Skip to main content

Tangle Machines

  • Conference paper
  • First Online:
Unconventional Computation and Natural Computation (UCNC 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9252))

Abstract

Tangle machines are topologically inspired diagrammatic models. The novel feature of tangle machines is their natural notion of equivalence. Equivalent tangle machines may differ locally, but globally they share the same information content. The goal of tangle machine equivalence is to provide a context-independent method to select, from among many ways to perform a task, the ‘best’ way to perform the task. The concept of equivalent tangle machines is illustrated through an example in which tangle machines represent networks for distributed information processing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abramsky, S., Coecke, B.: Categorical quantum mechanics. In: Handbook of Quantum Logic and Quantum Structures, vol. 2, pp. 261–323 (2009). http://arxiv.org/abs/0808.1023

  • Baez, J., Stay, M.: Physics, topology, logic and computation: a Rosetta Stone. In: Coecke, B. (ed.) New Structures for Physics. LNP, vol. 813, pp. 95–172. Springer, Heidelberg (2011). arXiv:0903.0340

    Chapter  Google Scholar 

  • Bar-Natan, D., Dancso, S.: Finite type invariants of w-knotted objects i: w-knots and the Alexander polynomial. Manuscript submitted for publication (2013). arXiv:1405.1956

  • Buliga, M., Kauffman, L.: GLC actors, artificial chemical connectomes, topological issues and knots. In: ALIFE 14: Proceedings of the Fourteenth International Conference on the Synthesis and Simulation of Living Systems, pp. 490–497 (2013). arXiv:1312.4333v1

  • Carmi, A.Y., Moskovich, D.: Low dimensional topology of information fusion. In: BICT14: Proceedings of the 8th International Conference on Bio-inspired Information and Communications Technologies, ACM/EAI, pp. 251–258 (2014). arXiv:1409.5505

  • Carmi, A.Y., Moskovich, D.: Computing with coloured tangles. Manuscript submitted for publication (2014). arXiv:1408.2685

  • Carmi, A.Y., Moskovich, D.: Tangle machines. Proc. R. Soc. A 471, 20150111 (2015). doi:10.1098/rspa.2015.0111

  • Clark, D., Morrison, S., Walker, K.: Fixing the functoriality of Khovanov homology. Geom. Topol. 13(3), 1499–1582 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Conway, J.H.: An enumeration of knots and links, and some of their algebraic properties. In: Leech, J. (ed.) 1967 Proceedings Conference Computational Problems in Abstract Algebra, Oxford, pp. 329–358. Pergamon Press, Oxford, England (1970)

    Google Scholar 

  • Cover, T.M., Joy, T.A.: Elements of Information Theory, 2nd edn. Wiley-Interscience, New York (1991)

    Book  MATH  Google Scholar 

  • Getzler, E., Kapranov, M.: Modular operads. Compos. Math. 110(1), 65–126 (1998). arXiv:dg-ga/9408003

    Article  MathSciNet  MATH  Google Scholar 

  • Ishii, A., Iwakiri, M., Jang, Y., Oshiro, K.: A \(G\)-family of quandles and handlebody-knots. Illinois J. Math. 57, 817–838 (2013). arXiv:1205.1855

    MathSciNet  Google Scholar 

  • Jones, V.F.R.: Planar algebras I. Preprint (1999). arXiv:math/9909027

  • Joyce, D.: A classifying invariant of knots: the knot quandle. J. Pure Appl. algebra 23, 37–65 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  • Kauffman, L.H.: Knot automata. In: Conference Proceedings of Twenty-Fourth International Symposium on Multiple-Valued Logic, 25-27 May 1994, pp. 328–333. IEEE Computer Society Press, Boston, Massachusetts (1994)

    Google Scholar 

  • Kauffman, L.H.: Knot logic. In: Kauffman, L. (ed.) Knots and applications, Series of Knots and Everything, vol. 6, pp. 1–110. World Scientific Publications (1995)

    Google Scholar 

  • Kauffman, L.H.: Virtual knot theory. Europ. J. Comb. 20(7), 663–690 (1999). arXiv:math/9811028

    Article  MathSciNet  MATH  Google Scholar 

  • Kauffman, L.H., Lomonaco Jr, S.J.: Braiding operators are universal quantum gates. New J. Phys. 6(1), 134 (2004). arXiv:quant-ph/0401090

    Article  Google Scholar 

  • Przytycki, J.H.: Distributivity versus associativity in the homology theory of algebraic structures. Demonstr. Math. 44(4), 823–869 (2011). arXiv:1109.4850

    MathSciNet  MATH  Google Scholar 

  • Roscoe, A.W.: Consistency in distributed databases. Oxford University Computing Laboratory Technical Monograph PRG-87 (1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avishy Y. Carmi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Moskovich, D., Carmi, A.Y. (2015). Tangle Machines. In: Calude, C., Dinneen, M. (eds) Unconventional Computation and Natural Computation. UCNC 2015. Lecture Notes in Computer Science(), vol 9252. Springer, Cham. https://doi.org/10.1007/978-3-319-21819-9_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21819-9_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21818-2

  • Online ISBN: 978-3-319-21819-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics