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Abstract. A vertex-subset graph problem Q defines which subsets of the vertices of an input graph
are feasible solutions. A reconfiguration variant of a vertex-subset problem asks, given two feasible
solutions Ss and St of size k, whether it is possible to transform Ss into St by a sequence of vertex
additions and deletions such that each intermediate set is also a feasible solution of size bounded by k.
We study reconfiguration variants of two classical vertex-subset problems, namely Independent Set
and Dominating Set. We denote the former by ISR and the latter by DSR. Both ISR and DSR
are PSPACE-complete on graphs of bounded bandwidth and W[1]-hard parameterized by k on general
graphs. We show that ISR is fixed-parameter tractable parameterized by k when the input graph is of
bounded degeneracy or nowhere-dense. As a corollary, we answer positively an open question concerning
the parameterized complexity of the problem on graphs of bounded treewidth. Moreover, our techniques
generalize recent results showing that ISR is fixed-parameter tractable on planar graphs and graphs of
bounded degree. For DSR, we show the problem fixed-parameter tractable parameterized by k when
the input graph does not contain large bicliques, a class of graphs which includes graphs of bounded
degeneracy and nowhere-dense graphs.

1 Introduction

Given an n-vertex graph G and two vertices s and t in G, determining whether there exists a path and
computing the length of the shortest path between s and t are two of the most fundamental graph problems.
In the classical battle of P versus NP or “easy” versus “hard”, both of these problems are on the easy side.
That is, they can be solved in poly(n) time, where poly is any polynomial function. But what if our input
consisted of a 2n-vertex graph? Of course, we can no longer assume G to be part of the input, as reading the
input alone requires more than poly(n) time. Instead, we are given an oracle encoded using poly(n) bits and
that can, in constant or poly(n) time, answer queries of the form “is u a vertex in G” or “is there an edge
between u and v?”. Given such an oracle and two vertices of the 2n-vertex graph, can we still determine if
there is a path or compute the length of the shortest path between s and t in poly(n) time?

A slightly different, but equally insightful, formulation of the question above is as follows. Given a set S
of n objects, consider the graph R(S) which contains one node for each set in the power set of S, 2S , and
two nodes are adjacent in R(S) whenever the size of their symmetric difference is equal to one. Clearly, this
graph contains 2n nodes and can be easily encoded in poly(n) bits using the oracle described above. It is not
hard to see that there exists a path between any two nodes of R(S). Moreover, computing the length of a
shortest path can be accomplished in constant time; it is equal to the size of the symmetric difference of the
two underlying sets. If the node set of R(S) were instead restricted to a subset of 2S, both of our problems
can become NP-complete or even PSPACE-complete. Therefore, another interesting question is whether we can
determine what types of “restriction” on the node set of R(S) induce such variations in the complexity of
the two problems.

These two seemingly artificial questions are in fact quite natural and appear in many practical and
theoretical problems. In particular, these are exactly the types of questions asked under the reconfiguration
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framework, the main subject of this work. Under the reconfiguration framework, instead of finding a feasible
solution to some instance I of a search problem Q, we are interested in structural and algorithmic questions
related to the solution space of Q. Naturally, given some adjacency relation A defined over feasible solutions
of Q, size of the symmetric difference being one such relation, the solution space can be represented using
a graph RQ(I). RQ(I) contains one node for each feasible solution of Q on instance I and two nodes share
an edge whenever their corresponding solutions are adjacent under A. An edge in RQ(I) corresponds to a
reconfiguration step, a walk in RQ(I) is a sequence of such steps, a reconfiguration sequence, and RQ(I) is
a reconfiguration graph.

Studying problems related to reconfiguration graphs has received considerable attention in recent litera-
ture [4, 22, 25, 26, 30, 34], the most popular problem being to determine whether there exists a reconfiguration
sequence between two given feasible solution. In most cases, this problem was shown PSPACE-hard in general,
although some polynomial-time solvable restricted cases have been identified. For PSPACE-hard cases, it is
not surprising that shortest paths between solutions can have exponential length. More surprising is that
for most known polynomial-time solvable cases the diameter of the reconfiguration graph has been shown
to be polynomial. Some of the problems that have been studied under the reconfiguration framework in-
clude Independent Set [31], Vertex Cover [33], Shortest Path [5, 30], Coloring [3, 6, 7, 9–11, 29],
and Boolean Satisfiability [22]. We refer the reader to the recent survey by Van den Heuvel [43] for a
detailed overview. Recently, a systematic study of the parameterized complexity of reconfiguration problems
was initiated by Mouawad et al. [34]; various problems were identified where the problem was not only
NP-hard (or PSPACE-hard), but also W-hard under various parameterizations.

Overview of our results. In this work, we focus on reconfiguration variants of the Independent Set
(IS) and Dominating Set (DS) problems. Given two independent sets Is and It of a graph G such that
|Is| = |It| = k, the Independent Set Reconfiguration problem asks whether there exists a sequence of
independents sets σ = 〈I0, I1, . . . , Iℓ〉, for some ℓ, such that:

(1) I0 = Is and Iℓ = It,
(2) Ii is an independent set of G for all 0 ≤ i ≤ ℓ,
(3) |Ii∆Ii+1| = 1 for all 0 ≤ i < ℓ, and
(4) k − 1 ≤ |Si| ≤ k for all 0 ≤ i ≤ ℓ.

Alternatively, given a graph G and integer k, the reconfiguration graph Ris(G, k − 1, k) has a node for
each independent set of G of size k or k − 1 and two nodes are adjacent in Ris(G, k − 1, k) whenever the
corresponding independent sets can be obtained from one another by either the addition or the deletion of
a single vertex. The reconfiguration graph Rds(G, k, k + 1) is defined similarly for dominating sets. Hence,
ISR and DSR can be formally stated as follows:

Independent Set Reconfiguration (ISR)
Input: Graph G, positive integer k, and two k-independent sets Is and It
Question: Is there a path from Is to It in Ris(G, k − 1, k)?

Dominating Set Reconfiguration (DSR)
Input: Graph G, positive integer k, and two k-dominating sets Ds and Dt

Question: Is there a path from Ds to Dt in Rds(G, k, k + 1)?

Note that since we only allow independent sets of size k and k − 1 the ISR problem is equivalent to
reconfiguration under the token jumping model considered by Ito et al. [27, 28]. ISR is known to be PSPACE-
complete on graphs of bounded bandwidth [35, 44] (hence pathwidth and treewidth) and W[1]-hard on
general graphs [28]. On the positive side, the problem was shown fixed-parameter tractable, with parameter
k, for graphs of bounded degree, planar graphs, and graphs excluding K3,d as a (not necessarily induced)
subgraph, for any constant d [27, 28]. We push this boundary further by showing that the problem remains
fixed-parameter tractable for graphs of bounded degeneracy and nowhere-dense graphs (Figure 1). As a
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corollary, we answer positively an open question concerning the parameterized complexity of the problem
(parameterized by k) on graphs of bounded treewidth.

For DSR, we first show that the problem is W[1]-hard on general graphs by adapting the well-known
(parameter-preserving) reduction from Independent Set to Dominating Set. Then, we show that the
problem is fixed-parameter tractable, with parameter k, for graphs excluding Kd,d as a (not necessarily
induced) subgraph, for any constant d. Note that this class of graphs includes both nowhere-dense and
bounded degeneracy graphs and is the “largest” class on which the Dominating Set problem is known to
be in FPT [40, 42].

Clearly, our main open question is whether ISR remains fixed-parameter tractable on graphs excluding
Kd,d as a subgraph. Intuitively, all of the classes we consider fall under the category of “sparse” graph classes.
Hence, in some sense, one would not expect a sparse graph to have “too many” dominating sets of fixed
small size k as n becomes larger and larger. For independent sets, the situation is reversed. As n grows larger,
so does the number of independent sets of fixed size k. So it remains to be seen whether some structural
properties of graphs excluding Kd,d as a subgraph can be used to settle our open question or whether the
problem becomes W[1]-hard. In the latter case, this would be the first example of a W[1]-hard problem (in
general), which is in FPT on a class C of graphs but where the reconfiguration version is not; finding such
a problem, we believe, is interesting in its own right. Another open question is whether we can adapt our
results for ISR to find shortest reconfiguration sequences. Our algorithm for DSR does in fact guarantee
shortest reconfiguration sequences but, as we shall see, the same does not hold for both ISR algorithms.

2 Preliminaries

For an in-depth review of general graph theoretic definitions we refer the reader to the book of Diestel [16].
Unless otherwise stated, we assume that each graph G is a simple, undirected graph with vertex set V (G)
and edge set E(G), where |V (G)| = n and |E(G)| = m. The open neighborhood, or simply neighborhood, of a
vertex v is denoted by NG(v) = {u | uv ∈ E(G)}, the closed neighborhood by NG[v] = NG(v)∪{v}. Similarly,
for a set of vertices S ⊆ V (G), we define NG(S) = {v | uv ∈ E(G), u ∈ S, v 6∈ S} and NG[S] = NG(S) ∪ S.
The degree of a vertex is |NG(v)|. We drop the subscript G when clear from context. A subgraph of G is a
graph G′ such that V (G′) ⊆ V (G) and E(G′) ⊆ E(G). The induced subgraph of G with respect to S ⊆ V (G)
is denoted by G[S]; G[S] has vertex set S and edge set {uv ∈ E(G[S]) | u, v ∈ S, uv ∈ E(G)}. We denote by
∆(G) and δ(G) the maximum and minimum degree of G, respectively.

A walk of length ℓ from v0 to vℓ in G is a vertex sequence v0, . . . , vℓ, such that for all i ∈ {0, . . . , ℓ− 1},
vivi+1 ∈ E(G). It is a path if all vertices are distinct. It is a cycle if ℓ ≥ 3, v0 = vℓ, and v0, . . . , vℓ−1 is a
path. A path from vertex u to vertex v is also called a uv-path. The distance between two vertices u and
v of G, distG(u, v), is the length of a shortest uv-path in G (positive infinity if no such path exists). The
eccentricity of a vertex v ∈ V (G), ecc(v), is equal to maxu∈V (G)(distG(u, v)). The radius of G, rad(G), is
equal to minv∈V (G)(ecc(v)). The diameter of G, diam(G), is equal to maxv∈V (G)(ecc(v)). For r ≥ 0, the
r-neighborhood of a vertex v ∈ V (G) is defined as N r

G[v] = {u | distG(u, v) ≤ r}. We write B(v, r) = N r
G[v]

and call it a ball of radius r around v; for S ⊆ V (G), B(S, r) =
⋃

v∈S N r
G[v].

Contracting an edge uv of G results in a new graph H in which the vertices u and v are deleted and
replaced by a new vertex w that is adjacent to NG(u) ∪NG(v) \ {u, v}. If a graph H can be obtained from
G by repeatedly contracting edges, H is said to be a contraction of G. If H is a subgraph of a contraction
of G, then H is said to be a minor of G, denoted by H �m G. An equivalent characterization of minors
states that H is a minor of G if there is a map that associates to each vertex v of H a non-empty connected
subgraph Gv of G such that Gu and Gv are disjoint for u 6= v and whenever there is an edge between u and
v in H there is an edge in G between some node in Gu and some node in Gv. The subgraphs Gv are called
branch sets. H is a minor at depth r of G, H �r

m G, if H is a minor of G which is witnessed by a collection of
branch sets {Gv | v ∈ V (H)}, each of which induces a graph of radius at most r. That is, for each v ∈ V (H),
there is a w ∈ V (Gv) such that V (Gv) ⊆ N r

Gv
[w].
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Sparse graph classes. We define the three main classes we consider. Figure 1 illustrates the relationship
between these classes and some other well-known classes of sparse graphs. We refer the reader to [8, 38, 36]
for more details.

Definition 1 ([38, 36]). A class of graphs C is said to be nowhere-dense if for every d ≥ 0 there exists a
graph Hd such that Hd 6�d

m G for all G ∈ C. C is effectively nowhere-dense if the map d 7→ Hd is computable.
Otherwise, C is said to be somewhere-dense.

Nowhere-dense classes of graphs were introduced by Nesetril and Ossona de Mendez [38, 36] and “nowhere-
density” turns out to be a very robust concept with several natural characterizations [23]. We use one such
characterization in Section 3.2. It follows from the definition that planar graphs, graphs of bounded treewidth,
graphs of bounded degree, H-minor-free graphs, and H-topological-minor-free graphs are nowhere-dense [38,
36]. As in the work of Dawar and Kreutzer [14], we are only interested in effectively nowhere-dense classes; all
natural nowhere-dense classes are effectively nowhere-dense, but it is possible to construct artificial classes
that are nowhere-dense, but not effectively so.

Definition 2. A class of graphs C is said to be d-degenerate if there is an integer d such that every induced
subgraph of any graph G ∈ C has a vertex of degree at most d.

Graphs of bounded degeneracy and nowhere-dense graphs are incomparable [24]. In other words, graphs
of bounded degeneracy are somewhere-dense.

Proposition 1 ([32]). The number of edges in a d-degenerate graph is at most dn and hence its average
degree is at most 2d.

Degeneracy is a hereditary property, hence any induced subgraph of a d-degenerate graph is also d-
degenerate. It is well-known that graphs of treewidth at most d are also d-degenerate. Moreover a d-degenerate
graph cannot contain Kd+1,d+1 as a subgraph, which brings us to the class of biclique-free graphs. The
relationship between bounded degeneracy, nowhere-dense, and Kd,d-free graphs was shown by Philip et al.
and Telle and Villanger [40, 42].

Definition 3. A class of graphs C is said to be d-biclique-free, for some d > 0, if Kd,d is not a subgraph of
any G ∈ C, and it is said to be biclique-free if it is d-biclique-free for some d.

Proposition 2 ([40, 42]). Any degenerate or nowhere-dense class of graphs is biclique-free, but not vice-
versa.

Bounded degree Bounded treewidth Planar

Bounded genus

H-minor-free

H-topological-minor-free

Bounded expansion

Nowhere-denseBounded degeneracy

Biclique-free

Fig. 1. Sparse graph classes [8, 38, 36]. Arrows indicate inclusion.
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Parameterized complexity. Using the framework developed by Downey and Fellows [17], a parameterized
problem includes in the input a parameter p. For a parameterized problem Q with inputs of the form (x, p),
|x| = n and p a positive integer, Q is fixed-parameter tractable (or in FPT) if it can be decided in f(p)nc

time, where f is an arbitrary function and c is a constant independent of both n and p. Q is in the class XP
if it can be decided in nf(p) time. Q has a kernel of size f(p) if there is an algorithm that transforms the
input (x, p) to (x′, p′) in polynomial time (with respect to |x| and p) such that (x, p) is a yes-instance if and
only if (x′, p′) is a yes-instance, p′ ≤ g(p), and |x′| ≤ f(p). Each problem in FPT has a kernel, possibly of
exponential (or worse) size [17].

In order to distinguish between parameterized problems solvable in nf(p) time and parameterized problems
solvable in f(p)nc time, Downey and Fellows [17] introduced the W-hierarchy. The hierarchy consists of a
complexity class W[t] for every integer t ≥ 1 such that W[t] ⊆ W[t + 1] for all t. They proved that FPT ⊆
W[1] ⊆ W[2] ⊆ . . . ⊆ W[t] and conjectured that strict containment holds. In particular, the assumption
FPT ⊂ W[1] is a natural parameterized analogue of the conjecture that P 6= NP. Moreover, Downey and
Fellows showed that the Independent Set problem parameterized by solution size is W[1]-complete and
the Dominating Set problem parameterized by solution size is W[2]-complete. Showing hardness in the
parameterized setting is usually accomplished using FPT reductions. The reader is referred to the books of
Niedermeier, Flum, and Grohe for more on parameterized complexity [21, 39].

Reconfiguration. For any vertex-subset problem Q, graph G, and positive integer k, we consider the
reconfiguration graph RQ(G, k, k + 1) when Q is a minimization problem (e.g. Dominating Set) and the
reconfiguration graph RQ(G, k − 1, k) when Q is a maximization problem (e.g. Independent Set). A set
S ⊆ V (G) has a corresponding node in V (RQ(G, rl, ru)), rl ∈ {k−1, k} and ru ∈ {k, k+1}, if and only if S is
a feasible solution for Q and rl ≤ |S| ≤ ru. We refer to vertices in G using lower case letters (e.g. u, v) and to
the nodes in RQ(G, rl, ru), and by extension their associated feasible solutions, using upper case letters (e.g.
A,B). If A,B ∈ V (RQ(G, rl, ru)) then there exists an edge between A and B in RQ(G, rl, ru) if and only if
there exists a vertex u ∈ V (G) such that {A\B}∪{B\A} = {u}. Equivalently, for A∆B = {A\B}∪{B\A}
the symmetric difference of A and B, A and B share an edge in RQ(G, rl, ru) if and only if |A∆B| = 1.

We write A ↔ B if there exists a path in RQ(G, rl, ru), a reconfiguration sequence, joining A and B. Any
reconfiguration sequence from source feasible solution Ss to target feasible solution St, which we sometimes
denote by σ = 〈S0, S1, . . . , Sℓ〉, for some ℓ, has the following properties:

- S0 = Ss and Sℓ = St,
- Si is a feasible solution for Q for all 0 ≤ i ≤ ℓ,
- |Si∆Si+1| = 1 for all 0 ≤ i < ℓ, and
- rl ≤ |Si| ≤ ru for all 0 ≤ i ≤ ℓ.

We denote the length of σ by |σ|. For 0 < i ≤ ℓ, we say vertex v ∈ V (G) is added at
step/index/position/slot i if v 6∈ Si−1 and v ∈ Si. Similarly, a vertex v is removed at step/index/position/slot
i if v ∈ Si−1 and v 6∈ Si. A vertex v ∈ V (G) is touched in the course of a reconfiguration sequence if v is
either added or removed at least once; it is untouched otherwise. A vertex is removable (addable) from fea-
sible solution S if S \ {v} (S ∪ {v}) is also a feasible solution for Q. For any pair of consecutive solutions
(Si−1, Si) in σ, we say Si (Si−1) is the successor (predecessor) of Si−1 (Si). A reconfiguration sequence
σ′ = 〈S0, S1, . . . , Sℓ′〉 is a prefix of σ = 〈S0, S1, . . . , Sℓ〉 if ℓ′ < ℓ.

We adapt the concept of irrelevant vertices from parameterized complexity to introduce the notions
of irrelevant and strongly irrelevant vertices for reconfiguration. Since these notions apply to almost any
reconfiguration problem, we give general definitions.

Definition 4. For any vertex-subset problem Q, n-vertex graph G, positive integers rl and ru, and Ss, St ∈
V (RQ(G, rl, ru)) such that there exists a reconfiguration sequence from Ss to St in RQ(G, rl, ru), we say
a vertex v ∈ V (G) is irrelevant (with respect to Ss and St) if and only if v 6∈ Ss ∪ St and there exists
a reconfiguration sequence from Ss to St in RQ(G, rl, ru) which does not touch v. We say v is strongly
irrelevant (with respect to Ss and St) if it is irrelevant and the length of a shortest reconfiguration sequence
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from Ss to St which does not touch v is no greater than the length of a shortest reconfiguration sequence
which does (if the latter sequence exists).

At a high level, it is enough to consider irrelevant vertices when trying to find any reconfiguration
sequence between two feasible solutions, but strongly irrelevant vertices must be considered if we wish to
find a shortest reconfiguration sequence. As we shall see, our algorithm for DSR does in fact find strongly
irrelevant vertices and can therefore be used to find shortest reconfiguration sequences. For ISR, we are only
able to find irrelevant vertices and reconfiguration sequences are not guaranteed to be of shortest possible
length.

3 Independent set reconfiguration

3.1 Graphs of bounded degeneracy

To show that the ISR problem is fixed-parameter tractable on d-degenerate graphs, for some integer d, we
will proceed in two stages. In the first stage, we will show, for an instance (G, Is, It, k), that as long as the
number of low-degree vertices in G is “large enough” we can find an irrelevant vertex (Definition 4). Once
the number of low-degree vertices is bounded, a simple counting argument (Proposition 3) shows that the
size of the remaining graph is also bounded and hence we can solve the instance by exhaustive enumeration.

Proposition 3. Let G be an n-vertex d-degenerate graph, S1 ⊆ V (G) be the set of vertices of degree at most
2d, and S2 = V (G) \ S1. If |S1| < s, then |V (G)| ≤ (2d+ 1)s.

Proof. The number of edges in a d-degenerate graph is at most dn and hence its average degree is at most
2d (Proposition 1). If |V (G)| = (2d+ 1)s+ c, for c ≥ 1, then |S2| = |V (G) \ S1| > 2ds+ c,

∑

v∈S2
|NG(v)| >

(2ds+ c)(2d+ 1), and we obtain the following contradiction:

∑

v∈S1
|NG(v)|+

∑

v∈S2
|NG(v)|

|V (G)|
>

(2ds+ c)(2d+ 1)

(2d+ 1)s+ c

=
4d2s+ 2ds+ 2dc+ c

(2d+ 1)s+ c

=
2d(2ds+ s+ c) + c

2ds+ s+ c
> 2d.

⊓⊔

To find irrelevant vertices, we make use of the following classical result of Erdõs and Rado [20], also
known in the literature as the sunflower lemma. We first define the terminology used in the statement of the
theorem. A sunflower with k petals and a core Y is a collection of sets S1, . . . , Sk such that Si ∩ Sj = Y for
all i 6= j; the sets Si \ Y are petals and we require none of them to be empty. Note that a family of pairwise
disjoint sets is a sunflower (with an empty core).

Theorem 1 (Sunflower Lemma [20]). Let A be a family of sets (without duplicates) over a universe U,
such that each set in A has cardinality at most d. If |A| > d!(k − 1)d, then A contains a sunflower with k

petals and such a sunflower can be computed in time polynomial in |A|, |U|, and k.

Lemma 1. Let (G, Is, It, k) be an instance of ISR where G is d-degenerate and let B be the set of vertices
in V (G) \ {Is ∪ It} of degree at most 2d. If |B| > (2d+1)!(2k− 1)2d+1, then there exists an irrelevant vertex
v ∈ V (G) \ {Is ∪ It} such that (G, Is, It, k) is a yes-instance if and only if (G′, Is, It, k) is a yes-instance,
where G′ is obtained from G by deleting v and all edges incident on v.

Proof. Let b1, b2, . . ., b|B| denote the vertices in B and let A = {NG[b1], NG[b2], . . ., NG[b|B|]} denote the
family of sets corresponding to the closed neighborhoods of each vertex in B and set U =

⋃

b∈B N [b]. Since
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|B| is greater than (2d+1)!(2k−1)2d+1, we know from Theorem 1 that A contains a sunflower with 2k petals
and such a sunflower can be computed in time polynomial in |A| and k. Note that we assume, without loss
of generality, that there are no two vertices u and v in V (G) \ {Is ∪ It} such that NG[u] = NG[v], as we can
safely delete one of them from the input graph otherwise, i.e. one of the two is (strongly) irrelevant. Let vir
be a vertex whose closed neighborhood corresponds to one of those 2k petals. We claim that vir is irrelevant
and can therefore be deleted from G to obtain G′.

To see why, consider any reconfiguration sequence σ = 〈Is = I0, I1, . . . , It = Iℓ〉 from Is to It in Ris(G, k−
1, k). Since vir 6∈ Is ∪ It, we let p, 0 < p < ℓ, be the first index in σ at which vir is added, i.e. vir ∈ Ip and
vir 6∈ Ii for all i < p. Moreover, we let q+ 1, p < q+1 ≤ ℓ be the first index after p at which vir is removed,
i.e. vir ∈ Iq and vir 6∈ Iq+1. We will consider the subsequence σs = 〈Ip, . . . , Iq〉 and show how to modify it
so that it does not touch vir. Applying the same procedure to every such subsequence in σ suffices to prove
the lemma.

Since the sunflower constructed to obtain vir has 2k petals and the size of any independent set in σ (or
any reconfiguration sequence in general) is at most k, there must exist another free vertex vfr whose closed
neighborhood corresponds to one of the remaining 2k− 1 petals which we can add at index p instead of vir ,
i.e. vfr 6∈ NG[Ip]. We say vfr represents vir. Assume that no such vertex exists. Then we know that either
some vertex in the core of the sunflower is in Ip contradicting the fact that we are adding vir , or every petal
of the sunflower contains a vertex in Ip, which is not possible since the size of any independent set is at most
k and the number of petals is larger. Hence, we first modify the subsequence σs by adding vfr instead of vir .
Formally, we have σ′

s = 〈(Ip \ {vir}) ∪ {vfr}, . . . , (Iq \ {vir}) ∪ {vfr}〉.
To be able to replace σs by σ′

s in σ and obtain a reconfiguration sequence from Is to It, then all of the
following conditions must hold:

(1) |(Iq \ {vir}) ∪ {vfr}| = k.
(2) (Ii \ {vir}) ∪ {vfr} is an independent set of G for all p ≤ i ≤ q,
(3) |(Ii \ {vir}) ∪ {vfr}∆(Ii+1 \ {vir}) ∪ {vfr}| = 1 for all p ≤ i < q, and
(4) k − 1 ≤ |(Ii \ {vir}) ∪ {vfr}| ≤ k for all p ≤ i ≤ q.

It is not hard to see that if there exists no i, p < i ≤ q, such that σ′
s adds a vertex in N [vfr] at position i,

then all four conditions hold. If there exists such a position, we will modify σ′
s into yet another subsequence

σ′′
s by finding a new vertex to represent vir. The length of σ′′

s will be one greater than the length of σ′
s.

We let i, p < i ≤ q, be the first position in σ′
s at which a vertex in u ∈ N [vfr] (possibly equal to vfr) is

added. Using the same arguments discussed to find vfr, and since we constructed a sunflower with 2k petals,
we can find another vertex v′fr such that N [vfr]∩ Ii−1 = ∅. This new vertex will represent vir instead of vfr.
We construct σ′′

s from σ′
s as follows: σ′′

s = 〈Ip \ {vir}∪{vfr}, . . . , Ii−1 \ {vir}∪{vfr}, Ii−1 \ {vir}∪{v′fr}, Ii \
{vir} ∪ {v′fr}, . . . , Iq \ {vir} ∪ {v′fr}〉. If σ

′′
s now satisfies all four conditions then we are done. Otherwise, we

repeat the same process (which can occur at most q − p times) until we reach such a subsequence. ⊓⊔

Theorem 2. ISR on d-degenerate graphs is fixed-parameter tractable parameterized by k + d.

Proof. For an instance (G, Is, It, k) of ISR, we know from Lemma 1 that as long as V (G)\ {Is ∪ It} contains
more than (2d+1)!(2k− 1)2d+1 vertices of degree at most 2d we can find an irrelevant vertex and reduce the
size of the graph. After exhaustively reducing the graph to obtain G′, we known that G′[V (G′) \ {Is ∪ It}],
which is also d-degenerate, has at most (2d+ 1)!(2k − 1)2d+1 vertices of degree at most 2d. Hence, applying
Proposition 3, we know that |V (G′) \ {Is ∪ It}| ≤ (2d+ 1)(2d+ 1)!(2k− 1)2d+1 and |V (G′)| ≤ (2d+ 1)(2d+
1)!(2k − 1)2d+1 + 2k. ⊓⊔

3.2 Nowhere-dense graphs

Nesetril and Ossona de Mendez [37] showed an interesting relationship between nowhere-dense classes and
a property of classes of structures introduced by Dawar [12, 13] called quasi-wideness. We will use quasi-
wideness and show a rather interesting relationship between ISR on graphs of bounded degeneracy and
nowhere-dense graphs. That is, our algorithm for nowhere-dense graphs will closely mimic the previous
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algorithm in the following sense. Instead of using the sunflower lemma to find a large sunflower, we will use
quasi-wideness to find a “large enough almost sunflower” with an initially “unknown” core and then use
structural properties of the graph to find this core and complete the sunflower. We first state some of the
results that we need. Given a graph G, a set S ⊆ V (G) is called r-scattered if N r

G(u) ∩ N r
G(v) = ∅ for all

distinct u, v ∈ S.

Proposition 4. Let G be a graph and let S = {s1, s2, ..., sk} ⊆ V (G) be a 2-scattered set of size k in G.
Then the closed neighborhoods of the vertices in S form a sunflower with k petals and an empty core.

Definition 5. A class C of graphs is uniformly quasi-wide with margin sC : N → N and NC : N×N → N if
for all r, k ∈ N, if G ∈ C and W ⊆ V (G) with |W | > NC(r, k), then there is a set S ⊆ W with |S| < sC(r),
such that W contains an r-scattered set of size at least k in G[V (G)\S]. C is effectively uniformly quasi-wide
if sC(r) and NC(r, k) are computable.

Examples of effectively uniformly quasi-wide classes include graphs of bounded degree with margin 1 and
H-minor-free graphs with margin |V (H)| − 1.

Theorem 3 ([14]). A class C of graphs is effectively nowhere-dense if and only if C is effectively uniformly
quasi-wide.

Theorem 4 ([14]). Let C be an effectively nowhere-dense class of graphs and h be the computable function
such that Kh(r) 6�r

m G for all G ∈ C. Let G be an n-vertex graph in C, r, k ∈ N, and W ⊆ V (G) with
|W | ≥ N(h(r), r, k), for some computable function N . Then in O(n2) time, we can compute a set B ⊆ V (G),
|B| ≤ h(r) − 2, and a set A ⊆ W such that |A| ≥ k and A is an r-scattered set in G[V (G) \B].

Lemma 2. Let C be an effectively nowhere-dense class of graphs and h be the computable function such that
Kh(r) 6�r

m G for all G ∈ C. Let (G, Is, It, k) be an instance of ISR where G ∈ C and let R be the set of
vertices in V (G) \ {Is ∪ It}. Moreover, let P = {P1, P2, . . .} be a family of sets which partitions R such that
for any two distinct vertices u, v ∈ R, u, v ∈ Pi if and only if NG(u)∩ {Is ∪ It} = NG(v)∩ {Is ∪ It}. If there
exists a set Pi ∈ P such that |Pi| > N(h(2), 2, 2h(2)+1k), for some computable function N , then there exists
an irrelevant vertex v ∈ V (G) \ {Is ∪ It} such that (G, Is, It, k) is a yes-instance if and only if (G′, Is, It, k)
is a yes-instance, where G′ is obtained from G by deleting v and all edges incident on v.

Proof. By construction, we known that the family P contains at most 4k sets, as we partition R based on
their neighborhoods in Is ∪ It. Note that some vertices in R have no neighbors in Is ∪ It and will therefore
belong to the same set in P.

Assume that there exists a P ∈ P such that |P | > N(h(2), 2, 2h(2)+1k). Consider the graph G[R]. By
Theorem 4, we can, in O(|R|2) time, compute a set B ⊆ R, |B| ≤ h(2) − 2, and a set A ⊆ P such that
|A| ≥ 2h(2)+1k and A is a 2-scattered set in G[R \ B]. Now let P′ = {P ′

1, P
′
2, . . .} be a family of sets which

partitions A such that for any two distinct vertices u, v ∈ A, u, v ∈ P ′
i if and only if NG(u)∩B = NG(v)∩B.

Since |A| ≥ 2h(2)+1k and |P′| ≤ 2h(2), we know that at least one set in P′ will contain at least 2k vertices
of A. Denote these 2k vertices by A′. All vertices in A′ have the same neighborhood in B and the same
neighborhood in Is ∪ It (as all vertices in A′ belonged to the same set P ∈ P). Moreover, A′ is a 2-scattered
set in G[R \B]. Hence, the sets {NG[a

′
1], NG[a

′
2], . . . , NG[a

′
2k]}, i.e. the closed neighborhoods of the vertices

in A′, form a sunflower with 2k petals (Proposition 4); the core of this sunflower is contained in B ∪ Is ∪ It.
Using the same arguments as we did in the proof of Lemma 1, we can show that there exists at least one
irrelevant vertex v ∈ V (G) \ {B ∪ Is ∪ It}. ⊓⊔

Theorem 5. ISR restricted to any effectively nowhere-dense class C of graphs is fixed-parameter tractable
parameterized by k.

Proof. If after partitioning V (G) \ {Is ∪ It} into at most 4k sets the size of every set P ∈ P is
bounded by N(h(2), 2, 2h(2)+1k), then we can solve the problem by exhaustive enumeration, as |V (G)| ≤
2k+4kN(h(2), 2, 2h(2)+1k). Otherwise, we can apply Lemma 2 and reduce the size of the graph in polynomial
time. ⊓⊔

8



4 Dominating set reconfiguration

4.1 W[1]-hardness

The W[1]-hardness of the DSR problem can be shown using only minor modifications to the standard
parameterized reduction from IS to DS. That is, instead of reducing from IS to DS, we can instead give a
reduction from ISR to DSR. We include a proof for completeness.

Theorem 6. DSR parameterized by k is W[1]-hard on general graphs.

Proof. We let (G, Is, It, k) be an instance of ISR, where V (G) = {v1, . . . , vn}, E(G) = {e1, . . . , em}, Is =
{vi1 , . . . , vik}, and It = {vj1 , . . . , vjk}. We first construct a graph G′ as follows. G′ consists of the disjoint
union of k vertex-disjoint cliques C1, . . . , Ck, each of size n, k vertex-disjoint independent sets F1, . . . , Fk,
each of size at most k + 2, and at most n2k2 vertex-disjoint independent sets R1, R2, . . ., each of size k + 2.
Intuitively, each set Fi will force any dominating set of G′ of size k (or k + 1) to pick a vertex from each Ci

and the “R sets” will guarantee that the selected vertices form an independent set in G. Formally, we have:

(1) For every vertex v ∈ V (G) there is a corresponding vertex in each Ci, 1 ≤ i ≤ k and we let Ci =
{ci1, . . . , c

i
n}.

(2) For every 1 ≤ i ≤ k, we make the set Ci a clique in G′.
(3) For each set Ci, 1 ≤ i ≤ k, we introduce a set Fi of k + 2 new independent vertices and add an edge

between each vertex in Ci and all vertices in Fi.
(4) For a vertex cip ∈ Ci and a vertex cjq ∈ Cj , i 6= j, 1 ≤ i, j ≤ k, and 1 ≤ p, q ≤ n, if p = q or vpvq ∈ E(G)

we introduce k+2 new independent vertices and make them adjacent to all vertices in Ci ∪Cj \ {cip, c
j
q}.

In other words, each new vertex dominates all but two vertices in Ci ∪Cj , namely cip and cjq.

We let (G′, Ds, Dt, k) denote the corresponding DSR instance, where Ds = {c1i1 , . . . , c
k
ik
} and Dt =

{c1j1 , . . . , c
k
jk
}. Clearly, any dominating set D of G′ of size k must pick exactly one vertex from each Ci,

1 ≤ i ≤ k, and each such set corresponds to an independent set of size k in G. Moreover, any reconfiguration
sequence between Ds and Dt starts by adding a vertex (since G′ has no dominating set of size k − 1) and
then removing another (since dominating sets larger than k + 1 are not allowed). By swapping the order of
consecutive vertex additions and removals we obtain a one-to-one correspondence between reconfiguration
sequences of independent sets of G (of size k and k − 1) and reconfiguration sequences (of the same length)
between dominating sets of G′ (of size k and k + 1). The instances are thus equivalent. ⊓⊔

4.2 Graphs excluding Kd,d as a subgraph

The parameterized complexity of the Dominating Set problem (parameterized by k) on various classes
of graphs has been studied extensively in the literature; the main goal has been to push the tractability
frontier as far as possible. The problem was shown fixed-parameter tractable on planar graphs by Alber
et al. [1], on bounded genus graphs by Ellis et al. [19], on H-minor-free graphs by Demaine et al. [15], on
bounded expansion graphs by Nesetril and Ossona de Mendez [36], on nowhere-dense graphs by Dawar and
Kreutzer [14], on degenerate graphs by Alon and Gutner [2], and finally on Kd,d-free graphs by Philip et
al. [40] and Telle and Villanger [42]. Figure 1 illustrates the inclusion relationship among these classes of
graphs, which all fall under the category of sparse graphs. Our fixed-parameter tractable algorithm relies
on many of these earlier results. Interestingly, and since the class of Kd,d-free graphs includes all those
other graph classes, our algorithm (Theorem 9) implies that the diameter of the reconfiguration graph
Rds(G, k, k + 1) (or of its connected components), for G in any of the aforementioned classes, is bounded
above by f(k, c), where f is a computable function and c is constant which depends on the graph class at
hand. We start with some definitions and known results.

Definition 6 ([18, 41, 40, 42]). Given a graph G, the domination core of G is a set C ⊆ V (G) such that
any set D ⊆ V (G) is a dominating set of G if and only if D dominates C. In other words, D is a dominating
set of G if and only if C ⊆ NG[D].
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Theorem 7 ([41, 40, 42]). If G is a graph which excludes Kd,d as a subgraph and G has a dominating set
of size at most k then the size of the domination core C of G is at most dkd and C can be computed in
O∗(dkd) time.

Definition 7. A bipartite graph G with bipartition (A,B) is B-twinless if there are no vertices u, v ∈ B

such that N(u) = N(v).

Theorem 8 ([41]). If G is a bipartite graph with bipartition (A,B) such that G is B-twinless and excludes
Kd,d as a subgraph then

|B| ≤ 2(d− 1)(
|A|e

d
)2d.

Since Theorem 7 implies a bound on the size of the domination core and allows us to compute it efficiently,
our main concern is to deal with vertices outside of the core, i.e. vertices in V (G)\C. The next lemma shows
that we can in fact find strongly irrelevant vertices outside of the domination core of a graph.

Lemma 3. For G an n-vertex graph, C the domination core of G, and Ds and Dt two dominating sets of
G, if there exist u, v ∈ V (G) \ {C ∪ Ds ∪ Dt} such that NG(u) ∩ C = NG(v) ∩ C then u (or v) is strongly
irrelevant.

Proof. Given a reconfiguration sequence σ = 〈D0 = Ds, D1, . . . , Dℓ = Dt〉 from Ds to Dt which touches u,
we will show how to obtain a reconfiguration sequence σ′ such that |σ′| ≤ |σ| and σ′ touches v but not u.

We construct σ′ in two stages. In the first stage, we construct the sequence α = 〈D′
0, D

′
1, . . . , D

′
ℓ〉 of

dominating sets, where for all 0 ≤ i ≤ ℓ

D′
i =

{

Di ∪ {v} \ {u} if u ∈ Di

Di if u 6∈ Di.

Note that α is not necessarily a reconfiguration sequence from Ds to Dt. In the second stage, we repeatedly
delete from α any set D′

i such that D′
i = D′

i+1, 0 ≤ i < ℓ. We let σ′ = 〈D′
0, D

′
1, . . . , D

′
ℓ′〉 denote the

resulting sequence, in which there are no two consecutive sets that are equal, and we claim that σ′ is in fact
a reconfiguration sequence from Ds to Dt.

To prove the claim, we need to show that the following conditions hold:

(1) D′
0 = Ds and D′

ℓ′ = Dt,
(2) D′

i is a dominating set of G for all 0 ≤ i ≤ ℓ′,
(3) |D′

i∆D′
i+1| = 1 for all 0 ≤ i < ℓ′, and

(4) k ≤ |D′
i| ≤ k + 1 for all 0 ≤ i ≤ ℓ′.

Since u, v 6∈ Ds∪Dt, condition (1) clearly holds. Moreover, since replacing u by v in any set does not increase
the size of the corresponding set, k ≤ |D′

i| ≤ k + 1 (condition (4) holds) and |D′
i∆D′

i+1| ≤ 1. As there are
no two consecutive sets in σ′ that are equal, |D′

i∆D′
i+1| > 0 and therefore |D′

i∆D′
i+1| = 1 (condition (3)

holds). The fact that D′
i is a dominating set of G follows from the definition of a domination core. Since Di

is a dominating set of G, C ⊆ NG[Di]. Moreover, since NG(u)∩C = NG(v)∩C and u, v 6∈ C, we know that
C ⊆ NG[D

′
i]. By the definition of the domination core, it follows that D′

i (which still dominates C) is also a
dominating set of G. Therefore, all four conditions hold, as needed. ⊓⊔

Theorem 9. DSR parameterized by k + d is fixed-parameter tractable on graphs that exclude Kd,d as a
subgraph.

Proof. Given a graph G, integer k, and two dominating sets Ds and Dt of G of size at most k, we first
compute the domination core C of G, which by Theorem 7 can be accomplished in O∗(dkd) time. Next, and
due to Lemma 3, we can delete all strongly irrelevant vertices from V (G) \ {C ∪Ds ∪Dt}. We denote this
new graph by G′.
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Now consider the bipartite graphG′′ with bipartition (A = C\{Ds∪Dt}, B = V (G′)\{C∪Ds∪Dt}). This
graph is B-twinless, since for every pair of vertices u, v ∈ V (G)\{C∪Ds∪Dt} such thatNG(u)∩C = NG(v)∩C
either u or v is strongly irrelevant and is therefore not in V (G′) nor V (G′′). Moreover, since every subgraph
of a Kd,d-free graph is also Kd,d-free, G

′′ is Kd,d-free. Hence, by Theorems 7 and 8, we have

|B| ≤ 2(d− 1)(
|A|e

d
)2d

≤ 2d(3|A|)2d ≤ 2d(3dkd)2d.

Putting it all together, we know that after deleting all strongly irrelevant vertices, the number of vertices
in the resulting graph G′ is at most

|V (G′)| = |V (C)|+ |Ds ∪Dt|+ |V (G′) \ {C ∪Ds ∪Dt}|

≤ dkd + 2k + 2d(3dkd)2d

Hence, we can solve DSR by exhaustively enumerating all 2|V (G′)| subsets of V (G′) and building the
reconfiguration graph Rds(G

′, k, k + 1). ⊓⊔
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