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Abstract

The problem of efficiently computing and visualizing the structural resemblance
between a pair of protein backbones in 3D has led Bereg et al. [BJW+08] to pose the
Chain Pair Simplification problem (CPS). In this problem, given two polygonal chains
A and B of lengths m and n, respectively, one needs to simplify them simultaneously,
such that each of the resulting simplified chains, A′ and B′, is of length at most k and
the discrete Fréchet distance between A′ and B′ is at most δ, where k and δ are given
parameters.

In this paper we study the complexity of CPS under the discrete Fréchet distance
(CPS-3F), i.e., where the quality of the simplifications is also measured by the discrete
Fréchet distance. Since CPS-3F was posed in 2008, its complexity has remained open.
However, it was believed to be NP-complete, since CPS under the Hausdorff distance
(CPS-2H) was shown to be NP-complete. We first prove that the weighted version
of CPS-3F is indeed weakly NP-complete even on the line, based on a reduction
from the set partition problem. Then, we prove that CPS-3F is actually polynomially
solvable, by presenting an O(m2n2 min{m,n}) time algorithm for the corresponding
minimization problem. In fact, we prove a stronger statement, implying, for example,
that if weights are assigned to the vertices of only one of the chains, then the problem
remains polynomially solvable. We also study a few less rigid variants of CPS and
present efficient solutions for them.

Finally, we present some experimental results that suggest that (the minimization
version of) CPS-3F is significantly better than previous algorithms for the motivating
biological application.

1 Introduction

Polygonal curves play an important role in many applied areas, such as 3D modeling in
computer vision, map matching in GIS, and protein backbone structural alignment and
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comparison in computational biology. Many different methods exist to compare curves in
these (and in many other) applications, where one of the more prevalent methods is the
Fréchet distance [Fré06].

The Fréchet distance is often described by an analogy of a man and a dog connected by a
leash, each walking along a curve from its starting point to its end point. Both the man and
the dog can control their speed but they are not allowed to backtrack. The Fréchet distance
between the two curves is the minimum length of a leash that is sufficient for traversing
both curves in this manner.

The discrete Fréchet distance is a simpler version, where, instead of continuous curves,
we are given finite sequences of points, obtained, e.g., by sampling the continuous curves,
or corresponding to the vertices of polygonal chains. Now, the man and the dog only hop
monotonically along the sequences of points. The discrete Fréchet distance is considered a
good approximation of the continuous distance.

One promising application of the discrete Fréchet distance has been protein backbone
comparison. Within structural biology, polygonal curve alignment and comparison is a
central problem in relation to proteins. Proteins are usually studied using RMSD (Root Mean
Square Deviation), but recently the discrete Fréchet distance was used to align and compare
protein backbones, which yielded favorable results in many instances [JXZ08, WLZ11]. In
this application, the discrete version of the Fréchet distance makes more sense, because by
using it the alignment is done with respect to the vertices of the chains, which represent
α-carbon atoms. Applying the continuous Fréchet distance will result in mapping of arbitrary
points, which is not meaningful biologically.

There may be as many as 500∼600 α-carbon atoms along a protein backbone, which
are the nodes (i.e., points) of our chain. This makes efficient computation essential, and is
one of the reasons for considering simplification. In general, given a chain A of n vertices, a
simplification of A is a chain A′ such that A′ is “close” to A and the number of vertices in
A′ is significantly less than n. The problem of simplifying a 3D polygonal chains under the
discrete Fréchet distance was first addressed by Bereg et al. [BJW+08].

Simplifying two aligned chains independently does not necessarily preserve the resem-
blance between the chains; see Figure 1. Thus, the following question arises: Is it possible to
simplify both chains in a way that will retain the resemblance between them? This question
has led Bereg et al. [BJW+08] to pose the Chain Pair Simplification problem (CPS). In this
problem, the goal is to simplify both chains simultaneously, so that the discrete Fréchet
distance between the resulting simplifications is bounded. More precisely, given two chains
A and B of lengths m and n, respectively, an integer k and three real numbers δ1,δ2,δ3,
one needs to find two chains A′,B′ with vertices from A,B, respectively, each of length at
most k, such that d1(A,A′) ≤ δ1, d2(B,B′) ≤ δ2, ddF (A′, B′) ≤ δ3 (d1 and d2 can be any
similarity measures and ddF is the discrete Fréchet distance). When the chains are simplified
using the Hausdorff distance, i.e., d1, d2 is the Hausdorff distance (CPS-2H), the problem
becomes NP-complete [BJW+08]. However, the complexity of the version in which d1, d2 is
the discrete Fréchet distance (CPS-3F) has been open since 2008.
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(a) Simplifying the chains indepen-
dently does not necessarily preserve
the resemblance between them.

(b) A simplification of both chains
that preserves the resemblance be-
tween them.

Figure 1: Independent simplification vs. simultaneous simplification. Each chain simplifica-
tion consists of 4 vertices (marked by empty circles) chosen from the corresponding chain.
The unit disks illustrate the Fréchet distance between the right chain in each of the figures
and its corresponding simplification; their radius in (b) is larger.

Related work. The Fréchet distance and its variants have been studied extensively in
the past two decades. Alt and Godau [AG95] gave an O(mn logmn)-time algorithm for
computing the Fréchet distance between two polygonal curves of lengths m and n. This
result in the plane was recently improved by Buchin et al [BBMM14]. The discrete Fréchet
distance was originally defined by Eiter and Mannila [EM94], who also presented an O(mn)-
time algorithm for computing it. A slightly sub-quadratic algorithm was given recently by
Agarwal et al. [AAKS14].

As mentioned earlier, Bereg et al. [BJW+08] were the first to study simplification
problems under the discrete Fréchet distance. They considered two such problems. In the
first, the goal is to minimize the number of vertices in the simplification, given a bound on
the distance between the original chain and its simplification, and, in the second problem,
the goal is to minimize this distance, given a bound k on the number of vertices in the
simplification. They presented an O(n2)-time algorithm for the former problem and an
O(n3)-time algorithm for the latter problem, both using dynamic programming, for the
case where the vertices of the simplification are from the original chain. (For the arbitrary
vertices case, they solve the problems in O(n log n) time and in O(kn log n log(n/k)) time,
respectively.) Driemel and Har-Peled [DH13] showed how to preprocess a polygonal curve
in near-linear time and space, such that, given an integer k > 0, one can compute a
simplification in O(k) time which has 2k − 1 vertices of the original curve and is optimal
up to a constant factor (w.r.t. the continuous Fréchet distance), compared to any curve
consisting of k arbitrary vertices.
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For the chain pair simplification problem (CPS), Bereg et al. [BJW+08] proved that
CPS-2H is NP-complete, and conjectured that so is CPS-3F. Wylie et al. [WLZ11] gave
a heuristic algorithm for CPS-3F, using a greedy method with backtracking, and based
on the assumption that the (Euclidean) distance between adjacent α-carbon atoms in a
protein backbone is almost fixed. More recently, Wylie and Zhu [WZ13] presented an
approximation algorithm with approximation ratio 2 for the optimization version of CPS-3F.
Their algorithm actually solves the optimization version of a related problem called CPS-
3F+, it uses dynamic programming and its running time is between O(mn) and O(m2n2)
depending on the input simplification parameters.

Some special cases of CPS-3F have recently been studied. Motivated by the need to
reduce sensitivity to outliers when comparing curves, Ben Avraham et al. [AFK+14] studied
the discrete Fréchet distance with shortcuts problem. In the one-sided variant, the dog
is allowed to jump to any point that comes later in its sequence, rather than just to the
next point. The man has to visit the points in its sequence, one after the other, as in the
standard discrete Fréchet distance problem. In the two-sided variant, both the man and the
dog are allowed to skip points. Unlike CPS-3F, the difference between an original chain and
its simplification (in the two-sided variant) can be big, since the sole goal is to minimize the
discrete Fréchet distance between the two simplified chains. (For this reason, Ben Avraham
et al. do not allow both the man and the dog to move simultaneously, since, otherwise, they
would both jump directly to their final points.) Moreover, the length of a simplification
is only bounded by the length of the corresponding chain. Both variants of the shortcuts
problem can be solved in subquadratic time.

The one-sided variant of the (continuous) Fréchet distance with shortcuts problem was
studied by Driemel et al. [DH13], who considered the problem assuming the curves are
c-packed and shortcuts start and end at vertices of the noisy curve. They gave a near-linear
time (3 + ε)-approximation algorithm. Buchin et al. [BDS14] proved that the more general
variant, where shortcuts can be taken at any point along the noisy curve, is NP-hard,
and gave an O(n3 log n)-time 3-approximation algorithm for the corresponding decision
problem. Another approach for handling outliers (that is still somewhat related to our work)
was proposed by Buchin et al. [BBW09], who studied the partial curve matching problem
under the (continuous) Fréchet distance. That is, given two curves and a threshold δ, find
subcurves of maximum total length that are close to each other w.r.t. δ.

Our results. In Section 3 we introduce the weighted chain pair simplification problem
and prove that weighted CPS-3F is weakly NP-complete. In Section 4, we resolve the
question concerning the complexity of CPS-3F by proving that it is polynomially solvable,
contrary to what was believed. We do this by presenting a polynomial-time algorithm
for the corresponding optimization problem. We actually prove a stronger statement,
implying, for example, that if weights are assigned to the vertices of only one of the chains,
then the problem remains polynomially solvable. In Section 5 we devise a sophisticated
O(m2n2min{m,n})-time dynamic programming algorithm for the minimization problem of
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CPS-3F. Besides being interesting from a theoretical point of view, only after developing
(and implementing) this algorithm, were we able to apply the CPS-3F minimization problem
to datasets from the Protein Data Bank (PDB), see below.

In section 6 we study several less rigid variants of CPS-3F. In particular, we improve
the result of Bereg et al. [BJW+08] mentioned above on the problem of finding the best
simplification of a given length under the discrete Fréchet distance, by presenting a more
general O(n2 log n)-time algorithm (rather than an O(n3)-time algorithm).

Finally, in Section 7 we present some empirical results comparing (the minimization
problems of) CPS-3F+ [WZ13] (the best available algorithm prior to this work) and CPS-
3F using datasets from the PDB, and showing that with the latter we get much smaller
simplifications (obeying the same distance bounds).

2 Preliminaries

Let A = (a1 . . . , am) and B = (b1, . . . , bn) be two sequences of m and n points, respectively,
in Rk. The discrete Fréchet distance ddF (A,B) between A and B is defined as follows. Fix
a distance δ > 0 and consider the Cartesian product A×B as the vertex set of a directed
graph Gδ whose edge set is

Eδ =
{(

(ai, bj), (ai+1, bj)
)
| d(ai, bj), d(ai+1, bj) ≤ δ

}
∪{(

(ai, bj), (ai, bj+1)
)
| d(ai, bj), d(ai, bj+1) ≤ δ

}
∪{(

(ai, bj), (ai+1, bj+1)
)
| d(ai, bj), d(ai+1, bj+1) ≤ δ

}
.

Then ddF (A,B) is the smallest δ > 0 for which (am, bn) is reachable from (a1, b1) in Gδ.

The chain pair simplification problem (CPS) is formally defined as follows.

Problem 1 (Chain Pair Simplification).
Instance: Given a pair of polygonal chains A and B of lengths m and n, respectively, an
integer k, and three real numbers δ1, δ2, δ3 > 0.
Problem: Does there exist a pair of chains A′,B′ each of at most k vertices, such that
the vertices of A′,B′ are from A,B, respectively, and d1(A,A′) ≤ δ1, d2(B,B′) ≤ δ2, and
ddF (A

′, B′) ≤ δ3?

When d1 = d2 = dH , the problem is NP-complete and is called CPS-2H, and when
d1 = d2 = ddF , the problem is called CPS-3F.

3 Weighted Chain Pair Simplification (WCPS-3F)

We first introduce and consider a more general version of CPS-3F, namely, Weighted CPS-
3F. In the weighted version of the chain pair simplification problem, the vertices of the
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chains A and B are assigned arbitrary weights, and, instead of limiting the length of the
simplifications, one limits their weights. That is, the total weight of each simplification must
not exceed a given value. The problem is formally defined as follows.

Problem 2 (Weighted Chain Pair Simplification).
Instance: Given a pair of 3D chains A and B, with lengths m and n, respectively, an integer
k, three real numbers δ1, δ2, δ3 > 0, and a weight function C : {a1, . . . , am, b1, . . . , bn} → R+.
Problem: Does there exist a pair of chains A′,B′ with C(A′), C(B′) ≤ k, such that
the vertices of A′,B′ are from A,B respectively, d1(A,A′) ≤ δ1, d2(B,B′) ≤ δ2, and
ddF (A

′, B′) ≤ δ3?

When d1 = d2 = ddF , the problem is called WCPS-3F. When d1 = d2 = dH , the
problem is NP-complete, since the non-weighted version (i.e., CPS-2H) is already NP-
complete [BJW+08].

We prove that WCPS-3F is weakly NP-complete via a reduction from the set partition
problem: Given a set of positive integers S = {s1, . . . , sn}, find two sets P1, P2 ⊂ S such that
P1 ∩P2 = ∅, P1 ∪P2 = S, and the sum of the numbers in P1 equals the sum of the numbers
in P2. This is a weakly NP-complete special case of the classic subset-sum problem.

Our reduction builds two curves with weights reflecting the values in S. We think of
the two curves as the subsets of the partition of S. Although our problem requires positive
weights, we also allow zero weights in our reduction for clarity. Later, we show how to
remove these weights by slightly modifying the construction.

Figure 2: The reduction for the weighted chain pair simplification problem under the discrete
Fréchet distance.

Theorem 1. The weighted chain pair simplification problem under the discrete Fréchet
distance is weakly NP-complete.

Proof. Given the set of positive integers S = {s1, . . . , sn}, we construct two curves A and
B in the plane, each of length 2n. We denote the weight of a vertex xi by w(xi). A is
constructed as follows. The i’th odd vertex of A has weight si, i.e. w(a2i−1) = si, and
coordinates a2i−1 = (i, 1). The i’th even vertex of A has coordinates a2i = (i+ 0.2, 1) and
weight zero. Similarly, the i’th odd vertex of B has weight zero and coordinates b2i−1 = (i, 0),
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and the i’th even vertex of B has coordinates b2i = (i+0.2, 0) and weight si, i.e. w(b2i) = si.
Figure 2 depicts the vertices a2i−1, a2i, a2(i+1)−1, a2(i+1) of A and b2i−1, b2i, b2(i+1)−1, b2(i+1)

of B. Finally, we set δ1 = δ2 = 0.2, δ3 = 1, and k = S, where S denotes the sum of the
elements of S (i.e., S =

∑n
j=1 sj).

We claim that S can be partitioned into two subsets, each of sum S/2, if and only if
A and B can be simplified with the constraints δ1 = δ2 = 0.2, δ3 = 1 and k = S/2, i.e.,
C(A′), C(B′) ≤ S/2.

First, assume that S can be partitioned into sets SA and SB, such that
∑

s∈SA
s =∑

s∈SB
s = S/2. We construct simplifications of A and of B as follows.

A′ = {a2i−1 | si ∈ SA} ∪ {a2i | si /∈ SA} and B′ = {b2i | si ∈ SB} ∪ {b2i−1 | si /∈ SB} .

It is easy to see that C(A′), C(B′) ≤ S/2. Also, since {SA, SB} is a partition of S, exactly
one of the following holds, for any 1 ≤ i ≤ n:

1. a2i−1 ∈ A′, b2i−1 ∈ B′ and a2i /∈ A′, b2i /∈ B′.

2. a2i−1 /∈ A′, b2i−1 /∈ B′ and a2i ∈ A′, b2i ∈ B′.
This implies that ddF (A,A′) ≤ 0.2 = δ1, ddF (B,B′) ≤ 0.2 = δ2 and ddF (A′, B′) ≤ 1 = δ3.

Now, assume there exist simplifications A′, B′ of A,B, such that ddF (A,A′) ≤ δ1 = 0.2,
ddF (B,B

′) ≤ δ2 = 0.2, ddF (A′, B′) ≤ δ3 = 1, and C(A′), C(B′) ≤ k = S/2. Since
δ1 = δ2 = 0.2, for any 1 ≤ i ≤ n, the simplification A′ must contain one of a2i−1, a2i, and
the simplification B′ must contain one of b2i−1, b2i. Since δ3 = 1, for any i, at least one
of the following two conditions holds: a2i−1 ∈ A′ and b2i−1 ∈ B′ or a2i ∈ A′ and b2i ∈ B′.
Therefore, for any i, either a2i−1 ∈ A or b2i ∈ B, implying that si participates in either
C(A′) or C(B′). However, since C(A′), C(B′) ≤ S/2, si cannot participate in both C(A′)
and C(B′). It follows that C(A′) = C(B′) = S/2, and we get a partition of S into two sets,
each of sum S/2.

Finally, we note that WCPS-3F is in NP. For an instance I with chains A,B, given
simplifications A′, B′, we can verify in polynomial time that ddF (A,A′) ≤ δ1, ddF (B,B′) ≤
δ2, ddF (A′, B′) ≤ δ3, and C(A′), C(B′) ≤ k.

Although our construction of A′ and B′ uses zero weights, a simple modification enables
us to prove that the problem is weakly NP-complete also when only positive integral
weights are allowed. Increase all the weights by 1, that is, w(a2i−1) = w(b2i) = si + 1 and
w(a2i) = w(b2i−1) = 1, for 1 ≤ i ≤ n, and set k = S/2 + n. It is easy to verify that our
reduction still works. Finally, notice that we could overlay the two curves choosing δ3 = 0
and prove that the problem is still weakly NP-complete in one dimension.

4 Chain Pair Simplification (CPS-3F)

We now turn our attention to CPS-3F, which is the special case of WCPS-3F where each
vertex has weight one.
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We present an algorithm for the minimization version of CPS-3F. That is, we compute
the minimum integer k∗, such that there exists a “walk”, as above, in which each of the dogs
makes at most k∗ hops. The answer to the decision problem is “yes” if and only if k∗ < k.

Returning to the analogy of the man and the dog, we can extend it as follows. Consider
a man and his dog connected by a leash of length δ1, and a woman and her dog connected
by a leash of length δ2. The two dogs are also connected to each other by a leash of length
δ3. The man and his dog are walking on the points of a chain A and the woman and her
dog are walking on the points of a chain B. The dogs may skip points. The problem is to
determine whether there exists a “walk” of the man and his dog on A and the woman and
her dog on B, such that each of the dogs steps on at most k points.

Overview of the algorithm. We say that (ai, ap, bj , bq) is a possible configuration of
the man, woman and the two dogs on the paths A and B, if d(ai, ap) ≤ δ1, d(bj , bq) ≤ δ2
and d(ap, bq) ≤ δ3. Notice that there are at most m2n2 such configurations. Now, let G be
the DAG whose vertices are the possible configurations, such that there exists a (directed)
edge from vertex u = (ai, ap, bj , bq) to vertex v = (ai′ , ap′ , bj′ , bq′) if and only if our gang can
move from configuration u to configuration v. That is, if and only if i ≤ i′ ≤ i+ 1, p ≤ p′,
j ≤ j′ ≤ j + 1, and q ≤ q′. Notice that there are no cycles in G because backtracking is
forbidden. For simplicity, we assume that the first and last points of A′ (resp., of B′) are a1
and am (resp., b1 and bn), so the initial and final configurations are s = (a1, a1, b1, b1) and
t = (am, am, bn, bn), respectively. (It is easy, however, to adapt the algorithm below to the
case where the initial and final points of A′ and B′ are not specified, see remark below.)
Our goal is to find a path from s to t in G. However, we want each of our dogs to step on
at most k points, so, instead of searching for any path from s to t, we search for a path that
minimizes the value max{|A′|, |B′|}, and then check if this value is at most k.

For each edge e = (u, v), we assign two weights, wA(e), wB(e) ∈ {0, 1}, in order to
compute the number of hops in A′ and in B′, respectively. wA(u, v) = 1 if and only if the
first dog jumps to a new point between configurations u and v (i.e., p < p′), and, similarly,
wB(u, v) = 1 if and only if the second dog jumps to a new point between u and v (i.e., q < q′).
Thus, our goal is to find a path P from s to t in G, such that max{

∑
e∈P

wA(e),
∑
e∈P

wB(e)} is

minimized.
Assume w.l.o.g. that m ≤ n. Since |A′| ≤ m and |B′| ≤ n, we maintain, for each vertex

v of G, an array X(v) of size m, where X(v)[r] is the minimum number z such that v can
be reached from s with (at most) r hops of the first dog and z hops of the second dog. We
can construct these arrays by processing the vertices of G in topological order (i.e., a vertex
is processed only after all its predecessors have been processed). This yields an algorithm of
running time O(m3n3min{m,n}), as described in Algorithm 1.

Running time. The number of vertices in G is |V | = O(m2n2). By the construction of
the graph, for any vertex (ai, ap, bj , bq) the maximum number of outgoing edges is O(mn).
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Algorithm 1 CPS-3F

1. Create a directed graph G = (V,E) with two weight functions wA, wB , such that:

• V is the set of all configurations (ai, ap, bj , bq) with d(ai, ap) ≤ δ1, d(bj , bq) ≤ δ2, and
d(ap, bq) ≤ δ3.

• E = {((ai, ap, bj , bq), (ai′ , ap′ , bj′ , bq′)) | i ≤ i′ ≤ i+ 1, p ≤ p′, j ≤ j′ ≤ j + 1, q ≤ q′}.
• For each ((ai, ap, bj , bq), (ai′ , ap′ , bj′ , bq′)) ∈ E, set

– wA((ai, ap, bj , bq), (ai′ , ap′ , bj′ , bq′)) =

{
1, p < p′

0, otherwise

– wB((ai, ap, bj , bq), (ai′ , ap′ , bj′ , bq′)) =

{
1, q < q′

0, otherwise

2. Sort V topologically.

3. Initialize the array X(s) (i.e., set X(s)[r] = 0, for r = 0, . . . ,m− 1).

4. For each v ∈ V \ {s} (advancing from left to right in the sorted sequence) do:

(a) Initialize the array X(v) (i.e., set X(v)[r] =∞, for r = 0, . . . ,m− 1).

(b) For each r between 0 and m− 1, compute X(v)[r]:

X(v)[r] = min
(u, v) ∈ E

{
X(u)[r] + wB(u, v), wA(u, v) = 0

X(u)[r − 1] + wB(u, v), wA(u, v) = 1

5. Return k∗ = min
r

max{r, X(t)[r]} .

So we have |E| = O(|V |mn) = O(m3n3). Thus, constructing the graph G in Step 1 takes
O(n3m3) time. Step 2 takes O(|E|) time, while Step 3 takes O(m) time. In Step 4, for each
vertex v and for each index r, we consider all configurations that can directly precede v.
So each edge of G participates in exactly m minimum computations, implying that Step 4
takes O(|E|m) time. Step 5 takes O(m) time. Thus, the total running time of the algorithm
is O(m4n3).

Theorem 2. The chain pair simplification problem under the discrete Fréchet distance
(CPS-3F) is polynomial, i.e., CPS-3F ∈ P.

Remark 1. As mentioned, we have assumed that the first and last points of A′ (resp., B′) are
a1 and am (resp., b1 and bn), so we have a single initial configuration (i.e., s = (a1, a1, b1, b1))
and a single final configuration (i.e., t = (am, am, bn, bn)). However, it is easy to adapt
our algorithm to the case where the first and last points of the chains A′ and B′ are not
specified. In this case, any possible configuration of the form (a1, ap, b1, bq) is considered a
potential initial configuration, and any possible configuration of the form (am, ap, bn, bq) is
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considered a potential final configuration, where 1 ≤ p ≤ m and 1 ≤ q ≤ n. Let S and T be
the sets of potential initial and final configurations, respectively. (Then, |S| = O(mn) and
|T | = O(mn).) We thus remove from G all edges entering a potential initial configuration,
so that each such configuration becomes a “root” in the (topologically) sorted sequence.
Now, in Step 3 we initialize the arrays of each s ∈ S in total time O(m2n), and in Step 4
we only process the vertices that are not in S. The value X(v)[r] for such a vertex v is now
the minimum number z such that v can be reached from s with r hops of the first dog and
z hops of the second dog, over all potential initial configurations s ∈ S. In the final step of
the algorithm, we calculate the value k∗ in O(m) time, for each potential final configuration
t ∈ T . The smallest value obtained is then the desired value. Since the number of potential
final configurations is only O(mn), the total running time of the final step of the algorithm
is only O(m2n), and the running time of the entire algorithm remains O(m4n3).

4.1 The weighted version

Weighted CPS-3F, which was shown to be weakly NP-complete in the previous section,
can be solved in a similar manner, albeit with running time that depends on the number
of different point weights in chain A (alternatively, B). We now explain how to adapt our
algorithm to the weighted case. We first redefine the weight functions wA and wB (where
C(x) is the weight of point x):

• wA((ai, ap, bj , bq), (ai′ , ap′ , bj′ , bq′)) =

{
C(ap′), p < p′

0, otherwise

• wB = ((ai, ap, bj , bq), (ai′ , ap′ , bj′ , bq′))

{
C(bq′), q < q′

0, otherwise

Next, we increase the size of the arrays X(v) from m to the number of different weights
that can be obtained by a subset of A (alternatively, B). (For example, if |A| = 3
and C(a1) = 2, C(a2) = 2, and C(a3) = 4, then the weights that can be obtained are
2, 4, 2 + 4 = 6, 2 + 2 + 4 = 8, so the size of the arrays would be 4.) Let c[r] be the r’th
largest such weight. Then X(v)[r] is the minimum number z, such that v can be reached
from s with hops of total weight (at most) c[r] of the first dog and hops of total weight z of
the second dog. X(v)[r] is calculated as follows:

X(v)[r] = min
(u, v) ∈ E

{
X(u)[r] + wB(u, v), wA(u, v) = 0

X(u)[r′] + wB(u, v), wA(u, v) > 0
,

where c[r′] = c[r]− wA(u, v). If the number of different weights that can be obtained by a
subset of A (alternatively, B) is f(A) (resp., f(B)), then the running time is O(m3n3f(A))
(resp., O(m3n3f(B))), since the only change that affects the running time is the size of the
arrays X(v). We thus have
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Theorem 3. The weighted chain pair simplification problem under the discrete Fréchet
distance (Weighted CPS-3F) (and its corresponding minimization problem) can be solved in
O(m3n3min{f(A), f(B)}) time, where f(A) (resp., f(B)) is the number of different weights
that can be obtained by a subset of A (resp., B). In particular, if only one of the chains, say
B, has points with non-unit weight, then f(A) = O(m), and the running time is polynomial;
more precisely, it is O(m4n3).

Remark 2. We presented an algorithm that minimizes max{|A′|, |B′|} given the error
parameters δ1, δ2, δ3. Another optimization version of CPS-3F is to minimize, e.g., δ3 (while
obeying the requirements specified by δ1, δ2 and k). It is easy to see that Algorithm 1 can
be adapted to solve this version within roughly the same time bound.

5 An Efficient Implementation

The time and space complexity of Algorithm 1 (which is O(m3n3min {m,n}) and O(m3n3),
respectively) makes it impractical for our motivating biological application (as m,n could
be 500∼600); see Section 7. In this section, we show how to reduce the time and space
bounds by a factor of mn, using dynamic programming.

We generate all configurations of the form (ai, ap, bj , bq), where the outermost for-loop
is governed by i, the next level loop by j, then p, and finally q. When a new configuration
v = (ai, ap, bj , bq) is generated, we first check whether it is possible. If it is not possible, we
set X(v)[r] =∞, for 1 ≤ r ≤ m, and if it is, we compute X(v)[r], for 1 ≤ r ≤ m.

We also maintain for each pair of indices i and j, three tables Ci,j , Ri,j , Ti,j that assist
us in the computation of the values X(v)[r]:

Ci,j [p, q, r] = min
1≤p′≤p

X(ai, ap′ , bj , bq)[r]

Ri,j [p, q, r] = min
1≤q′≤q

X(ai, ap, bj , bq′)[r]

Ti,j [p, q, r] = min
1≤p′≤p
1≤q′≤q

X(ai, ap′ , bj , bq′)[r]

Notice that the value of cell [p, q, r] is determined by the value of one or two previously-
determined cells and X(ai, ap, bj , bq)[r] as follows:

Ci,j [p, q, r] = min{Ci,j [p− 1, q, r], X(ai, ap, bj , bq)[r]}
Ri,j [p, q, r] = min{Ri,j [p, q − 1, r], X(ai, ap, bj , bq)[r]}
Ti,j [p, q, r] = min{Ti,j [p− 1, q, r], Ti,j [p, q − 1, r], X(ai, ap, bj , bq)[r]}

Observe that in any configuration that can immediately precede the current configuration
(ai, ap, bj , bq), the man is either at ai−1 or at ai and the woman is either at bj−1 or at bj
(and the dogs are at ap′ , p′ ≤ p, and bq′ , q′ ≤ q, respectively). The “saving” is achieved, since
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now we only need to access a constant number of table entries in order to compute the value
X(ai, ap, bj , bq)[r].

One can illustrate the algorithm using the matrix in Figure 3. There are mn large
cells, each of them containing a matrix of size mn. The large cells correspond to the
positions of the man and the woman. The inner matrices correspond to the positions of
the two dogs (for given positions of the man and woman). Consider an optimal “walk”
of the gang that ends at cell (ai, ap, bj , bq) (marked by a full circle), such that the first
dog has visited r points. The previous cell in this “walk” must be in one of the 4 large
cells (ai, bj),(ai−1, bj),(ai, bj−1),(ai−1, bj−1). Assume, for example, that it is in (ai−1, bj).
Then, if it is in the blue area, then X(ai, ap, bj , bq)[r] = Ci−1,j [p− 1, q, r− 1] (marked by an
empty square), since only the position of the first dog has changed when the gang moved
to (ai, ap, bj , bq). If it is in the purple area, then X(ai, ap, bj , bq)[r] = Ri−1,j [p, q − 1, r] + 1
(marked by a x), since only the position of the second dog has changed. If it is in the
orange area, then X(ai, ap, bj , bq)[r] = Ti−1,j [p− 1, q − 1, r − 1] + 1 (marked by an empty
circle), since the positions of both dogs have changed. Finally, if it is the cell marked by
the full square, then simply X(ai, ap, bj , bq)[r] = X(ai−1, ap, bj , bq)[r], since both dogs have
not moved. The other three cases, in which the previous cell is in one of the 3 large cells
(ai, bj),(ai, bj−1),(ai−1, bj−1), are handled similarly.

ai

bj

ai−1

bj−1

Figure 3: Illustration of Algorithm 2.

We are ready to present the dynamic programming algorithm. The initial configurations
correspond to cells in the large cell (a1, b1). For each initial configuration (a1, ap, b1, bq), we
set X(a1, ap, b1, bq)[1] = 1.
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Algorithm 2 CPS-3F using dynamic programming
for i = 1 to m

for j = 1 to n

for p = 1 to m
for q = 1 to n

for r = 1 to m

X(−1,0) =min


Ci−1,j [p− 1, q, r − 1]

Ri−1,j [p, q − 1, r] + 1

Ti−1,j [p− 1, q − 1, r − 1] + 1

X(ai−1, ap, bj , bq)[r]

X(0,−1) =min


Ci,j−1[p− 1, q, r − 1]

Ri,j−1[p, q − 1, r] + 1

Ti,j−1[p− 1, q − 1, r − 1] + 1

X(ai, ap, bj−1, bq)[r]

X(−1,−1) =min


Ci−1,j−1[p− 1, q, r − 1]

Ri−1,j−1[p, q − 1, r] + 1

Ti−1,j−1[p− 1, q − 1, r − 1] + 1

X(ai−1, ap, bj−1, bq)[r]

X(0,0) =min


Ci,j [p− 1, q, r − 1]

Ri,j [p, q − 1, r] + 1

Ti,j [p− 1, q − 1, r − 1] + 1

X(ai, ap, bj , bq)[r] = min{X(−1,0), X(0,−1), X(−1,−1), X(0,0)}

Ci,j [p, q, r] =min{Ci,j [p− 1, q, r], X(ai, ap, bj , bq)[r]}
Ri,j [p, q, r] =min{Ri,j [p, q − 1, r], X(ai, ap, bj , bq)[r]}
Ti,j [p, q, r] =min{Ti,j [p− 1, q, r], Ti,j [p, q − 1, r], X(ai, ap, bj , bq)[r]}

return min
r,p,q

max{r,X(am, ap, bn, bq)[r]}

Theorem 4. The minimization version of the chain pair simplification problem under the
discrete Fréchet distance (CPS-3F) can be solved in O(m2n2min {m,n}) time.
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6 1-Sided Chain Pair Simplification

Sometimes, one of the two input chains, say B, is much shorter than the other, possibly
because it has already been simplified. In these cases, we only want to simplify A, in a way
that maintains the resemblance between the two input chains. We thus define the 1-sided
chain pair simplification problem.

Problem 3 (1-Sided Chain Pair Simplification).
Instance: Given a pair of polygonal chains A and B of lengths m and n, respectively, an
integer k, and two real numbers δ1, δ3 > 0.
Problem: Does there exist a chain A′ of at most k vertices, such that the vertices of A′

are from A, ddF (A,A′) ≤ δ1, and ddF (A′, B) ≤ δ3?

The optimization version of this problem can be solved using similar ideas to those used
in the solution of the 2-sided problem. Here a possible configuration is a 3-tuple (ai, ap, bj),
where d(ai, ap) ≤ δ1 and d(ap, bj) ≤ δ3. We construct a graph and find a shortest path
from one of the starting configurations to one of the final configurations; see Algorithm 3.
Arguing as for Algorithm 1, we get that |V | = O(m2n) and |E| = O(|V |m) = O(m3n).
Moreover, it is easy to see that the running time of Algorithm 3 is O(m3n), since it does
not maintain an array for each vertex.

Algorithm 3 1-sided CPS-3F

1. Create a directed graph G = (V,E) with a weight function w, such that:

• V = {(ai, ap, bj) | d(ai, ap) ≤ δ1 and d(ap, bj) ≤ δ3}.
• E = {((ai, ap, bj), (ai′ , ap′ , bj′)) | i ≤ i′ ≤ i+ 1, p ≤ p′, j ≤ j′ ≤ j + 1}.
• For each ((ai, ap, bj), (ai′ , ap′ , bj′)) ∈ E, set

w((ai, ap, bj), (ai′ , ap′ , bj′) =

{
1, p < p′

0, otherwise

• Let S be the set of starting configurations and let T be the set of final configurations.

2. Sort V topologically.

3. Set X(s) = 0, for each s ∈ S.

4. For each v ∈ V \ S (advancing from left to right in the sorted sequence) do:

X(v) = min
(u,v)∈E

{X(u) + w(u, v)}.

5. Return k∗ = min
t∈T

X(t).
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To reduce the running time we use dynamic programming as in Section 5. We generate all
configurations of the form (ai, ap, bj). When a new configuration v = (ai, ap, bj) is generated,
we first check whether it is possible. If it is not possible, we set X(v) =∞, and if it is, we
compute X(v).

We also maintain for each pair of indices i and j, a table Ai,j that assists us in the
computation of the value X(v):

Ai,j [p] = min
1≤p′≤p

X(ai, ap′ , bj) .

Notice that Ai,j [p] is the minimum of Ai,j [p− 1] and X(ai, ap, bj).
We observe once again that in any configuration that can immediately precede the

current configuration (ai, ap, bj), the man is either at ai−1 or at ai and the woman is either
at bj−1 or at bj (and the dog is at ap′ , p′ ≤ p). The “saving” is achieved, since now we only
need to access a constant number of table entries in order to compute the value X(ai, ap, bj).
We obtain the following dynamic programming algorithm whose running time is O(m2n).

Algorithm 4 1-sided CPS-3F using dynamic programming
for i = 1 to m

for j = 1 to n

for p = 1 to m

X(−1,0) =min

{
Ai−1,j [p− 1] + 1

X(ai−1, ap, bj)

X(0,−1) =min

{
Ai,j−1[p− 1] + 1

X(ai, ap, bj−1)

X(−1,−1) =min

{
Ai−1,j−1[p− 1] + 1

X(ai−1, ap, bj−1)

X(0,0) =Ai,j [p− 1] + 1

X(ai, ap, bj) =min{X(−1,0), X(0,−1), X(−1,−1), X(0,0)}
Ai,j [p] =min{Ai,j [p− 1], X(ai, ap, bj)}

return min
p
{X(am, ap, bn)}

Theorem 5. The 1-sided chain pair simplification problem under the discrete Fréchet
distance can be solved in O(m2n) time.

We now study the natural problem that is obtained from the 1-sided chain pair simplifi-
cation problem by omitting the requirement that ddF (A,A′) ≤ δ1.
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Problem 4 (Relaxed 1-Sided Chain Pair Simplification).
Instance: Given a pair of polygonal chains A and B of lengths m and n, respectively, an
integer k, and a real number δ > 0.
Problem: Does there exist a chain A′ of at most k vertices, such that the vertices of A′

are from A and ddF (A′, B) ≤ δ?

This problem induces two optimization problems (as in [BJW+08]), depending on
whether we wish to optimize the length of A′ or the distance between A′ and B. Below we
solve both of them, beginning with the former problem.

6.1 Minimizing k given δ

In this problem, we wish to minimize the length of A′ without exceeding the allowed error
bound.

Problem 5. Given two chains A = (a1, . . . , am) and B = (b1, . . . , bn) and an error bound
δ > 0, find a simplification A′ of A of minimum length, such that the vertices of A′ are from
A and ddF (A′, B) ≤ δ.

For B = A, Bereg et al. [BJW+08] presented an O(n2)-time dynamic programming
algorithm. (For the case where the vertices of A′ are not necessarily from A, they presented
an O(n log n)-time greedy algorithm.)

Theorem 6. Problem 5 can be solved in O(mn) time and space.

Proof. We present an O(mn)-time dynamic programming algorithm. The algorithm finds the
length of an optimal simplification; the actual simplification is constructed by backtracking
the algorithm’s actions.

Define two m× n tables, O and X. The cell O[i, j] will store the length of a minimum-
length simplification Ai of A[i . . .m] that begins at ai and such that ddF (Ai, B[j . . . n]) ≤ δ.
The algorithm will return the value min1≤i≤mO[i, 1].

We use the table X to assist us in the computation of O. More precisely, we define:

X[i, j] = min
i′≥i

O[i′, j] .

Notice that X[i, j] is simply the minimum of X[i+ 1, j] and O[i, j].
We compute O[−,−] and X[−,−] simultaneously, where the outer for-loop is governed

by (decreasing) i and the inner for-loop by (decreasing) j. First, notice that if d(ai, bj) > δ,
then there is no simplification fulfilling the required conditions, so we set O[i, j] = ∞.
Second, the entries (in both tables) where i = m or j = n can be handled easily. In general,
if d(ai, bj) ≤ δ, we set

O[i, j] = min{O[i, j + 1], X[i+ 1, j + 1] + 1} .
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We now justify this setting. Let Ai be a minimum-length simplification of A[i . . . n] that
begins at ai and such that ddF (Ai, B[j . . . n]) ≤ δ. The initial configuration of the joint walk
along Ai and B[j . . . n] is (ai, bj). The next configuration is either (ai, bj+1), (ai′ , bj) for
some i′ ≥ i+1, or (ai′ , bj+1) for some i′ ≥ i+1. However, clearly X[i+1, j+1] ≤ X[i+1, j],
so we may disregard the middle option.

6.2 Minimizing δ given k

In this problem, we wish to minimize the discrete Fréchet distance between A′ and B,
without exceeding the allowed length.

Problem 6. Given two chains A = (a1, . . . , am) and B = (b1, . . . , bn) and a positive integer
k, find a simplification A′ of A of length at most k, such that the vertices of A′ are from A
and dF (A′, B) is minimized.

For B = A, Bereg et al. [BJW+08] presented an O(n3)-time dynamic programming
algorithm. (For the case where the vertices of A′ are not necessarily from A, they presented
an O(kn log n log(n/k))-time greedy algorithm.) We give an O(mn log (mn))-time algorithm
for our problem, which yields an O(n2 log n)-time algorithm for B = A, thus significantly
improving the result of Bereg et al.

Theorem 7. Problem 6 can be solved in O(mn log (mn)) time and O(mn) space.

Proof. Set D = {d(a, b)|a ∈ A, b ∈ B}. Then, clearly, dF (A′, B) ∈ D, for any simplification
A′ of A. Thus, we can perform a binary search over D for an optimal simplification of length
at most k. Given δ ∈ D, we apply the algorithm for Problem 5 to find (in O(mn) time) a
simplification A′ of A of minimum length such that dF (A′, B) ≤ δ. Now, if |A′| > k, then
we proceed to try a larger bound, and if |A′| ≤ k, then we proceed to try a smaller bound.
After O(log (mn)) iterations we reach the optimal bound.

7 Some Empirical Results

In this section, we show some empirical results obtained by running a C++ implementation
of Algorithm 2 on a standard desktop machine. The best available algorithm prior to this
work was Algorithm FIND-CPS3F+, i.e., the algorithm (mentioned in the introduction) for
the optimization version of CPS-3F+, proposed by Wylie and Zhu [WZ13]. This algorithm is
a 2-approximation algorithm for the optimization version of CPS-3F [WZ13], and, obviously,
it cannot outperform Algorithm 2 in the length of the simplification that it computes. The
goal of this experimental study is thus twofold: (i) to verify that Algorithm 2 can cope
with real datasets taken from the Protein Data Bank (PDB), and (ii) to examine the actual
improvement obtained in the length of the simplification w.r.t. Algorithm FIND-CPS3F+.
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Our results (summarized below) show that indeed Algorithm 2 can handle real datasets.
(This is not true for the initial algorithm, i.e., Algorithm 1, whose O(m3n3) space requirement
would lead to memory overflow for most proteins. Recall that there may be as many as
500∼600 α-carbon atoms along a protein backbone.) Moreover, our results show significant
improvement in the length of the simplification, which is very important for the underlying
structural biology applications.

As in [WZ13], we consider two cases: similar chain length and varying chain length
comparisons. We use the same data and parameters as in [WZ13].

7.1 Similar chain length comparisons

We use the same seven pairs of protein backbones from the Protein Data Bank which were
used in [WZ13]. To be consistent, we use the same sets of δ1, δ2, δ3 (in ångströms — note
that the distance between two consecutive nodes, or α-carbon atoms, on a protein backbone,
is typically between 3.7 to 3.8 ångströms). The results are summarized in Tables 1-3.

Protein
Chain(B)

|B| δ1 δ2 δ3 max{|A′′|, |B′′|}
by CPS-3F+

[WZ13]

max{|A′|, |B′|}
by CPS-3F

1hfj.c 325 4 4 1 109 83
1qd1.b 325 4 4 21 126 82
1toh 325 4 4 21 149 84
4eca.c 325 4 4 6 111 83
1d9q.d 297 4 4 20 130 82
4cea.b 325 4 4 5 111 82
4cea.d 325 4 4 5 113 84

Table 1: Comparison of Algorithm FIND-CPS-3F+ [WZ13] and Algorithm 2 in this paper
with 107j.a (Chain A) of Length 325. Here A′′ and B′′ are the chains simplified from A and
B, respectively, using the former (approximation) algorithm FIND-CPS-3F+, and A′ and
B′ are the chains simplified from A and B, respectively, using Algorithm 2.

In Table 1, δ3 is set to dddF (A,B)e. From this table one can see that with Algo-
rithm 2, we get max{A,B}/max{|A′|, |B′|} ≈ 4, while with Algorithm FIND-CPS-3F+,
we get max{A,B}/max{|A′′|, |B′′|} ≈ 3, using the same data and parameters. Hence,
max{|A′|, |B′|}/max{|A′′|, |B′′|} ≈ 3/4.

In Table 2, the parameters δ1 = δ2 are set to much larger values than in Table 1 (allowing
us to set δ3 to smaller values). The exact solutions by Algorithm 2 are even better now (w.r.t.
Algorithm FIND-CPS-3F+). From Table 2, one can see thatmax{|A′|, |B′|}/max{|A′′|, |B′′|} ≈
1/2.
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Protein
Chain(B)

|B| δ1 δ2 δ3 max{|A′′|, |B′′|}
by CPS-3F+

[WZ13]

max{|A′|, |B′|}
by CPS-3F

1hfj.c 325 12 12 1 26 15
1qd1.b 325 15 15 12 21 11
1toh 325 16 16 13 22 11
4eca.c 325 12 12 3 27 16
1d9q.d 297 15 15 13 24 12
4cea.b 325 12 12 3 26 15
4cea.d 325 12 12 3 32 16

Table 2: Comparison of Algorithm FIND-CPS-3F+ [WZ13] and Algorithm 2 in this paper
with 107j.a (Chain A) of Length 325.

7.2 Varying chain length comparisons

In Table 3, we simplify A with several B chains of varying lengths. The parameter δ1 is not set
to be equal to δ2 anymore. From the table, it can be seen thatmax{|A′|, |B′|}/max{|A′′|, |B′′|}
are mostly bounded by 2/3 to 1/2.

Protein
Chain(B)

|B| δ1 δ2 δ3 max{|A′′|, |B′′|}
by CPS-3F+

[WZ13]

max{|A′|, |B′|}
by CPS-3F

3ntx.a 322 10 10 5 39 25
1wls.a 316 15 13 6 22 14
2eq5.a 215 8 6 19 58 32
2zsk.a 219 12 8 17 38 19
1zq1.a 418 10 12 19 45 23
3jq0.a 457 12 12 26 70 36
2fep.a 273 12 12 10 11 6

Table 3: Comparison of Algorithm FIND-CPS-3F+ [WZ13] and Algorithm 2 in this paper
with 107j.a (Chain A) of Length 325. Here chain B is of varying lengths.

Remark 3. Computing A′, B′ for a pair of protein backbones A,B might take several hours.
For example, for the largest pair (i.e., A =107j.a and B =3jq0.a in Table 3) it takes about
20 hours, so finding heuristics for expediting the computation would be desirable. One such
heuristic, is to run Algorithm FIND-CPS-3F+ [WZ13] to obtain a smaller upper bound on
r, i.e., max{|A′′|, |B′′|} instead of m, before running Algorithm 2.

19



References

[AAKS14] Pankaj K. Agarwal, Rinat Ben Avraham, Haim Kaplan, and Micha Sharir.
Computing the discrete Fréchet distance in subquadratic time. SIAM J. Comput.,
43(2):429–449, 2014.

[AFK+14] Rinat Ben Avraham, Omrit Filtser, Haim Kaplan, Matthew J. Katz, and Micha
Sharir. The discrete Fréchet distance with shortcuts via approximate distance
counting and selection. In Proc. 30th Annual ACM Sympos. on Computational
Geometry, SOCG’14, page 377, 2014.

[AG95] Helmut Alt and Michael Godau. Computing the Fréchet distance between two
polygonal curves. Internat. J. Comput. Geometry Appl., 5:75–91, 1995.

[BBMM14] Kevin Buchin, Maike Buchin, Wouter Meulemans, and Wolfgang Mulzer. Four
soviets walk the dog — with an application to alt’s conjecture. In Proc. 25th
Annual ACM-SIAM Sympos. on Discrete Algorithms, SODA’14, pages 1399–
1413, 2014.

[BBW09] Kevin Buchin, Maike Buchin, and Yusu Wang. Exact algorithms for partial
curve matching via the Fréchet distance. In Proc. 20th Annual ACM-SIAM
Sympos. on Discrete Algorithms, SODA’09, pages 645–654, 2009.

[BDS14] Maike Buchin, Anne Driemel, and Bettina Speckmann. Computing the Fréchet
distance with shortcuts is NP-hard. In Proc. 30th Annual ACM Sympos. on
Computational Geometry, SOCG’14, page 367, 2014.

[BJW+08] Sergey Bereg, Minghui Jiang, Wencheng Wang, Boting Yang, and Binhai Zhu.
Simplifying 3D polygonal chains under the discrete Fréchet distance. In Proc.
8th Latin American Theoretical Informatics Sympos., LATIN’08, pages 630–641,
2008.

[DH13] Anne Driemel and Sariel Har-Peled. Jaywalking your dog: Computing the
Fréchet distance with shortcuts. SIAM J. Comput., 42(5):1830–1866, 2013.

[EM94] Thomas Eiter and Heikki Mannila. Computing discrete Fréchet distance. Tech-
nical Report CD-TR 94/64, Information Systems Dept., Technical University of
Vienna, 1994.

[Fré06] Maurice Fréchet. Sur quelques points du calcul fonctionnel. Rendiconti del
Circolo Matematico di Palermo, 22(1):1–72, 1906.

[JXZ08] Minghui Jiang, Ying Xu, and Binhai Zhu. Protein structure-structure alignment
with discrete Fréchet distance. J. Bioinformatics and Computational Biology,
6(1):51–64, 2008.

20



[WLZ11] Tim Wylie, Jun Luo, and Binhai Zhu. A practical solution for aligning and
simplifying pairs of protein backbones under the discrete Fréchet distance. In
Proc. Internat. Conf. Computational Science and Its Applications, ICCSA’11,
Part III, pages 74–83, 2011.

[WZ13] Tim Wylie and Binhai Zhu. Protein chain pair simplification under the discrete
Fréchet distance. IEEE/ACM Trans. Comput. Biology Bioinform., 10(6):1372–
1383, 2013.

21


	1 Introduction
	2 Preliminaries
	3 Weighted Chain Pair Simplification (WCPS-3F)
	4 Chain Pair Simplification (CPS-3F)
	4.1 The weighted version

	5 An Efficient Implementation
	6 1-Sided Chain Pair Simplification
	6.1 Minimizing k given delta
	6.2 Minimizing delta given k

	7 Some Empirical Results
	7.1 Similar chain length comparisons
	7.2 Varying chain length comparisons


