,17], and general
self-assembly.

One of the most puzzling results on this model is its capability to simulate Turing machines in
the three dimensional generalization of the model [5], whereas in one dimension, it is equivalent to
finite automata.

1.1 Main results

Here, we present the first efficient constructions in the fully general planar noncooperative model.
The generally accepted definition of an “efficient program”, in this context, is a program whose
output is larger than its size. Of course, a simple first result on this model shows that arbitrary
shapes can be built with a number of tile types equal to the number of tiles in the shape, or (for
simpler shapes) equal to the Manhattan diameter of the shape [22].

Surprisingly, our results show that there are tile assembly systems whose terminal assemblies
are all larger (in Manhattan diameter) than their number of tile types. Although a number of terms
have not been defined yet, we briefly introduce our two main constructions. The first construction
can be proven easily by hand; we will demonstrate it first in Section 3.2, and then generalize it in
Section 3.3, to get the following theorem:

Theorem 3.4. For all integer n, there is a tile assembly system Tn = (Tn, σn, 1) such that |Tn| = n,
and for all terminal assembly a ∈ A�[Tn], a is finite and of height 2n+ o(n).

Intuitively, this construction works by preventing subpaths starting and ending with the same
tile type to repeat completely. However, it does not address the possibility that some paths be
efficient by repeating a subpath several times, before being blocked. Since these partial pumping
have been a major puzzle of the field, we provide a second efficient construction allowing it.

However, its proof is significantly more complicated, and a generalized form of our construction
does not seem easy. In Section 3.4, we present the computer-aided proof of its efficiency, that we
have needed due to the size at which the first “savings” of tile types are seen. Computer-aided
proofs are of growing importance in computer science and mathematics, as exemplified by its latest
developments in complexity theory, also in the context of tile assembly [13].

However, our case here is significantly simpler, since this construction could be verified by hand,
probably within a few hours:

2

Theorem 3.5. There is a tile assembly system T = (T, σ, 1) such that |dom(σ)| = 1, and all
terminal assemblies of T contain a path P of Manhattan diameter strictly larger than |T |+ 1, that
is partially pumped, i.e. parts of P are consecutive repetitions of one of its subpath.

Finally, we compare this model, and several generalizations of it, to various models of automata:
finite automata, tree automata, and pushdown automata. These models are explained in Section
4, and the comparison is summarized on Figure 5.

1.2 Key technical ideas and methods

A major challenge, when studying non-cooperative self-assembly, is to overcome the intuition given
by the one-dimensional case (which is equivalent to finite automata), that any repetition of a tile
type may allow to “pump” an assembly. Indeed, an easy observation shows that assemblies formed
at temperature 1 are nothing more than a collection of paths growing from the seed: if a tile type
is ever repeated along a path, it is tempting to try to repeat the subpath between these repetitions.

However, geometry makes things more complex. First, there are simple counter-examples to
this pumping idea. Moreover, paths could first lay “blocking parts” out, and then come back and
branch to check which type of blocker has been formed; this is for instance the primary mechanism
used by the simulation of Turing machines in 3d shown in [5]. However, their construction “fakes
cooperation” by laying a blocker out for all alternatives but one.

On the other hand, recent (unpublished) progresses tend to show that this kind of “bit reading”
gadgets is not possible in two dimensions. This model thus asks a different question: can you write
efficient programs without the ability to read your workspace?

Our results show that this is possible, at least to some extent. They do so by carefully consider-
ing the fact that paths that are monotonic in one dimension are pumpable; therefore, we must build
“caves”, i.e. subpaths that are non-monotonic in both dimensions. However, since these are more
expensive to build than straight paths, we also need to reuse these extra tile types several times,
either by making these subpaths self-blocking (in Section 3.3), and branching before the blocking,
or by allowing some pumping (in Section 3.4) before blocking it.

These results are quite puzzling and counter-intuitive; however, they do not seem to make
Turing computation possible. Therefore, a natural question is the exact power of this model, that
depends strongly on geometry, and that no other “classical” model seems to capture, as shown in
Section 4.

2 Definitions and preliminaries

We begin by defining the abstract tile assembly model, in a slightly more general framework than
usually. Let G be a group with n generators

−→
i0 ,
−→
i1 , . . . ,

−−→
in−1, and arbitrary relators. We will use G

to define the geometric space: for instance, Z2 has two generators
−→
i0 = (1, 0) and

−→
i1 = (0, 1), and

one relation
−→
i0
−→
i1 =

−→
i1
−→
i0 .

A tile type is a unit square with 2n sides, each consisting of a glue label and a nonnegative
integer strength. In the most common case where n = 2, we call a tile’s sides north, east, south,
and west, respectively, according to the following picture:

3

−→
i0 (East)

−→
i1 (North)

−−→i0 (West)

−−→i1 (South)

Also, we write these directions N, E, S and W, respectively. When there is no ambiguity, we
also write N(t), E(t), S(t) and W(t), to mean the north, east, south and west glue of tile type t,
respectively. Moreover, for each direction d, we write −d its opposite direction. We assume a finite
set T of tile types, but an infinite supply of copies of each type. An assembly is a positioning of the
tiles on the Cayley graph of G, that is, a partial function α : G 99K T . To simplify the notations,
we will assume G = Z2 throughout the paper, unless explicitly mentioned.

In this context, we say that two elements g0, g1 ∈ G are adjacent if g1 = g0 +
−→
ik (respectively

g1 = g0−
−→
ik) for some generator

−→
ik . In this case, their abutting side is the

−→
ik side (respectively the

−−→ik side) of g0, and the −−→ik side (respectively the
−→
ik side) of g1.

We say that two tiles in an assembly interact, or are stably attached, if the glue labels on their
abutting side are equal, and have positive strength. An assembly α induces a weighted binding
graph Gα = (Vα, Eα), where Vα = dom(α) (the domain of α), and there is an edge (a, b) ∈ Eα if
and only if a and b interact, and this edge is weighted by the glue strength of that interaction. The
assembly is said to be τ -stable if any cut of Gα has weight at least τ .

A tile assembly system is a triple T = (T, σ, τ), where T is a finite tile set, σ is called the seed,
and τ is the temperature. Throughout this paper, we will always have τ = 1, and σ will always
be an assembly with exactly one tile. Therefore, we can make the simplifying assumption that all
glues have strength one without changing the behavior of the model.

Given two τ -stable assemblies α and β, we say that α is a subassembly of β, and write α v β,
if dom(α) ⊆ dom(β) and for all p ∈ dom(α), α(p) = β(p). We also write α →T1 β if we can get β
from α by the binding of a single tile, that is, if α v β and |dom(β) \ dom(α)| = 1. We say that γ
is producible from α, and write α→T γ if there is a (possibly empty) sequence α = α1, . . . , αn = γ
such that α1 →T1 . . .→T1 αn.

A sequence of k ∈ Z+ ∪ {∞} assemblies α0, α1, . . . over AT is a T -assembly sequence if, for all
1 ≤ i < k, αi−1 →T1 αi.

The set of productions of a tile assembly system T = (T, σ, τ), written A[T], is the set of all
assemblies producible from σ. An assembly α is called terminal if there is no β such that α→T1 β.
The set of terminal assemblies is written A�[T].

The Manhattan distance ‖
−−→
AB‖1 between two points A = (xA, yA) and B = (xB, yB) is ‖

−−→
AB‖1 =

|xA−xB|+ |yA−yB|. The Manhattan diameter of a connected assembly is the maximal Manhattan
distance between two points in the assembly. We write (un)n∈N to mean “the infinite sequence u0,
u1, u2, . . .”.

A regular tree grammar G = (S,N,F , R), according to [4], is given by an axiom S, a set N of
nonterminal symbols, a set F of terminal symbols, and a set R of production rules of the form A→ β
where A is a nonterminal and β is a tree whose nodes are labeled by elements of F ∪N . Moreover,
it is required that F ∩ N = ∅. In this work, we write trees as “nested function applications”: for
instance, f(x, g(y, z)) is the following tree:

4

x

y z

g

f

The classical example of a regular tree grammar is the grammar of lists of integers, with one
axiom List, non-terminals List and Nat, terminals 0, nil, s() and cons(,), and the following rules:

List → nil

List → cons(Nat, List)

Nat → 0

Nat → s(Nat)

3 Efficient algorithms

In this section, we show the main ideas of our efficient tileset. In order to describe them unam-
biguously, we use two different tools: figures showing the complete tileset and seed on the one
hand, and programs written in a generalization of regular expressions called baggins expressions.
An implementation of these expressions using a “sublanguage” of Haskell (i.e. a monad) is available
at http://hackage.haskell.org/package/Baggins.

Moreover, all the constructions of this paper were generated in this language, and their source
code is available on the self-assembly wiki1.

3.1 Baggins expressions

A program in this language is an expr, where expr is defined by the following grammar (where an
identifier is a name):

expr := atom | let | bind | from | expr ; expr

atom := moveN | moveE | moveS | moveW
let := let identifier

bind := bind [N | E | S | W] identifier

from := from identifier

Definition 3.1. Let e be a baggins expression. Let β the set of its identifiers. We define the unique
tileset described by e by induction on e:

Let T0 be a tileset consisting of a unique tile type σ0, C0 = σ0 and α0 is the function defined
nowhere. Then, for all i ∈ {0, 1, . . . , |e| − 1}:

• If ei = moveN, Ci+1 = (gN, gE,N(Ci), gW), and Ti+1 = Ti ∪ {Ci+1}, where gN, gE, gW are all
new glues, not appearing on any tile of Ti. Moreover, let αi+1 = α.

1 http://self-assembly.net/wiki/index.php?title=Baggins-expressions

5

http://hackage.haskell.org/package/Baggins
http://self-assembly.net/wiki/index.php?title=Baggins-expressions

• If ei = moveS, Ci+1 = (S(Ci), gE, gS, gW), and Ti+1 = Ti ∪ {Ci+1}, where gS, gE, gW are all
new glues, not appearing on any tile of Ti. Moreover, let αi+1 = α.

• If ei = moveE, Ci+1 = (gN,W(Ci), gS, gW), and Ti+1 = Ti ∪ {Ci+1}, where gN, gS, gW are all
new glues, not appearing on any tile of Ti. Moreover, let αi+1 = α.

• If ei = moveW, Ci+1 = (gN, gE, gS,E(Ci)), and Ti+1 = Ti ∪ {Ci+1}, where gN, gE, gS are all
new glues, not appearing on any tile of Ti. Moreover, let αi+1 = α.

• If ei = let x, then let αi+1 be the function of domain dom(αi) ∪ {x}, such that for all
y ∈ dom(αi) \ {x}, αi+1(y) = αi(y), and αi+1(x) = Ci.

• If ei = bind d x, where d ∈ {N, S,E,W} and x ∈ αi, then:

– Ci+1 = Ci,

– αi+1 = αi, and

– let g be the glue on side d of Ci, and −g be the glue on side −d of αi(x). Then Ti+1 is
Ti where all glues on sides d and −d, that are equal to g′, are replaced with g.

• If ei = from x, where x ∈ αi, let Ti+1 = Ti, αi+1 = αi, and Ci = αi(x).

Theorem 3.2. Definition 3.1 is “sound and complete”, i.e. any baggins expression describes exactly
one tile assembly system, and any single-seeded tile assembly system can be described by a baggins
expression.

Proof. We prove the two properties independently:

• First remark that the construction of Definition 3.1 defines a tileset and a seed non-ambiguously.

• Now, let T = (T, σ, 1) be a temperature 1 tile assembly system with |dom(σ)| = 1. Start with
D = {σ}. Then, for each tile t ∈ T \D that can bind to a tile t0 ∈ D on side d ∈ {N,S,E,W}
of t0, add from t0 moved to D. Also, from any previously created tile t1 that can bind to t0,
add from t0 bind d t1 to D, if this binding has not been defined before, either directly or by
operation from t1 bind (−d) t1 (and do nothing else).

Clearly, this baggins expression describes T , by Definition 3.1.

In order to make the examples in the appendix shorter and more intuitive, the actual language
used in our examples differs slightly from this grammar. However, all its instructions can clearly
be written using baggins expression constructs.

3.2 A first efficient algorithm

In this section, we call a tile assembly system T = (T, σ, 1) efficient if there is an integer r, such that
the Manhattan diameter of all the terminal assemblies of T is strictly larger than |T |+ |dom(σ)|,
and at most r.

A simple observation on paths, is that any path that is monotonic in one dimension (i.e. the
sequence (yPi)i of its y-coordinates, or the sequence (xPi)i of its x-coordinates is monotonic), and
repeats a tile type, is pumpable.

6

Therefore, the main ingredient of efficient paths is non-monotonicity: we call a vertical cave
(respectively horizontal cave) a part of a path P between two indices i and j, such that (1) yPi = yPj ,
(2) for all k < i, yPk

≤ yPi , and (3) for all k ∈ {i+ 1, i+ 2, . . . , j − 1}, yPk
< yPi .

Our first tile assembly system T0 is presented completely in Appendix A, in the form of a baggins
expression. We prove it now:

Theorem 3.3. For all integer n, there is a tile assembly system Tn = (Tn, σn, 1) such that |Tn| = n,

and for all terminal assembly a ∈ A�[Tn], a is finite and of height 5(n+2)
4 − 23.

Proof. Let T0 be the set of tiles appearing on the lower right assembly of Figure 1, and σ0 be the
upper left assembly of that figure.

This tileset has 38 tile types, and its terminal assemblies are of height 27; it is not efficient yet.
But we will now add a number of new tile types to make it efficient. First replace the following
glues (zoom in on Figure 1 to see these glue numbers, or see the large version in Appendix D):

• glue 6 by (6, 0) on the north, and (6, n) on the south,

• glue 14 by (14, 0) on the north, and (14, n) on the south,

• glue 24 by (24, 0) on the north, and (24, n) on the south,

• glue 26 by (26, 0) on the north, and (26, n) on the south,

And then for all i ∈ {6, 14, 24, 26} and j ∈ {0, 1, . . . , n−1}, add a tile type to T , with south glue
(i, j) and north glue (i, j + 1). In total, we have added 4n tile types, but the terminal assemblies
of T grow 5n higher. See Figure 2 for a larger example (saving tile type).

1

20

1
9

2120 2221 2322

19
18

18
17

17
16

16
15

9

8

109 1110 1211 1312 1413

15

3614

8
7

1 21 32 43 54 65

7
32

6

20

19

2120 2221 2322 2423

25

24

19
18

29

30

28

35

29 2728 2627

25

26

18
17

30
31

17
16

31

3 43 54 65

7
32

6 2
1

34

2
2

2
1

2
3

2
2

2
4

2
3

25

2
4

16
15

32

33

34

33 28

35

29 2728 2627

25

26 22

37

2322 2423

25

24

9

8

1
09 1
1

1
0

1
2

1
1

1
3

1
2

1
4

1
3

15

3
6

1
4

35

1
2

1
3

1
2

1
4

1
3

15

3
6

1
4

37

3
6

2
7

2
8

2
6

2
7

25

2
6

8
7

1 21 32 43 54 65

7
32

6

20

19

2120 2221 2322 2423

25

24

19
18

29

30

28

35

29 2728 2627

25

26 22

37

2
3

2
2

2
4

2
3

25

2
4

1
8

17

3
0

31

3
5

12 1312 1413

1
5

3614

3
7

36 2728 2627

2
5

26

17
16

31

3 43 54 65

7
32

6 21

34

2221 2322 2423

25

24

16
15

22

37

2322 2423

25

24

32

33

34

33 28

35

29 2728 2627

25

26 22

37

2322 2423

25

24

9

8

109 1110 1211 1312 1413

15

3614

37

36 2728 2627

25

26

35

12 1312 1413

15

3614

37

36 2728 2627

25

26

8
7

1 21 32 43 54 65

7
3
2

6 21

3
4

2221 2322 2423

2
5

24

32

33

34

33 28

35

29 2728 2627

25

26 22

37

2322 2423

25

24

35

12 1312 1413

15

3614

37

36 2728 2627

25

26

Figure 1: Four successive stages of the construction: first the seed, then the main path grows, and
finally, additional branches can also grow completely, along the main path.

34

33

3534 3635 3736 3837 3938 4039 4140 4241 4342 4443 4544

46

45

33
32

57

58

56

63

57 5556 5455 5354 5253 5152 5051 4950 4849 4748

46

47 36

65

3736 3837 3938 4039 4140 4241 4342 4443 4544

46

45

32
31

58
59

63

19 2019 2120 2221 2322 2423 2524 2625 2726 2827

29

6428

65

64 5556 5455 5354 5253 5152 5051 4950 4849 4748

46

47

31
30

59

3 43 54 65 76 87 98 109 1110 1211 1312

14
60

13 35

62

3635 3736 3837 3938 4039 4140 4241 4342 4443 4544

46

45

30
29

36

65

3736 3837 3938 4039 4140 4241 4342 4443 4544

46

45

60

61

62

61 56

63

57 5556 5455 5354 5253 5152 5051 4950 4849 4748

46

47 36

65

3736 3837 3938 4039 4140 4241 4342 4443 4544

46

45

16

15

1716 1817 1918 2019 2120 2221 2322 2423 2524 2625 2726 2827

29

6428

65

64 5556 5455 5354 5253 5152 5051 4950 4849 4748

46

47

63

19 2019 2120 2221 2322 2423 2524 2625 2726 2827

29

6428

65

64 5556 5455 5354 5253 5152 5051 4950 4849 4748

46

47

1
5

14

1 21 32 43 54 65 76 87 98 109 1110 1211 1312

14
60

13 35

62

3635 3736 3837 3938 4039 4140 4241 4342 4443 4544

46

45

60

61

62

61 56

63

57 5556 5455 5354 5253 5152 5051 4950 4849 4748

46

47 36

65

3736 3837 3938 4039 4140 4241 4342 4443 4544

46

45

63

19 2019 2120 2221 2322 2423 2524 2625 2726 2827

29

6428

65

64 5556 5455 5354 5253 5152 5051 4950 4849 4748

46

47

Figure 2: An efficient tile assembly system, producing an assembly of width 112 with 106 tile types.
This terminal assembly grew from a seed containing only its leftmost tile.

7

3.3 A more general scheme

In the construction of Theorem 3.3, repetitions of a tile type are done at the expense of width of
the assembly: indeed, in order to avoid collisions between repeated paths, each repetition needs to
be more and more narrow. Generalizing this remark yields the following Theorem:

Theorem 3.4. For all integer n, there is a tile assembly system Tn = (Tn, σn, 1) such that |Tn| = n,
and for all terminal assembly a ∈ A�[Tn], a is finite and of height 2n+ o(n).

Proof. The idea is to repeat the construction of Theorem 3.3 more than a constant number of
times. A single cave, of height h (see Figure 3), will be reused N times, and at each iteration
i ∈ {0, 1, . . . , N}, grow to height 2h− i.

To do this, we use a sequence of assemblies as shown on Figure 3, with different widths (wn)n.
The precise definition of this construction is given by the Haskell program in Appendix B, but the
general idea is: grow some construction starting with tile type t, then use some modification of the
initial cave as a blocker, and then reuse t.

h
t

t

wn = 3n + 3n

Figure 3: The repeated part is shown on the left-hand side. The drawing on the right-hand side is
a scheme of one step of the construction.

Then, we stack these parts on top of each other: on the Figure 4, the next assembly, drawn in
dashed line, is of width wn−1 = 3n−1 + 3(n− 1). In order to avoid making a pumpable path, we do
not grow the full initial cave each time, but a smaller and smaller suffix of it at each iteration.

Figure 4: Two successive iterations.

Because of this choice of widths, successive assemblies cannot collide with each other, and
different repetitions of the same assembly cannot collide with each other either.

Let h be the height of the initial cave. For all integer n, the nth repetition requires wn+2wn−1 ≤
2wn new tiles horizontally, h− n tiles vertically, and grows to a height of 2(h− n). If we decide to
repeat the construction N = log h times, we need |T | = 2

∑N
i=1wn + Nh + O(N2) tile types, i.e.

h log h+O(h) tile types.
Moreover, in this case, all terminal assemblies will have height 2h log h + O(N2), which is

2|T |+ o(|T |).

8

The baggins expression for the exact construction is in Appendix B.

3.4 Partially pumpable paths

The constructions of Sections 3.2 and 3.3 are efficient by repeating smaller and smaller parts of an
assembly, while ensuring that the assembly does not become pumpable. The other way of building
efficient paths is by letting them become pumpable for some time, after building structures that
block these repetitions. However, blocking these parts is provably expensive, and the same kind of
repeated blocking structure, similar to those of Sections 3.2 and 3.3, must be used to “save” tile
types. However, this construction is intended as a proof that allowing some pumping still does not
forbid the existence of efficient tilesets.

Theorem 3.5. There is a tile assembly system T = (T, σ, 1) such that |dom(σ)| = 1, and all
terminal assemblies of T contain a path P of Manhattan diameter strictly larger than |T |+ 1, that
is partially pumped, i.e. parts of P are consecutive repetitions of one of its subpath.

Proof. The smallest efficient tile assembly system that we found with a seed of size 1, has 4825 tile
types, and all its terminal assemblies are of Manhattan radius 4845.

To show this, we use a computer-aided proof: more specifically, we simulate the assembly of the
tile assembly system described by the baggins expression in Appendix C, yielding the assembly of
Figure 6 (also in Appendix C).

Again, the full Haskell program, generating a (quite large) pdf file with the construction, can
be found on the self-assembly wiki2.

4 Comparisons with other models

The constructions of Section 3 show the intricate connections between geometry and the compu-
tational power of temperature 1 self-assembly, raising the question of the exact characterization of
the model, from the point of view of classical computational models. In this section, we show that
we are far from understanding these relations, and begin a broader exploration of the influence of
geometry. In Wang tilings, geometries that have been considered previously include the hyperbolic
plane [12,16] and Cayley graphs of Baumslag-Solitar groups [1, 2].

From the self-assembly side, the models and underlying graphs that we considered are the
following:

• Temperature 1 tile assembly, on Z2.

• Temperature 1 tile assembly, on the Cayley graph of Baumslag-Solitar groups.

• Temperature 1 tile assembly, on the hyperbolic plane.

From the “classical” side, the computational models that we considered are the following:

• Finite automata

• Regular tree automata

• Pushdown automata

2 http://self-assembly.net/wiki/index.php?title=Baggins-expressions

9

http://self-assembly.net/wiki/index.php?title=Baggins-expressions

• Turing machines

The results shown on Figure 5 are proven in Appendix E.

!"#$%&'$#()#*
+"

#&,-,.
'&')/&%'

! !

!"#$%&'$#()#*
0#12&')0,)/-

"

##$*
'&')/&%'

"

!"#$%&'$#()#*
34!"567

8-,$%*

!

!"#$%&'$#()#*
#-'9(2,9/:$#(;<

#

!"#$%&'$#()#*
+4

#
-=/>10%?

'&')/&%'

"

"

$

$

Figure 5: Summary of the comparisons of Section E. On this graph, an arrow from A to B, labeled
with relation R means ARB.

5 Open problems and discussion

Despite our efficient constructions, planar temperature 1 tile assembly model does not seem ca-
pable of Turing computation. Finding the limits of these constructions would give us a greater
understanding of these processes, ubiquitous in natural systems:

Open Problem 1. What is the largest integer s, such that all the terminal assemblies of a tile
assembly system with n tiles and a single-tile seed, are of size s?

Another question, left open by Section 4, is the exact characterization of this model, in terms
of classical models.

10

A A first efficient algorithm

programme::Int→Program ()

programme n=do

seed 7 0

movey 3

a←currentTile

movey n

a1←currentTile

movex (-2)

movey 3

b←currentTile

movey 1

c←currentTile

movey (n-1)

b1←currentTile

movex (-5)

gr←currentTile

movey 2

gr1←currentTile

movey 1

gr2←currentTile

movey (n-1)

movex 1

movey (-n-1)

bot←currentTile

movex 2

bind N a

rewindTo a1

movex 1

movey 1

movex (-1)

bind N gr1

rewindTo bot

rewindBy 1

movex 1

bind N c

rewindTo b1

movey 1

movex (-1)

bind N gr2

B A more general scheme

programme::Int→Int→Program ()

programme n h=do

seed (3^n+n) 0

-- A first occurrence of the construction creates the cave.

movey 2

a←currentTile

movey (h-2)

11

c←currentTile

movex (-3^(n-1)-n)

-- Start of the cave

b←currentTile

movey h

movex 1 -- Top of the cave

movey (-h+1)

d←currentTile -- Bottom of the cave

-- Now, move to the right, and repeat tile a

movex (2*3^(n-2))

bind N a

-- Now, iterate n times. To avoid making the path pumpable, we need to reduce

-- the height (paremeter hh) each time.

let prog n hh b0 d0=

if n≤0 then

return ()

else do

movey 1

an←currentTile

movey (hh)

cn←currentTile

movex (-3^(n)+n)

bind N b0

rewindTo d0

movex (2*3^(n-1)-n)

bind N an

b1←nextTile b0

d1←prevTile d0

rewindTo cn

prog (n-1) (hh-1) b1 d1

-- Go back to tile c, and start iterating.

rewindTo c

b0←nextTile b

b1←nextTile b0

d0←prevTile d

prog (n-2) (h-3) b1 d0

C A partially pumpable path

This program is slightly more complex than those of Sections A and B. We tried to stick to basic
parts of Haskell syntax; the main things that need to be explained are the following:

• the “let” syntax we use here is the Haskell way of defining variables, and is not related to the
let construct of baggins expressions.

• for reasons of efficiency, we need a new instruction called discreteVect. It is built using
movex and movey instructions, combined in an efficient way.

• quot means “quotient”.

programme::Program ()

programme=do

seed 0 0

12

movey 1

a0←currentTile

-- First step: grow the part that will be repeated.

--

-- Since we want to grow upwards, and then follow it downwards closely,

-- we need precise control over its shape.

repete 15

(do

repete 20 (do { movey 2;movex 1 })
movex 1)

a←nextTile a0

-- Now, lay a "blocker" out, for the partially pumped paths to stop.

movex 1

movey (-1)

movex (-2)

-- Then go down.

repete 15

(do

repete 20 (do { movey (-2);movex (-1) })
movex (-1))

-- Now, build the bottom of the construction.

rewindBy 6

c←currentTile

eraseAfter c

movey (-1)

let x2=40

tot=21*15-1-x2

x0=15

x1=(tot-x0)`quot`3-15

-- Record the three different starting tiles of exit paths.

movex x0

start0←currentTile

movex x1

start1←currentTile

movex (tot-x1-x0)

start2←currentTile

-- Now, from each starting tile, grow a partially pumpable path, that will be

-- blocked on its way up.

-- First exit path.

rewindTo start2

pump (do

setColor blue

discreteVect 16 (16*15-3))

-- Here, the transition to the next repetition is simple: we just move to the

-- right by 120 columns, lay a blocker out, so that the repeated part (from

-- tile a) cannot be repeated completely.

rewindBy 3

movex 120

movey 2

movex (-1)

13

movey (-1)

movex (-x1-x0-5)

bind N a -- Finally, start the repeated part again.

-- The second exit path is more complicated, since we do not want it to

-- collide with the first pumped path. Moreover, the discreteVect function is

-- used to build the most efficient vector (in terms of number of tile types)

-- with the given coordinates.

rewindTo start1

pump

(do

setColor red

let distx=tot-x0-x1+x2+1

disty=15*40

discreteVect (distx`quot`2) (disty`quot`2))

rewindBy 51

movex 10

repete 7

(do

repete 20 (do { movey 2;movex 1 })
movex 1)

movex (x0+4)

movey 2

movex (-1)

movey (-1)

movex (-x0-4)

bind N a

-- The "final" exit path is similar, but simpler: we closely follow the

-- repeated part.

rewindTo start0

movey 1

movex 1

pump

(do

setColor green

repete 149 (do { movey 2; movex 1 }))

movex 2

repete 2

(do

repete 148 (do { movey 2; movex 1 })
movex 2)

movex 10

movey 2

movex (-1)

movey (-1)

movex (-2)

bind N a

14

Figure 6: A partially pumpable efficient path. The three successive partially pumped parts are
colored in blue, red and green, successively. This image is rasterized for size reasons, please run
the program above for a vector version.

15

D A printable version of Figure 1

20

19

21

20

22

21

23

22

24

23

25

24

19 18

29

30

28

35

29

27

28

26

27

25

26

22

37

23

22

24

23

25

24

18 17

30 31

35

12

13

12

14

13

15

36

14

37

36

27

28

26

27

25

26

17 16

31

3

4

3

5

4

6

5

7 32

6

21

34

22

21

23

22

24

23

25

24

16 15

22

37

23

22

24

23

25

24

32

33

34

33

28

35

29

27

28

26

27

25

26

22

37

23

22

24

23

25

24

9

8

10

9

11

10

12

11

13

12

14

13

15

36

14

37

36

27

28

26

27

25

26

35

12

13

12

14

13

15

36

14

37

36

27

28

26

27

25

26

8 7

1

2

1

3

2

4

3

5

4

6

5

7 32

6

21

34

22

21

23

22

24

23

25

24

32

33

34

33

28

35

29

27

28

26

27

25

26

22

37

23

22

24

23

25

24

35

12

13

12

14

13

15

36

14

37

36

27

28

26

27

25

26

16

E Comparison with other models

In order to compare various settings of non-cooperative self-assembly with classical machines from
automata theory, we first introduce a notion of language for a tile assembly system:

Definition E.1. Let T = (T, σ, 1) be a temperature 1 tile assembly system where σ is single-tile
seed assembly. We call L(T), the language of T , the tree language recognized by the following tree
grammar:

• For each tile t ∈ T , with glues tN on the north, tE on the east, tS on the south, and tW on
the west, A has the four following nonterminals:

NtN → N(EtE , StS ,WtW)

EtE → E(StS ,WtW , NtN)

StS → S(WtW , NtN , EtE)

WtW → W(NtN , EtE , StS)

• Moreover, for each glue g appearing on the north (respectively south, west and east side) of
some tile of T , add a terminal symbol ng (respectively sg, wg, eg) to the grammar, and the
following rules:

Ng → ng

Eg → eg

Sg → sg

Wg → wg

• Finally, add a nonterminal symbol S, and the following rule:

S → Σ(NσN , EσE , SσS ,WσW)

Where σN, σE, σS and σW are the north, east, south and west glues of the unique tile of σ,
respectively.

Definition E.2. Let T = (T, σ, 1) be a temperature 1 tile assembly system. A term t of L(T)
describes the following assembly sequence:

• From Σ(NσN , EσE , SσS ,WσW), concatenate the four assembly sequences obtained from NσN ,
EσE , SσS , WσW , successively.

• Let α(x, y, n,N(EtE , StS ,WtW)) be concatenation of the following sequences:

– the assembly of the unique tile type t ∈ T with north glue n, east glue tE, south glue tS
and west glue tW, at position (x, y).

– assembly sequence α(x+ 1, y, tE, EtE).

– assembly sequence α(x− 1, y, tW,WtW).

– assembly sequence α(x, y − 1, tS, StS).

17

• Similarly for α(x, y, e,E(StS ,WtW , NtN)), α(x, y, s, S(WtW , NtN , EtE)), and α(x, y, w,W(NtN , EtE , StS)).

• For terminals t of the form ng, sg, eg or wg, let α(x, y, g, t) be the empty assembly sequence.

By extension, if this assembly sequence results in a producible assembly a ∈ A[T], we say that
t describes a. Moreover, if all the terms of some tree language L describe a producible assembly of
T , and all producible assemblies of T are described by some term t ∈ L, we say that L describes
A[T].

When all the nodes of terms of L(T) have at most one nonterminal child, this tree language is
also a word language, over alphabet T .

Proposition 1. Let A be a non-deterministic finite automaton on alphabet S. There is a (one-
dimensional) tile assembly system TA = (TA, σA, 1) such that L(A) describes A�[TA].

Proof. Let A = (Q,Σ,∆, q0, F) be any non-deterministic finite automaton, with Q its set of states,
Σ its alphabet, ∆ ∈ Q×Σ×Q its transition relation, q0 its start state and F its set of final states.

We build an “equivalent” temperature 1 tile assembly system TA = (TA, σA, 1), where TA is a
tileset with glue colors from Q, by letting:

• tσ be a tile with exactly one non-zero strength glue, on its east side, with color q0.

• for each (q, s, q′) ∈ ∆, δ(q, s, q
′) be a tile with color q on its west side, q′ on its east side, and

s on its north side.

• for each q ∈ F , fq be a tile with color q on its east side, and no other non-zero strength glue.

Then, let Ta = {tσ} ∪ {δ(q,s,q′)|(q, s, q′) ∈ ∆} ∪ {fq|q ∈ F}, and σA be an assembly with exactly
one tile of type tσ, at position (0, 0).

Clearly, the language L(A) recognized byA describes the terminal assemblies of TA = (TA, σA, 1).

Proposition 2. For any temperature 1 tile assembly system T = (T, σ, 1) without mismatches, and
such that σ is a connected assembly, there is a nondeterministic top-down tree automaton whose
language describes A[T].

Proof. Clearly, since there are no mismatches in the productions of T , every assembly described by
L(T) is producible by T . The other direction (producible assemblies of T are described by L(T)
is immediate.

Proposition 3. There is a temperature 1 tile assembly system T such that L(T) describes assembly
sequences not producible by T .

Proof. Let T be the following tileset:

T =

{
t0 =

a

, t1 =
a

a , t2 = a
a , t3 = aa , t4 = b

a , t5 =
b
b , t6 =

bc , t7 = cc

}
Let σ be the assembly with a single tile of type t0.
We claim that for T = (T, σ, 1), L(T) describes assembly sequences not representing any as-

sembly. First, since all the tiles of T can attach to at most two tiles, we can completely describe

18

assembly sequences as words on T . Let L be the language of all assembly sequences (L is therefore
a word language on alphabet T).

Since L(T) is a regular tree language, L is a regular language, and is therefore recognized by a
deterministic finite automaton A. Let n be the number of states of A, and let u = t0t

n
1 t2t4t

n+1
5 t6t

10
7 .

Moreover, for i ∈ {0, 1, . . . , |u| − 1}, let ai be the state in which A is just before letter ui. Since
there are n + 1 occurrences of t5 in u, at least two distinct indices i and j, in subword tn+1

5 of u,
are such that ai = aj .

This means that the following word, which does not described any production of T , is recognized:
t0t

n
1 t2t4t

n+1−b+a
5 t6t

10
7 .

Proposition 4. There is a temperature 1 tile assembly system T = (T, σ, 1) such that L(T) is a
non-context-free word language on alphabet T .

Proof. Let T be the following tileset:

T =

{
t0 =

a0
, t1 =

a1
a0 , t2 = a1

b , t3 = bb , t4 = c2
b , t5 =

c2
c1 ,

t6 =
c1
d , t7 = dd , t8 =

e
d , t9 = e

f , t10 = ff

}
Since all tiles of T have exactly two sides of non-zero strength, the tree language L(T) is actually

also a word language, on alphabet T . However, the language L of the productions of T is the union
of the language M describing the terminal assemblies of T , with all the prefixes of these assemblies.
Formally, M is the following language:

M = {t0t1t2ta3t4t5t6tb7t8t9tc10|a > b ≥ c} ∪ {t0t1t2ta3t4t5t6ta7|a ∈ N}

Moreover, by the pumping Lemma on pushdown automata, this means if L were context-free,
then it would also contain words of the form t0t1t2t

a
3t4t5t6t

b
7t8t9t

c
10 in which either c > b or b ≥ a,

which is not the case. Indeed, for all a, M contains the following word:

t0t1t2t
a+1
3 t4t5t6t

a
7t8t9t

a
10

Therefore, the pumping lemma states that L were context-free, it would also contain:

• Either t0t1t2t
a+1−b
3 t4t5t6t

a−b
7 t8t9t

a
10 for some b < a. However, this word is not in L.

• Or t0t1t2t
a+1
3 t4t5t6t

a+b
7 t8t9t

a+b
10 for some b > 0, which is also not in L.

• Or t0t1t2t
a+1+b
3 t4t5t6t

a
7t8t9t

a+b
10 for some b > 0, which is also not in L.

Definition E.3. A Baumslag-Solitar group of integer parameters m and n is a group given by the
following presentation (with two generators a and b, and one relation):

B(m,n) = 〈a, b | bam = anb〉

Proposition 5. For any Turing machine M and all input x ∈ N for M , there is a tile assembly
system TM,x = (TM , σM,x, 1) on Baumslag-Solitar group B(1, 2), and a tile t ∈ TM , such that:

• σM,x is recursive

19

• all terminal assemblies of TM,x contain t if and only if M accepts x.

Proof. This is a straightforward adaptation of the 3D construction of Cook, Fu and Schweller [5],
simulating zig-zag systems (and thus Turing machines).

The geometric intuition is that B(1, 2) is a “tree of half-planes” (see Figure 7). In the construc-
tion, we will most of the time stay in the “initial” plane, i.e. the leftmost branch of the tree, and
avoid planarity by taking another branch temporarily.

Now, contrarily to the grid graph of Z3, there is no edge in the Cayley graph of BS(1, 2) between
these “half planes”.

Figure 7: Some points and relations of BS(1, 2). Different “half-planes” are in different colors.

However, their bit selection gadget can be adapted to BS(1, 2), in the way depicted on Figure 8:
the red and green paths encode a zero or a one. In order to read it, the orange path forks into two
branches, and only one is allowed to pass through the encoding (the other one collides against a
part of the encoded bit).

Figure 8: Adapting the bit selection gadget of [5] to BS(1, 2). In this figure, the red/green paths
grow first, and encode a 0 on the left assembly, and a 1 on the right one. The parts of the initial
paths that are on the first “plane” are in red, other parts are in green. The orange (dashed) paths
are paths from the next row, that read this encoding.

Proposition 6. Let L be a regular tree language of degree at most d. There is a tile assembly
system (T, σ, 1) in the hyperbolic plane, where |dom(σ)| = 1, and such that A[T] is described by L.

20

Proof. The hyperbolic plane is a tree of degree k, along with edges between consecutive vertices
of the same level, and an edge between the first and last vertices of each level (see [16] for more
details).

Therefore, simulating a tree automaton of degree k is straightforward, and Definition E.1 allows
us to conclude.

References

[1] Nathalie Aubrun and Jarkko Kari. Tiling problems on baumslag-solitar groups. In Proceedings
of the 8th International Conference on Machines, Computations, and Universality, MCU 2013,
2013.

[2] A. Ballier and M. Stein. The domino problem on groups of polynomial growth. ArXiv e-prints,
November 2013.

[3] Harish Chandran, Nikhil Gopalkrishnan, and John Reif. Tile complexity of approximate
squares. Algorithmica, 66(1):1–17, 2013.

[4] Hubert Comon, Max Dauchet, Rémi Gilleron, Florent Jacquemard, Denis Lugiez, Christof
Löding, Sophie Tison, and Marc Tommasi. Tree automata techniques and applications. Avail-
able on: http://www.grappa.univ-lille3.fr/tata, 2007. release October, 12th 2007.

[5] Matthew Cook, Yunhui Fu, and Robert T. Schweller. Temperature 1 self-assembly: deter-
ministic assembly in 3D and probabilistic assembly in 2D. In Proceedings of the 22nd An-
nual ACM-SIAM Symposium on Discrete Algorithms, pages 570–589, 2011. Arxiv preprint:
arXiv:0912.0027.

[6] Erik D. Demaine, Martin L. Demaine, Sándor P. Fekete, Matthew J. Patitz, Robert T.
Schweller, Andrew Winslow, and Damien Woods. One tile to rule them all: Simulating any tile
assembly system with a single universal tile. In Javier Esparza, Pierre Fraigniaud, Thore Hus-
feldt, and Elias Koutsoupias, editors, ICALP (1), volume 8572 of Lecture Notes in Computer
Science, pages 368–379. Springer, 2014. Arxiv preprint: arXiv:1212.4756.

[7] Erik D. Demaine, Matthew J. Patitz, Trent A. Rogers, Robert T. Schweller, Scott M. Sum-
mers, and Damien Woods. The two-handed tile assembly model is not intrinsically univer-
sal. In ICALP: 40th International Colloquium on Automata, Languages and Programming,
volume 7965 of LNCS, pages 400–412, Riga, Latvia, July 2013. Springer. Arxiv preprint:
arXiv:1306.6710.

[8] David Doty, Jack H. Lutz, Matthew J. Patitz, Robert T. Schweller, Scott M. Summers, and
Damien Woods. The tile assembly model is intrinsically universal. In Proceedings of the 53rd
Annual IEEE Symposium on Foundations of Computer Science, pages 439–446, October 2012.
Arxiv preprint: arXiv:1111.3097.

[9] David Doty, Jack H. Lutz, Matthew J. Patitz, Scott M. Summers, and Damien Woods. Intrinsic
universality in self-assembly. In Proceedings of the 27th International Symposium on Theoretical
Aspects of Computer Science, pages 275–286, 2009. Arxiv preprint: arXiv:1001.0208.

[10] David Doty, Matthew J. Patitz, and Scott M. Summers. Limitations of self-assembly at
temperature 1. Theoretical Computer Science, 412(1–2):145–158, 2011. Arxiv preprint:
arXiv:0906.3251.

21

http://www.grappa.univ-lille3.fr/tata
http://arxiv.org/abs/0912.0027
http://arxiv.org/abs/1212.4756
http://arxiv.org/abs/1306.6710
http://arxiv.org/abs/1111.3097
http://arxiv.org/abs/1001.0208
http://arxiv.org/abs/0906.3251

[11] Kenichi Fujibayashi, Rizal Hariadi, Sung Ha Park, Erik Winfree, and Satoshi Murata. Toward
reliable algorithmic self-assembly of DNA tiles: A fixed-width cellular automaton pattern.
Nano Letters, 8(7):1791–1797, 2007.

[12] Jarkko Kari. The tiling problem revisited (extended abstract). In Proceedings of the 5th
International Conference on Machines, Computations, and Universality, MCU 2007, pages
72–79, 2007.

[13] Lila Kari, Steffen Kopecki, Pierre-Étienne Meunier, Matthew Patitz, and Shinnosuke Seki.
Binary pattern tileset synthesis is np-hard, 2014. Arxiv preprint: arXiv:1404.0967.

[14] James I. Lathrop, Jack H. Lutz, Matthew J. Patitz, and Scott M. Summers. Computability
and complexity in self-assembly. Theory Comput. Syst., 48(3):617–647, 2011.

[15] Kyle Lund, Anthony T. Manzo, Nadine Dabby, Nicole Micholotti, Alexander Johnson-Buck,
Jeanetter Nangreave, Steven Taylor, Renjun Pei, Milan N. Stojanovic, Nils G. Walter, Erik
Winfree, and Hao Yan. Molecular robots guided by prescriptive landscapes. Nature, 465:206–
210, 2010.

[16] Maurice Margenstern. About the domino problem in the hyperbolic plane, a new solution.
ArXiv preprint: cs/0701096.

[17] Ján Maňuch, Ladislav Stacho, and Christine Stoll. Two lower bounds for self-assemblies at
temperature 1. Journal of Computational Biology, 17(6):841–852, 2010.

[18] Pierre-Étienne Meunier, Matthew J. Patitz, Scott M. Summers, Guillaume Theyssier, Andrew
Winslow, and Damien Woods. Intrinsic universality in tile self-assembly requires cooperation.
In Proceedings of the 25th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 752–771, 2014. Arxiv preprint: arXiv:1304.1679.

[19] Lulu Qian and Erik Winfree. Scaling up digital circuit computation with DNA strand dis-
placement cascades. Science, 332(6034):1196, 2011.

[20] Lulu Qian, Erik Winfree, and Jehoshua Bruck. Neural network computation with DNA strand
displacement cascades. Nature, 475(7356):368–372, 2011.

[21] Paul W. K. Rothemund. Folding DNA to create nanoscale shapes and patterns. Nature,
440(7082):297–302, March 2006.

[22] Paul W. K. Rothemund and Erik Winfree. The program-size complexity of self-assembled
squares (extended abstract). In STOC ’00: Proceedings of the thirty-second annual ACM
Symposium on Theory of Computing, pages 459–468, Portland, Oregon, United States, 2000.
ACM.

[23] Paul W.K. Rothemund, Nick Papadakis, and Erik Winfree. Algorithmic self-assembly of DNA
Sierpinski triangles. PLoS Biology, 2(12):2041–2053, 2004.

[24] Georg Seelig, David Soloveichik, David Yu Zhang, and Erik Winfree. Enzyme-free nucleic acid
logic circuits. Science, 314(5805):1585–1588, 2006.

[25] Nadrian C. Seeman. Nucleic-acid junctions and lattices. Journal of Theoretical Biology, 99:237–
247, 1982.

22

http://arxiv.org/abs/1404.0967
http://arxiv.org/abs/cs/0701096
http://arxiv.org/abs/1304.1679

[26] David Soloveichik and Erik Winfree. Complexity of self-assembled shapes. SIAM Journal on
Computing, 36(6):1544–1569, 2007. Arxiv preprint: arXiv:cs/0412096.

[27] Hao Wang. Proving theorems by pattern recognition – II. The Bell System Technical Journal,
XL(1):1–41, 1961.

[28] Bryan Wei, Mingjie Dai, and Peng Yin. Complex shapes self-assembled from single-stranded
DNA tiles. Nature, 485(7400):623–626, 2012.

[29] Erik Winfree. Algorithmic Self-Assembly of DNA. PhD thesis, California Institute of Technol-
ogy, June 1998.

[30] Erik Winfree, Furong Liu, Lisa A. Wenzler, and Nadrian C. Seeman. Design and self-assembly
of two-dimensional DNA crystals. Nature, 394(6693):539–44, 1998.

[31] Bernard Yurke, Andrew J Turberfield, Allen P Mills, Friedrich C Simmel, and Jennifer L
Neumann. A DNA-fuelled molecular machine made of DNA. Nature, 406(6796):605–608,
2000.

23

http://arxiv.org/abs/cs/0412096

	1 Introduction
	1.1 Main results
	1.2 Key technical ideas and methods

	2 Definitions and preliminaries
	3 Efficient algorithms
	3.1 Baggins expressions
	3.2 A first efficient algorithm
	3.3 A more general scheme
	3.4 Partially pumpable paths

	4 Comparisons with other models
	5 Open problems and discussion
	A A first efficient algorithm
	B A more general scheme
	C A partially pumpable path
	D A printable version of Figure 1
	E Comparison with other models

