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Interprocedural Reachability for Flat Integer
Programs

Pierre Ganty! and Radu Iosif?

'IMDEA Software Institute 2 CNRS/VERIMAG, Grenoble, France

Abstract. We study programs with integer data, procedure calls and
arbitrary call graphs. We show that, whenever the guards and updates
are given by octagonal relations, the reachability problem along control
flow paths within some language w7 ...w} over program statements is
decidable in NEXPTIME. To achieve this upper bound, we combine a
program transformation into the same class of programs but without
procedures, with an Np-completeness result for the reachability problem
of procedure-less programs. Besides the program, the expression wf ... w%
is also mapped onto an expression of a similar form but this time over the
transformed program statements. Several arguments involving context-
free grammars and their generative process enable us to give tight bounds
on the size of the resulting expression. The currently existing gap between
Np-hard and NEXPTIME can be closed to NP-complete when a certain
parameter of the analysis is assumed to be constant.

1 Introduction

This paper studies the complexity of the reachability problem for a class of
programs featuring procedures and local/global variables ranging over integers.
In general, the reachability problem for this class is undecidable [24]. Thus, we
focus on a special case of the reachability problem which restricts both the class of
input programs and the set of executions considered. The class of input programs
is restricted by considering that all updates to the integer variables x are defined
by octagonal constraints, that are conjunctions of atoms of the form +z + y < ¢,
with z,y € x ux’, where x’ denote the future values of the program variables. The
reachability problem is restricted by limiting the search to program executions
conforming to a regular expression of the form wf ... w} where the w;’s are finite
sequences of program statements.

We call this problem flat-octagonal reachability (fo-reachability, for short).
Concretely, given: (i) a program P with procedures and local/global variables,
whose statements are specified by octagonal constraints, and (i) a bounded
expression b = w} ... w¥, where w;’s are sequences of statements of P, the fo-
reachability problem REACHy, (P, b) asks: can P run to completion by executing
a sequence of program statements w € b ? Studying the complexity of this
problem provides the theoretical foundations for implementing efficient decision
procedures, of practical interest in areas of software verification, such as bug-
finding [I0], or counterexample-guided abstraction refinement [I5/T4].



Our starting point is the decidability of the fo-reachability problem in the
absence of procedures. Recently, the precise complexity of this problem was coined
to Np-complete [7]. However, this result leaves open the problem of dealing with
procedures and local variables, let alone when the graph of procedure calls has
cycles, such as in the example of Fig.[l] (a). Pinning down the complexity of the
fo-reachability problem in presence of (possibly recursive) procedures, with local
variables ranging over integers, is the challenge we address here.

The decision procedure we propose in this paper reduces REACH, (P, b),
from a program P with arbitrary call graphs, to procedure-less programs as
follows:

1. we apply a source-to-source transformation returning a procedure-less pro-
gram Q, with statements also defined by octagonal relations, such that
REACH;, (P, b) is equivalent to the unrestricted reachability problem for Q,
when no particular bounded expression is supplied.

2. we compute a bounded expression I}, over the statements of Q, such that
REACH, (P, b) is equivalent to REACHy, (Q, I',).

The above reduction allows us to conclude that the fo-reachability problem
for programs with arbitrary call graphs is decidable and in NEXPTIME. Naturally,
the Np-hard lower bound [7] for the fo-reachability problem of procedure-less
programs holds in our setting as well. Despite our best efforts, we did not close
the complexity gap yet. However we pinned down a natural parameter, called
index, related to programs with arbitrary call graphs, such that, when setting
this parameter to a fixed constant (like 3 in 3-SAT), the complexity of the
resulting fo-reachability problem for programs with arbitrary call graphs becomes
Np-complete. Indeed, when the index is fixed, the aforementioned reduction
computing REACHy,(Q, I},) runs in polynomial time. Then the Np decision
procedure for the fo-reachability of procedure-less programs [7] shows the rest.

The index parameter is better understood in the context of formal languages.
The control flow of procedural programs is captured precisely by the language of
a context-free grammar. A k-index (k > 0) underapproximation of this language
is obtained by filtering out the derivations containing a sentential form with
k + 1 occurrences of nonterminals. The key to our results is a toolbox of language
theoretic constructions of independent interest that enables to reason about the
structure of context-free derivations generating words into b = wj ... w}, that is,
words of the form w’f .. .wfid for some integers i1,...,ig = 0.

To properly introduce the reader to our result, we briefly recall the important
features of our source-to-source transformation through an illustrative example.
We apply first our program transformation [I1] to the program P shown in Fig.
(a). The call graph of this program consists of a single state P with a self-loop.
The output program Q given Fig. [1| (¢), has no procedures and it can thus be
analyzed using any existing intra-procedural tool [6/4]. The relation between the
variables  and z of the input program can be inferred from the analysis of the
output program. For instance, the input-output relation of the program P is
defined by 2z’ = 2z, which matches the precondition zp = 2z; of the program
Q. Consequently, any assertion such as “there ezists a value n > 0 such that



int P(int x) {

int z;
1: assume(z = 0);
2: if (z > 0) = p1 : X1 — t1X>2
3. z:= P(x-1); #,=P—1)|t2 = pz @ X2 — &2 X1t X3
4 7= 242 = p3 : X3 — t3
5: else pa @ X1 — ta
6 z:=0 (c)
7: return z; }
(a)The program P (b) havoc(xp, X7, XK)
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(d) (e) The program Q

Fig. 1: x; = {x1, 21} (x0 = {20, 20}) are for the input (output) values of = and z,

respectively. xj 1, provide extra copies. havoc(y) stands for /\xexl osxL\y =

z, and x|, = xg for A\, 2, = 3.

P(n) < n” can be phrased as: “there exist values n < m such that Q(n,m) reaches
its final state”. While the former can be encoded by a reachability problem on P,
by adding an extra conditional statement, the latter is an equivalent reachability
problem for Q.

For the sake of clarity, we give several representations of the input program
P that we assume the reader is familiar with including the text of the program
in Fig.[l] (a) and the corresponding control flow graph in Fig. [I| (b).

In this paper, the formal model we use for programs is based on context-free
grammars. The grammar for P is given at Fig. [1| (c). The role of the grammar is
to define the set of interprocedurally valid paths in the control-flow graph of the
program P. Every edge in the control-flow graph matches one or two symbols
from the finite alphabet {t1, &2, to), t3, t4}, where &2 and tg) denote the call and
return, respectively. The set of nonterminals is {X7, X5, X3, X4}. Each edge in
the graph translates to a production rule in the grammar, labeled py to p4. For
instance, the call edge X5 *2, X3 becomes Xy — &2X1t2)X3. The language of the
grammar of Fig. [1] (¢c) (with axiom X;) is the set L = {(t1¢2)" t4 (t2)ts3)" | n € N}
of interprocedurally valid paths in the control-flow graph. Observe that L is
included in the language of the regular expression b = (t;&2)" t4* (t2)ts)™.

Our program transformation is based on the observation that the semantics
of P can be precisely defined on the set of derivations of the associated grammar.
In principle, one can always represent this set of derivations as a possibly infinite
automaton (Fig. [1] (d)), whose states are sequences of nonterminals annotated



with priorities (called ranks)El, and whose transitions are labeled with production
rules. Each finite path in this automaton, starting from Xf0>, defines a valid
prefix of a derivation. Since L € b, Luker [20] shows that it is sufficient to keep
a finite sub-automaton, enclosed with a dashed box in Fig. [1| (d), in which each
state consists of a finite number of ranked nonterminals (in our case at most 2).

Finally, we label the edges of this finite automaton with octagonal constraints
that capture the semantics of the relations labeling the control-flow graph from
Fig. |1| (b). We give here a brief explanation for the labeling of the finite au-
tomaton in Fig. [1] (e), in other words, the output program Q (see [11] for more
details). The idea is to compute, for each production rule p;, a relation p;(x5,x0),
based on the constraints associated with the symbols occurring in p; (labels
from Fig. (1| (b)). For instance, in the transition X§0> =2, X§O>X§O>, the aux-
iliary variables store intermediate results of the computation of po as follows:
[x7] &2 [xs] X1 [xk] t2) [x1] X3 [X0]. The guard of the transition can be
understood by noticing that &2 gives rise to the constraint z; = z; — 1, tg) to
z1, = 2K, x5 = xy, corresponds to the frame condition of the call, and havoc()
copies all current values of X7 ;i 1,0 to the future ones. It is worth pointing out
that the constraints labeling the transitions of the program Q are necessarily
octagonal if the statements of P are defined by octagonal constraints.

An intra-procedural analysis of the program Q in Fig. [I] (e) infers the pre-
condition z; = 0 A zo = 2z; which coincides with the input/output relation
of the recursive program P in Fig. [I| (a), i.e. © = 0 A 2’ = 2x. The original
query dn > 0: P(n) < n translates thus into the satisfiability of the formula
x>0 A zo =2x7 A 27 < 20, which is clearly false.

The paper is organised as follows: basic definitions are given Section
Section [3] defines the fo-reachability problem, Section [f] presents an alternative
program semantics based on derivations and introduces subsets of derivations
which are sufficient to decide reachability, Section [5| starts with on overview of
our decision procedure and our main complexity results and continues with the
key steps of our algorithms. The appendix contains all the missing details.

2 Preliminaries

Let X' be a finite nonempty set of symbols, called an alphabet. We denote by X*
the set of finite words over X' which includes ¢, the empty word. The concatenation
of two words u,v € X* is denoted by u - v or uv. Given a word w € X*, let
|w| denote its length and let (w); with 1 < ¢ < |w| be the ith symbol of w.
Given w € X* and © < ¥, we write w|g for the word obtained by deleting
from w all symbols not in ©, and sometimes we write w), for wl . A bounded
expression b over alphabet X' is a regular expression of the form w7 ... w}, where
wy,...,wqg € X* are nonempty words and its size is given by |b| = Z?zl |w;].
We use b to denote both the bounded expression and its language. We call a
language L bounded when L < b for some bounded expression b.

! The precise definition and use of ranks will be explained in Section



A grammar is a tuple G = (5, X, A) where = is a finite nonempty set
of nonterminals, X' is an alphabet of terminals, such that = n X = ¢J, and
AC E x (X uE)* is a finite set of productions. For a production (X,w) € A,
often conveniently noted X — w, we define its size as |(X,w)| = |w| + 1, and
|G| = X e |p| defines the size of G.

Given two words u,v € (X u Z)*

, a production (X,w) € A and a po-
sition 1 < j < |ul, we define a step u LW L v if and only if (w); = X
and v = (u)y---(u)j—1w (u)j1---(u),. We omit (X,w) or j above the ar-
row when clear from the context. A control word is a finite word v € A*

over the alphabet of productions. A step sequence u =g v is a sequence

(7)1 (v) —_ .
U = wy =g Wi ... Wp_1 =>g W, = v where n = |y|. If v € Z is a non-

terminal and v € X* is a word without nonterminals, we call the step sequence
u =¢ v a derivation. When the control word v is not important, we write =&wv
instead of u =¢ v, and we chose to omit the grammar G when clear from the
context.

Given a nonterminal X € 5 and Y € = u {¢}, i.e. Y is either a nonterminal
or the empty word, we define the set Ly y(G) = {uv e X* | X =* uY v}. The
set Lx -(G) is called the language of G produced by X, and is denoted Lx (G) in
the following. For a set I' € A* of control words (also called a control set), we
denote by Lxy (I, G) = {uve X* |Iye I': X < Y v} the language generated
by G using only control words from I'. We also write ﬁX(F, G) for IA/XVE(F, G).

Let x denote a nonempty finite set of integer variables, and x’' = {2’ | z € x}.
A wvaluation of x is a function v : x — Z. The set of all such valuations is denoted
by Z*. A formula ¢(x,x’) is evaluated with respect to two valuations v, v’ € Z*, by
replacing each occurrence of z € x with v(x) and each occurrence of z’ € x’ with
V'(x). We write (v,v') = ¢ when the formula obtained from these replacements
is valid. A formula ¢gr(x,x’) defines a relation R € Z* x Z* whenever for all
v,V € Z*, we have (v,v') € R iff (v,V') = ¢r. The composition of two relations
Ry, Ry © Z* x Z* defined by formulae ¢;(x,x’) and ¢2(x,x’), respectively, is
the relation Ry o Ry © Z* x Z*, defined by Jy . v1(X,¥) A v2(y,x’). For a finite
set S, we denote its cardinality by |S|.

3 Interprocedural Flat Octogonal Reachability

In this section we define formally the class of programs and reachability problems
considered. An octagonal relation R € Z* x Z* is a relation defined by a finite
conjunction of constraints of the form +z + y < ¢, where z,y € x U X’ and
¢ € Z. The set of octagonal relations over the variables in x and x’ is denoted
as Oct(x,x’). The size of an octagonal relation R, denoted |R)| is the size of the
binary encoding of the smallest octagonal constraint defining R.

An octagonal program is a tuple P = (G, I,[.]), where G is a grammar G =
(2,X,A), I € 5 is an initial location, and [.] : L;(G) — Oct(x,x’) is a mapping
of the words produced by the grammar G, starting with the initial location I, to
octagonal relations. The alphabet X' contains a symbol ¢ for each internal program



statement (that is not a call to a procedure) and two symbols ¢, ¢y for each call
statement ¢. The grammar G has three kinds of productions: (i) (X,¢) if ¢ is a
statement leading from X to a return location, (i) (X,tY) if ¢ leads from X to Y,
and (éii) (X, ¢Y $ Z) if t is a call statement, Y is the initial location of the callee,
and Z is the continuation of the call. Through several program transformations,
we may generate another grammar with other kinds of productions. The only
property we need for our results is that every grammar G with we deal with has
each of its productions (X, w) satisfying: |w] x| < 2 and |w|=z| < 2 where X' and
= are the terminals and nonterminals of G, respectively. Each edge t that is not
a call has an associated octagonal relation p; € Oct(x,x’) and each matching pair
&, has an associated frame condition ¢ € Oct(x,x’), which equates the values
of the local variables, that are not updated by the call, to their future values.
The size of an octagonal program P = (G, I,[.]), with G = (=, X, A), is the
sum of the sizes of all octagonal relations labeling the productions of G, formally
Pl = 2x, nealptl + 2x, ivyea 1ot + 2x, ¢v o myeallpel + ool + [6¢]).

For example, the program in Fig.|1|(a,b) is represented by the grammar in Fig.

(c). The terminals are mapped to octagonal relations as: py, =z > 0 A 2’ = z,
Pos =2 =x—1,py =2" =2, pts =0 =xA2 =24+2and py, =1 =02 = 0.
The frame condition is ¢y, = 2’ = x, as only z is updated by the call 2/ = P(x —1).
Word-based semantics. For each word w € L;(G), each occurrence of a ter-
minal ¢ in w is matched by an occurrence of #), and the matching positions
are nested’| The semantics of the word [w] is an octagonal relation defined
inductively’| on the structure of w: (i) [t] = p¢, (%) [t-v] = p o [v], and
(iti) [¢-u-t-v] = ((pg o [u] © pyy) N p¢) o [v], for all ¢, ¢, 1) € X such that ¢ and
> match. For instance, the semantics of the word w = t1&a2tatayts € Lx, (G), for
the grammar G given in Fig. [1f (¢), is [w] =2 = 1 A 2/ = 2. Observe that this
word defines the effect of an execution of the program in Fig. |1| (a) where the
function P is called twice—the first call is a top-level call, and the second is a
recursive call (line 3).
Reachability problem. The semantics of a program P = (G, I, [.]) is defined
as [P] = Uyer, (q) [w]- Consider, in addition, a bounded expression b, we define
[Pl = Uwer,(@)nb [w]- The problem asking whether [P],, # & for a pair P, b is
called the flat-octagonal reachability problem. We use REACH;, (P, b) to denote
a particular instance.

4 Index-bounded depth-first derivations

In this section, we give an alternate but equivalent program semantics based
on derivations. Although simple, the word semantics is defined using a nesting
relation that pairs the positions of a word labeled with matching symbols ¢ and
. In contrast, the derivation-based semantics just needs the control word.

2 A relation ~ < {1,...,|w|} x {1,...,|wl|} is said to be nested [2] when no two pairs
i~ j and i’ ~ j' cross each other, asini < <j < j'
3 Octagonal relations are closed under intersections and compositions [23].



To define our derivation based semantics, we first define structured subsets
of derivations namely the depth-first and bounded-index derivations. The rea-
son is two-fold: (a) the correctness proof of our program transformation [I1]
returning the procedure-less program @ depends on bounded-index depth-first
derivations, and (b) in the reduction of the REACHy, (P, b) problem to that of
REACH;,(Q, I',), the computation of I}, depends on the fact that the control
structure of Q stems from a finite automaton recognizing bounded-index depth-
first derivations. Key results for our decision procedure are those of Luker [20/21]
who, intuitively, shows that if Lx(G) € b then it is sufficient to consider depth-
first derivations in which no step contains more than k£ simultaneous occurrences
of nonterminals, for some k > 0 (Theorem .

Depth-first derivations. It is well-known that a derivation can be associated
a unique parse tree. A derivation is said to be depth-first if it corresponds to a

depth-first traversal of the corresponding parse tree. More precisely, given a step

(X0,v0)/d0 (Xn—1:vn—1)/in—1 .
sequence wy =———— Wy ... W, | ——————> Wy, and two integers m and

i such that 0 < m < n and 1 <4 < |w,,| define f,,,(¢) to be the index ¢ of the
first word wy of the step sequence in which the particular occurrence of (wy,);
appears. A step sequence is depth-first [21] iff for all m, 0 < m < n:

fm(Gm) = max{f (i) | 1 < i < [wm| and (wp); € Z} .

For example, X 0 vy 2228 vz 228 v s depth-first, whereas
x &8 yy Z28 yz 228 77 is not. We have fo(1) = 1 because

(we); =Y first appeared at wy, f2(2) = 2 because (wq)y = Z first appeared at

wa, jo = 1 and f2(2) € fo(j2) since 2 € 1. We denote by v = w a depth-first
df

step sequence and call it depth-first derivation when u € & and w € X*.

Depth-first derivation-based semantics. In previous work [I1], we defined
the semantics of a procedural program based on the control word of the derivation
instead of the produced words. We briefly recall this definition here. Given a
depth-first derivation X %: w, the relation [y] € Z* x Z* is defined inductively

on 7 as follows: (7) [(X,t)] = pt, (id) [(X,tY)-~'] = pro[y'] where Y’ % w’, and
d
(i) [(X,4Y D 2) ' 7" = [(X.4Y D 2) 7] = (pa o [T 0 pp) o 60) 0[]
where Y = w’ and Z = w”. We showed [T, Lemma 2] that, whenever X = w,
df df daf
we have [w] # & iff [v] # &.
Index-bounded derivations. A step u = v is said to be k-index (k > 0) iff
neither w nor v contains k + 1 occurrences of nonterminals, i.e. |u}z| < k and
|v]=z| < k. We denote by u % v a k-index step sequence and by u % v a step
k df(k
sequence which is both depth-first and k-index. For X € =, Y € Zu{e} and k > 0,

we define the k-indez language Lg?)Y(G) ={uve X*|Iye A*: X % uY v},
) k

the k-index depth-first control set I'y'y(G) = {y € A* | Ju,v € ¥*: X —

af(k)

uY v}. We write Lg?) (G)and I'¥™(G) when Y = ¢, and drop G from the previous
notations, when the grammar is clear from the context. For instance, for the



grammar in Fig.(c), we have LG) (G) = {(t1¢2)" ta (t2t3)" | n € N} = Ly, (G)
and F)d(fl(Z) = (p1P2P3)™ (P4 U P1P2P4P3).

Theorem 1 (Lemma 2 [2I], Theorem 1 [20]). Given a grammar G =
(B, X, A) and X € =
— for allwe X*, X =* w if and only if X =—* w;
(k) ar(k)

— if Lx(G) € b for a bounded expression b over X then Lx(G) = Lg(K)(G)
where K = O(|G|).

The introduction of the notion of index naturally calls for an index de-
pendent semantics and an index dependent reachability problem. As we will
see later, we have tight complexity results when it comes to the index depen-

dent reachability problem. Given k& > 0, let [P](k) = UweL(k)(G) [w] and let
I
= (k) w|. Thus we define, for a constant £ not part of the input,
P = Uer®(@)op L] Thus we define, f k f the i
I

the problem REACHJ(JZ) (P, b), which asks whether [P]l()k) # .
Finite representations of bounded-index depth-first control sets. It is
known that the set of k-index depth-first derivations of a grammar G is recogniz-
able by a finite automaton [2I, Lemma 5]. Below we give a formal definition of
this automaton, that will be used to produce bounded control sets for covering
the language of G. Moreover, we provide an upper bound on its size, which will
be used to prove an upper bound for the time to compute this set (Section .

Given k > 0 and a grammar G = (Z, X, A), we define a labeled graph A"
such that its paths defines the set of k-index depth-first step sequences of G. To
define the vertices and edges of this graph, we introduce the notion of ranked
words, where the rank plays the same role as the value f,,(7) defined previously.
The advantage of ranks is that only k£ of them are needed for k-index depth-first
derivations whereas the set of f, (i) values grows with the length of derivations.
Since we restrict ourselves to k-index depth-first derivations, we thus only need
k ranks, from 0 to k — 1. The rank based definition of depth-first derivations can
be found in Appendix

For a d-dimensional vector v € N, we write (v); for its ith element (1 < i < d).
A vector v € N4 is said to be contiguous if {(v)1, ..., (v)a} = {0, ..., k}, for some
k > 0. Given an alphabet X define the ranked alphabet XV to be the set
{0V | 0 € X,i e N}. A ranked word is a word over a ranked alphabet. Given a
word w of length n and an n-dimensional vector e € N, the ranked word w® is
the sequence (w)1<(a)1> . (w)n<(a)"L>, in which the ith element of o annotates
the ith symbol of w. We also denote w<e = (w);‘“ ... (w)‘w|<c> as a shorthand.
Let AZ™ =(Q, A,—) be the following labeled graph, where:

Q = {w® | we =% |w| <k, € NI*l is contiguous, (a); < --- < () w|}

is the set of vertices, the edges are labeled by the set A of productions of GG, and

the edge relation is defined next. For all vertices ¢, ¢’ € @ and labels (X, w) € A,

we have ¢ Kr), ¢ if and only if

— ¢ =uX®y for some u,v, where i is the maximum rank in ¢, and



0 ifuv=c¢

— ¢ =uv(wl=), where uv (w| )| < kand i’ = { i else if (uv)|zu =€
i+1 else
We denote by |[A%™| = |Q| the size (number of vertices) of AG™. In the

following, we omit the subscript G from Adcf<k), when the grammar is clear from
the context. For example, the graph A*® for the grammar from Fig. [1] (¢), is
the subgraph of Fig. [1| (d) enclosed in a dashed line.

Lemma 1. Given G ={Z, X A), and k > 0, for each X € 2, Y € 5 U {e} and
v € A*, we have v € F;(fg’i)(G) if and only if X© 5 Y9 is a path in AG™.

Moreover, we have |AZ™| = |G|O(k)'

5 A Decision Procedure for REACHy,(P,b)

In this section we describe a decision procedure for the problem REACH/, (P, b)
where P = (G, I,[.]) is an octagonal program, whose underlying grammar is
G=(5,%Y,A),andb = w} ... w} is a bounded expression over . The procedure
follows the roadmap described next.

First, we compute, in time polynomial in the sizes of P and b, a set of
programs {P; = (G", X;, []DYe_,, such that L;(G) nb = |J'_, Lx,(G"), which
implies [P], = Ule [P;]- The grammar G” is an automata-theoretic product
between the grammar G and the bounded expression b. For space reasons, the
formal definition of G™ is deferred to Appendix [A] and we refer the reader to
Example [1} Deciding REACHy, (P, b) reduces thus to deciding several instances
{REACHy, (P;, b)}f:1 of the fo-reachability problem.

Ezample 1. Let us consider the bounded expression b = (ac)* (ab)* (db)*. Con-

sider the grammar G® with the following productions: Q(ll) — aQél) | &, Q(lz) —

ay” | & QY — daf’ | e @y — cai’ | Qi | cqf?, of — bai? |
I)Qgg)7 Qé3) — ngg). It is easy to check that b = U?=1 LQu‘) (GP). Let G =
1
XY, Z, T}, {a,b,c,d}, Aywhere A = {X - aY, Y > 2Zb, Z > T, Z > ¢, T — Xd},
i.e. we have Lx (G) = {(ac)™ ab(db)™ | n € N}. The following productions define
a grammar G":

[0i Xai¥] 2 e[y Va;”] [0y ] 3 [af” ZQ5] b
[ 2a{"] B3 ¢ [o'Tof] [0 ZoP] 4 ¢
[of’Ta$] 55 [of XQ(P]d , for j = 1,2 [af? XQfY] B a[of” V(]
[057 Y] %5 [af? Zaf?] b
— — (@) o)
One can check Lx(G) = Lx(G)nb = L[le)XQf')](G )u L[Q(12>XQ§3)](G ). |

A bounded expression b = wf ... w} over alphabet X' is said to be d-letter-
bounded (or simply letter-bounded, when d is not important) when |w;| = 1, for
all i = 1,...,d. A letter-bounded expression b is strict if all its symbols are



distinct. A language L < X* is (strict, letter-) bounded iff L < b, for some
(strict, letter-) bounded expression b.

Second, we reduce the problem from b = w7 ... w} to the strict letter-bounded
case b = af ...a}, by building a grammar G™, with the same nonterminals as
G", such that, for each i = 1,...,¢ (i) Lx,(G™) < b, (ii) wi* Ll e L()I(CB(G“)
iff al' ...a% € L()I;i)(GN), for all & > 0 (4i1) from each control set I" that covers the
language Lg’;}(GN) c Iixi (I, G*™) for some k > 0, one can compute, in polynomial
time, a control set I" that covers the language LSI(?(G”) < Lx,(I',G").

Ezample 2 (contd. from Example . Let A = {a1,a2,a3}, b = afala} and
h: A— X* be the homomorphism given by h(a;) = ac, h(az) = ab and h(az) =
db. The grammar G™ results from deleting a’s and d’s in G™ and replacing b in ps
by as, b in p7 by az and ¢ by a;. Then, it is easy to check that h=*(Lx(G))nb =

L[Q§1)XQ(13)](GM) U L[Q§2)XQ§3)](GN) = {a? as aé‘ | ne N}. |

Third, for the strict letter-bounded grammar G™, we compute a control set
I' € (A™)* using the result of Theorem |3, which yields a set of bounded expres-
sions Sy = {I1,...,i,m,}, such that Lgi) (G™y < U™, Lx, (I 0 F;i“””, G™).
By applying the aforementioned transformation 1' from I" to f‘, we obtain
that L%’)(G”) c Ui, Lx, (I3 n Iy, G). Theorem [1f allows to effectively
compute value K > 0 such that Lx,(G") = ng)(G“), foralli=1,...,¢ Thus
we obtai Lx,(G™) =UjL, Lx,(Iij Iy, Gn), foralli=1,...,0

The final step consists in building a finite automaton A4+ that recognizes
the control set I" ;fi(K“) (Lemma . This yields a procedure-less program Q,
whose control structure is given by A&+ and whose labels are given by the
semantics of control words. We recall that, for every word w € Lx,(G") there
exists a control word v € I'f""* such that [w] # & iff [y] # &. We have
thus reduced each of the instances {REACHy, (P;, b)}f:1 of the fo-reachability
problem to a set of instances {REACH;,(Q, l:”) |1<i<¥, 1<j<m}. The
latter problem, for procedure-less programs, is decidable in NPTIME [7]. Next is
our main result whose proof is in Appendix

Theorem 2. Let P ={G,1,[.]) be an octagonal program, where G = (=, X A)
is a grammar, and b is a bounded expression over X. Then the problem REACH, (P, b)
is decidable in NEXPTIME, with a NP-hard lower bound. If, moreover, k is a

constant, REACH}]S)(P,b) is NP-complete.

The rest of this section describes the construction of the control sets S and
gives upper bounds on the time needed for this computation. We use the following
ingredients: (4) Algorithm for building bounded control sets for s-letter bounded
languages, where s > 0 is a constant (in our case, at most 2) (Section [5.1)), and
(#i) a decomposition of k-index depth-first derivations, that distinguishes between

* Because Lx,(G") ¢ L(XI?(G”) c U4, Lx, (I3, A Igt,.G7) c Ly, (GT) .
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a prefix producing a word from the 2-letter bounded expression afa¥, and a
suffix producing two words included in bounded expressions strictly smaller
than b (Section . The decomposition enables the generalization from s-
letter bounded languages where s is a constant to arbitrary letter bounded
languages. In particular, the required set of bounded expressions Sy is built
inductively over the structure of this decomposition, applying at each step
Algorithm [T] which computes bounded control sets for 2-letter bounded languages.
The main algorithm (Algorithm |2)) returns a finite set Sy of bounded expressions

{I',...,In}. Below we abuse notation and write | J Sy for Ui, I. The time

O*) and does not depend

k)+d

needed to build each bounded expression I'; € S is |G|

of [b| = d, whereas the time needed to build the entire set Sp is \G|O(
These arguments come in handy when deriving an upper bound on the (non-
deterministic) time complexity of the fo-reachability problem for programs with
arbitrary call graphs. A non-deterministic version of Algorithm [2] that choses one
set I'; € S, instead of building the whole set Sp, is used to establish the upper

bounds for the REACHy, (P, b) and REACH](cf) (P, b) problems in the proof of
Theorem [2]

5.1 Constant s-Letter Bounded Languages

Here we define an algorithm for building bounded control sets that are sufficient
for covering a s-letter bounded language Lx(G) € a¥...a¥*, when s > 0 is a
constan i.e. not part of the input of the algorithm. In the following, we consider
the labeled graph A%® = (@, A, —), whose paths correspond to the k-index
depth-first step sequences of G (Lemma [1)). Recall that the number of vertices in
this graph is |A9®| < |G|,

Given ¢,q' € @, we denote by II(q,q') the set of paths with source ¢ and
destination ¢'. For a path 7, we denote by w(7) € A* the sequence of edge labels
on 7. A path 7 is a cycle if its endpoints coincide. Furthermore, the path is
said to be an elementary cycle if it contains no other cycle than itself. Finally,
7 is acyclic if it contains no cycle. The word induced by a path in A4® is the
sequence of terminal symbols generated by the productions fired along that path.
Observe that, since Lx (G) € af ...a¥, any word induced by a subpath of some
path 7 € IT(X<? ¢) is necessarily of the form ail ...a's, for some iy, ..., i5 = 0.

Algorithm [1] describes the effective construction of a bounded expression I’
over the productions of G using the sets of elementary cycles of A%*®*). The crux
is to find, for each vertex g of A*™, a subset C, of elementary cycles having ¢
at the endpoints, such that the set of words induced by C is that of the entire
set of elementary cycles having ¢ at endpoints. Since the only vertex occurring
more than once in an elementary cycle p is the endpoint ¢, we have that |p| is
at most the number of vertices |A%**®|, and each production rule generates at
most 2 terminal symbols, hence no word induced by a elementary cycle is longer
than 2|A9® | < 2|G|**. The number of words ai' ... a% induced by elementary

5 In our case s = 0, 1,2, but the construction can be generalized to any constant s > 0.
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cycles with endpoints ¢ is thus bounded by the number of nonnegative solutions
of the inequality 21 + - - - + 25 < 2|G|*", which, in turn, is of the order of |G|O(k).
So for each vector v € N® such that (v); + --- + (v)s < 2|G|**, it suffices to
include in Cj only one elementary cycle inducing the word agv)l . .a§”)5. Thus it

is sufficient to consider sets C; of cardinality |Cy| = \G|O(k), for all g € Q.

Lines of Algorithm || build a graph H with vertices (g, a’f ...a'), where
q € @ is a vertex of A*™ and 4y,...,is a solution to the above inequality
(line , hence H is a finite and computable graph. There is an edge between
two vertices (g, a’' ...a%) and (¢, a]" ...al*) in H if and only if ¢ & ¢’ in A%®
and aie = al - (plg,) for every £, that is j, is the sum of 4, and the number
of occurrences of ay produced by p (which is precisely captured by the word
plg,) (line 4). The sets Cy are computed by applying the Dijkstra’s single source
shortest path algorithnﬁ to the graph H (line|7) and retrieving in C the paths
{q,e) —>* <q,a§1 ...a’), such that iy + -+ + iy < Q\G\% (line @

For a finite set of words S = {u1,...,us}, the function CONCAT(S) returns
the bounded expression uj ...u}. Algorithm |1] uses this function to build a
bounded expression I" that covers all words induced by paths from IT(X O, €).
This construction relies on the following argument: for each € IT(X<?’,¢), there
exists another path 7/ € IT(X<?, &), such that their induced words coincide, and,
moreover, 7’ can be factorizedas ¢ - 01 --- < - 04 - so11, where ¢ € IT( XD qp),
Se41 € II(qe,€) and g € II(gj—1,q;) for each 1 < j < £ are acyclic paths,
01,...,0, are elementary cycles with endpoints ¢y, ..., g, respectively, and £ <
|A%*® | Thus we can cover each segment ¢; by a bounded expression C =
CONCAT(A)‘G‘M*1 (line , and each segment ; by the bounded expression
By = ConcAT({w(m) | T € Cy,}) (line , yielding the required expression I
The following lemma proves the correctness of Algorithm 1| and gives an upper
bound on its runtime.

Lemma 2. Let G = (5, A, A) be a grammar and aF ...a¥ is a strict s-letter-

bounded expression over A, where s = 0 is a constant. Then, for each k > 0 there
exists a bounded expression I' over A such that, for all X € £ and Y € = u {e},

we have Lg](c?Y(G) = Lxy(I' n I'Y'y,G), provided that Lxy(G) < af ...a¥.

S

Moreover, I is computable in time |G|O(k).

5.2 The General Case

The key to the general case is a lemma decomposing derivations.
Decomposition Lemma. Our construction of a bounded control set that covers
a strict letter-bounded context-free language Lx (G) < af ...a}; is by induction
on d > 1, and is inspired by a decomposition of the derivations in G, given by
Ginsburg [12, Chapter 5.3, Lemma 5.3.3]. Because his decomposition is oblivious
to the index or the depth-first policy, it is too weak for our needs. Therefore, we
give first a stronger decomposition result for k-index depth-first derivations.

5 We consider all edges to be of weight 1.
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Algorithm 1 Control Sets for the Case of Constant Size Bounded Expressions

input A grammar G = (Z, A, A),
a strict s-letter-bounded expression a;k ...a
and k >0 .
output a bounded expression I' over A such that Lg?fy (G)=Lx,y(I'n F;f$)7 G) for all X € =
and Y € Z U {e}, such that Lx vy (G) € af ...a¥*

s

*

* over A, where s = 0 is a fixed constant,

1: function CONSTANTBOUNDEDCONTROLSET(G, a¥ ... a¥, k)
. k s s
2 Val e {afl-ake | S3 by <2(GP)
3: V «—Q x Val > Q are the vertices of AY(®) considering | Q| < |G|?* suffices
45— {gait . ale) B (g alt o ale) g B g in AM vee {1, shoay =a,t - (ply, )}
5: H—<(V,A,d
6: By «— ¢
7 DIJKSTRASHORTESTPATHS(H)
8: for ¢ € Q do
9: Cq — Uwe vat GETSHORTESTPATH(H, (g, £), (g, w))
10: Bo <« Bg - Concar({w(w) | m € Cq})
11: C«—c¢
12: fori=1...|G|?* —1 do
13: C « C - CoNCAT(A)

14: I«

15: fori=1...|G|** do
16: F—rI.C B
17: I'—I'-C-By-C
18: return I'

Without loss of generality, the decomposition lemma assumes the bounded
expression covering Lx (G) to be minimal: a strict letter-bounded expression b is
minimal for a language L iff L < b and for every subexpression b’, resulting from
deleting some a} from b, we have L ¢ b’. Clearly, each strict letter-bounded
language has a unique minimal expression.

Basically, for every k-index depth-first derivation with control word =, its pro-
ductions can be rearranged into a (k + 1)-index depth-first derivation, consisting
of a prefix 4* producing a word in a¥ a¥, then a production (X;, w) followed by
two control words 7/ and +” that produce words contained within two bounded
expressions aj ...a% and a¥, ...a}, respectively, where max(m—£,r—m) <d—1
(Lemma [3)). Let us first define the partition (S, 5i—) of =, as follows:

YeE~G < Ly(G)n(a-A*) #F and Ly(G) n (A* -aq) # & .
Naturally, define 57— = Z\5;. Since the bounded expression af ...a} is, by
assumption, minimal for Lx(G), then a; occurs in some word of Lx(G) and
agq occurs in some word of Lx(G). Thus it is always the case that = # &,

since X € =;~. The partition of nonterminals into =~ and == induces a
decomposition of the grammar G. First, let Gf = (5, A, A", where:

A = {(Xj,w)e A| X;e S u{(XjuX,v)e Al X, X, € 5}

Then, for each production (X;, w) € A such that X; € =~ and w € (5 u A)*,
we define the grammar G, ,, = (5, A, A; ), where:

Ai,w = {(Xj,l}) eA | Xj € El\/d} U {(XZ,’LU)} .

The decomposition of derivations is formalized by the following lemma:
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Lemma 3. Given a grammar G = (5, A, A), a nonterminal X € = such that

Lx(G) < af...a¥ for some d >3, and k > 0, for every derivation X =7)>G w,
af(k

there exists a production p = (X;,aybz) € A with X; € E~,, a,be Au {e} and
Y,z € Z, U {e}, and control words 4% € (A")*, 4,7, € (A ayp2)*, such that
v p Yy V= 15 a permutation of vy and:

u
1. X :Gﬂ uX;v is a step sequence in G with u,v e A*;

df(k+1)
Yy . . . .
2,y — Uy and z _ u, are (possibly empty) derivations in
mr Ghaus o Craws Uz (p y empty)
Gliaypz (uy,us € A*), for some integers ky, k, > 0, such that max(ky, k.) <k
and min(k,, k,) <k —1;
#
Y Py = ) 5 Yy ) ¥
BX:y—>Gw ny:y—>GA Uy, andX:y>Gw Zfzi——)G'
df(k+1) daf(k—1) ~ aybz af(k+1) df(k—1) ~ hoybz
Uy
* k.
4. Lx x,(G") < afaj;
% P = % * =
5. Ly(Giaypz) S af ...ak ify e S, and L.(Giap:) S af, ... ak if z€ 5,

for some integers 1 < £ <m < r <d, such that max(m — €,r —m) <d — 1.

Let us now turn to the general case, in which the size of the strict letter-
bounded expression b= af...a} is not constant, i.e. d is part of the input of
the algorithm. The output of Algorithm [2|is a finite set of bounded expressions
S;, such that Lg?) (G) € Lx(USy n I'¥™™,G). The construction of the set Sy
by Algorithm [2| (function LETTERBOUNDEDCONTROLSET) follows the structure
of the decomposition of control words given by Lemma [3] For every k-index
depth-first derivation with control word ~, its productions can be rearranged into
a (k+1)-index depth-first derivation, consisting of (i) a prefix 4* producing a word
in a¥ a¥, then (i) a pivot production (X;, w) followed by two words 4’ and " such
that: (4#4) v" and 4" produce words included in two bounded expressions aj ... a},
and af, ...a¥, respectively, where max(m — ¢,r —m) < d — 1. The algorithm
follows this decomposition and builds bounded expressions I'f, (X;, w)*, and
the sets S’ and S” with the goal of capturing v, (X;,w), v and 7", respectively,
for all the control words such as . Because 'yu produces a word from af af,
the bounded expression I'* is built calling CONSTANTBOUNDEDCONTROLSET
(line E[) Since 7' and " produce words within two sub-expressions of af ...a}
with as many as d — 2 letters, these cases are handled by two recursive calls to
LETTERBOUNDEDCONTROLSET (lines [16] and [19).

Theorem 3. Given a grammar G = (5, A, A), and X € =, such that Lx(G) <

b where b is the minimal strict d-letter bounded expression for Lx(Q), for
each k > 0, there exists a finite set of bounded expressions Sy over A such that

L%C)(G) c Lx(U Sy 0 I'Y"" G). Moreover, Sy, can be constructed in time
|G\O(k)+d and each I' € Sy can be constructed in time |G|O(k).

The next lemma shows that the worst-case exponential blowup in the value k is
unavoidable.
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Algorithm 2 Control Sets for Letter-Bounded Grammars
input A grammar G = (5, A, A), a nonterminal X € =,
a strict d-letter-bounded expression b over A, such that Lx (G) b, and k >0
output a set Sy of bounded expressions over A, such that L(}?)(G) c Lx(U Sg n F;f(k+1>, Q)

1: function LETTERBOUNDEDCONTROLSET(Go, Xo, aj‘l o a;"d, k)
2: match Gy with (£, A4, Ap)
3: a]*l o -a;."s <« MINIMIZEEXPRESSION(Go, X0, aj‘l .. -a;"d > {j1,...,4s} S {i1,... %4}
4: if |a® ...a* | < 2 then
i1 Js
5: return {CONSTANTBOUNDEDCONTROLSET(GY, aj‘l ca¥ k)
. | — g 1 5 L
6: (‘_lji-zjs s “jl--js) «— PARTITIONNONTERMINALS(Go, a;) al)
7: Aﬁ «— {(Xj,w) € Agp | X]‘ € 511\—75} () {(Xj,’U.X,"L)) € Ay | Xj,XT € 511/_\15}
8 G —(=5,4,4%
9: I'" — ConsTANTBOUNDEDCONTROLSET(GY, a¥ a¥ |k + 1)
11: for (X;, aybz) € Ao such that X; € Z,— ,a,be Au{c}and y,z€ Z;— U {c} do
12: if Lx,,x,(G) < afl a¥ then
13: Ai,aybz‘_{(vaU)EAlxjE‘Ejl\”/js}u{(xivaybz)}
14: Gi,aybz — <57 -A7 Ai,aybz>
15: if y € £ then
16: S’ < LETTERBOUNDEDCONTROLSET(G' ayb=, Ys a;!‘l . -ai k)
17: else S’ — g > y = ¢ in this case
18: if 2 € = then
19: S” « LETTERBOUNDEDCONTROLSET(G aybz s 2 aj‘l . -a;i k)
20: else 8" «— & > z = ¢ in this case
21: SBHSUUFE\S/US//IW-(Xi,aybz)*-F
22 return Sy
¢ function MINIMIZEEXPRESSION(G, X, af ... af)
expr « €
for /=1,...,d do
if Lx(G) n (A¥ -a;, - A*) # & then

eXpr «— expr - a;"[
return expr
function PARTITIONNONTERMINALS(G, af, a¥)
match G with (£, A, A)
vars «— (J
for Y € 5 do
if Ly (G)naj, A¥#Z A Ly (G)nA¥* a; # then
vars « vars U {Y'}

return (vars, =\vars)
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Lemma 4. For every k > 0 there exists a grammar G = (5, X, A) and X € =
such that |G| = O(k) and every bounded expression I', such that Lx(G) =
Lx(I' n I'$¥*™Y Q) has length |I'| = 2F1.

6 Related Work

The programs we have studied feature unbounded control (the call stack) and
unbounded data (the integer variables). The decidability and complexity of the
reachability problem for such programs pose challenging research questions. A
long standing and still open one is the decidability of the reachability problem
for programs where variables behave like Petri net counters and control paths
are taken in a context-free language. A lower bound exists [I7] but decidability
remains open. Atig and Ganty [3] showed decidability when the context-free
language is of bounded index. The complexity of reachability was settled for
branching VASS by Lazic and Schmitz [I8]. When variables updates/guards are
given by gap-order constraints, reachability is decidable [TI25]. Tt is in PSPACE
when the set of control paths is regular [8]. More general updates and guard (like
octagons) immediately leads to undecidability. This explains the restriction to
bounded control sets. Demri et al. [9] studied the case of updates/guards of the
form ", a;-2; +b <0 A x" =x+ c. They show that LTL is NP-complete on
for bounded regular control sets, hence reachability is in NP. Godoy and Tiwari
[13] studied the invariant checking problem for a class of procedural programs
where all executions conform to a bounded expression, among other restrictions.
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Appendix

The appendix is divided in two parts. Appendix [A] contains easy results about
context-free languages and have been included for the sake of being self-contained.
They are variations of classical constructions so as to take into account index
and depth-first policy. To keep proofs concise, we assume that the grammars are
in 2-normal form (2NF for short). A grammar is in 2NF if all its productions
(X, w) satisfy |w| < 2. Any grammar G can be converted into an equivalent 2NF
grammar H, such that |H| = O(|G|), in time O(|G/®) [16]. Note that 2NF is a
special case of the general form we assumed where each production (X, w) is such
that w contains at most 2 terminals and 2 nonterminals. Appendix [B] contains
the rest of the proofs about the combinatorial properties of derivations.

A From Bounded to Letter-bounded Languages

It is well-known that the intersection between a context-free and a regular lan-
guage is context-free. Below we define the grammar that generates the intersection
between the language of a given grammar G = (5, X, A) and a regular language
given by a bounded expression b = w{...w} over X where /; denotes the
length of each w;. Let GP = (5P, ¥ AP) be the grammar generating the regular
language of b, where:

5b={Q§f)|1<s<dA1<r<£s}

Ab:{QES)—)(MS)ZQEjA'lgSgd A 1<Z<fs}u
{QZ) — (ws)e, Qﬁ“‘" |1<s<s < d} U
{of »el1<s<d} .
It is routine to check that {w | Qgi) =* w for some 1 < i < d} = b. Moreover,

notice that the number of nonterminals in G® equals the size of b, i.e. |[Z?| = |b].

Remark 1. Note that when b is letter-bounded (b = af ...a}), the grammar
G? = (2P, X, AP) generating is given by:

EP ={Q¥ |1 <s <d} U {Qum}

AP = {Q(S)HGS,Q(SI) | 1<s<s’<d} U
{Q®) > bQu | be D\fay, ags1,. ., aal} U
{o® »e|l1<s<d}u
{Qsink = bQginp | bE X}

is such that L) (G®) = b. Furthermore, G¥ is complete—all terminals can be
produced from all nonterminals—and it is deterministic when b is strict. Then a
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grammar GP, such that Ly (GP) = £*\b, can be computed in time O(|G?]),
by replacing each production Q(*) — ¢, 1 < s < d, with Qg,x — €.
Given GP, and a grammar G = (5, X, A) in 2NF and X € =, our goal is to

define a grammar G™ = (5", X, A™) that produces the language Lx (G) n L(b),
for some X € =. The definition of G™ = (=", X, A" follows:

- &= {[QY)XQE;")] | XeZrQezPaqWezP ar< u}

— A" is defined as follows:
e for every production X — w € A where w € X*, A™ has a production

[Q? X (] — w if ) =* wal® ; (1)

v v

e for every production X — Y € A, where Y € =, A™ has a production

[V X ("] — [V a{M] ; (2)

e for every production X — aY € A, where a € X and Y € =5, A” has a
production

[QXQ"] —alef”’Ye(M]  ifQl” —aqeaA®;  (3)

e for every production X - Ya€ A, where Y € Z and a € X, A" has a
production

(" Xa("] = [aIYQf]a  ifQf ~aqea”;  (4)

e for every production X - Y Z € A, A” has a production
[a"Xa("] - [o{"Yaf”][af” Zal"] ; (5)

e A" has no other production.

Let : £7 — = be the function that “strips” every nonterminal [Q&s)X qu)] €
Z7 of the nonterminals from =P, i.e. §([Q£,S)XQ§,u)]) = X. In the following,
we abuse notation and extend the ¢ function to symbols from X u =7, by
defining ((a) = a, for each a € X, and further to words w € (X U E7)* as
C(w) = ¢((w)1)---¢((w)}y)). Finally, for a production p = (X,w) € A", we
define ((p) = (¢(X),(w)), and for a control word vy € (A™)*, we write ((v) for
(1) - M)

Lemma 5. Given a grammar G = (2,5, A) and a grammar G® = (ZP, X, AP)

generating b, for every X € =, Q§”7 QS,")

have:

e 5P, we X*, and every k > 0, we

(i) for every vy e (A™)*, [QS”)XQSJ“)] =?)>* w only if X % w and Qgr) =*
df(k df(k

GP
w Q" 5 *
() for every & 4% X < w and ol =5, wal only ol Xal) 7t

w, for some vy € (71(9).
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Consequently, we have | J; < <,<q L[Qﬁs)Xng)](G“) =Lx(G)nb .

Proof. () By induction on |y| > 0. For the base case |y| = 1-— is the production

([Q(g )XQ(u)] — w) € A” with w € X*—by case of the definition of A”, we

(r) _ (u)

have Qg bW Qv and there exists a production X — w € A. Since, moreover,

¢([Qs (r )XQ(u)] w) = (X — w), we have that X L:); w in G.
df(1

For the induction step |y| > 1, we have v = ([@\”Xq{")] — 7) - v/, for some

production [Qgr)XQg,u)] — 7€ A" and a word 7 € (X U E7)* of length |7| < 2
We distinguish four cases, based on the structure of 7:

1. if 7 = [Qg )YQ(U)] then 7 % w is a derivation of G™. By the induction
af(k)

=tn W Q™ and Y <o) w is a derivation of
df (k)

G.But X - Y € A—case (2) of the definition of A™—hence ((v) = (X —
Y)-¢(¢y) and X % w is a derivation of G.

hypothesis, we obtain that Q(T)

2. if 7 = a[Q{”VQ™] then w = a-w’ and G" has derivation [Q{" V"] ==

af(k)
(z) _ % (

w’. By the induction hypothesis, we obtain @, =%, w’ Qvu and G has

a derivation Y g w’. By the case of the definition of A™, we have

df(k)
Q" = aql® e AP and ¢([@"XQW] > 7) = (X - aY) € A. Thus

Q" = =% wQl™ and X % w, since ((y) = (X = aY) - ¢(v).

3. the case 7 = [Q My ;I)]
of A”.

4. if 7 =qQ (T)YQ(x)] [Q (x)ZQ(u)] then, by Lemma there exist words wq, ws €
X* such that w = wyws and either one of the following applies:
(a) [t Y] :j; = w1, [Q)) 704" :>( = w and 5/ =717, or

a is symmetric, using the case 1| of the definition

(b) [y Q)] == wy, [Qf Z0f] === wy and 7' = 327.

We consider the first case only, the second being symmetric. Since |y1| <
|v| and |y2| < |v], we apply the induction hypothesis and find out that

QFJ) Z‘b wy Qg(jr), Qg(jr) Zb Wo Qq(} ), and G has derivations Y & w1

df(k—1)
C(r2) (u)

and Z 4—~)> ws. Then Q( ") Gb w1y wa Qy ~ where wy we = w. By case of

the definition of A”, A has a production (X - Y Z) = C([Q(T)XQ(H)] 7).
Since 7' = 1 ¥z, then ((7) = (X =Y Z) - ((11) ¢(72), and G has a k-index
depth-first derivation X % w.

df(k)
i) By induction on |4| > 0. For the base case |§| = 1, we have §=(X - w)e A
By the case from the definition of A™, G™ has a rule [Q; )XQ(u)] — w and,
since, moreover, C([Q&S)XQ(U)] — w) = 4, we have v = ([Q gos)XQq(Ju)] — w).
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For the induction step |§] > 1, we have § = (X — 7) - §’. We distinguish four
cases, based on the structure of 7:

1. if 7 =Y, for some Y € =, by the induction hypothesis, G™ has a derivation

(r) (u)

[Q( Dy Qi )] ? w, for some 7' € (71(¢'). Since Qs =%, wQ,"” —by case
)

of the definition of A" G has a production p = ([o'”XQ"] —

[Qgs)Yqu)])' We define v = p -4’ It is immediate to check that ((y) = 4.

2. iffT=aY,forsomeaec X andY € =, then w = a-w’. Hence Qgr) =cb an(f),

(@) _ = (w)

. . & . .
Qy’ =(n w' Qy’ and G has a derivation Y == w’. By the induction

af(k)

hypothesis, G™ has a derivation [Qé )YQ(U)] :()> w’, for some v € (1(d).

By the case (3]) of the definition of A", there exists a production p =
([@ (S)XQ(u)] —aY)e A”. We deﬁne v =p-v. It is immediate to check that
¢(7) = &, hence [Q{¥) X Q"] == w.

af(e)

the case 7 = Y a, for some Y € = and a € Y| is symmetrical.

4. if T =Y Z, for some Y, Z € =, then, by Lemmal[7] there exist words wy,ws €
27* such that w = w, w2 and either one of the following cases applies:

@

()Yézw Z:wgandd = 01 0o, Or
af(k—1) at(k)

(b) Y o w1, 7 02 wo and §' = (52 (51.
df (k) df(k—1)
Moreover, we have Qgr) =%p W1 Qg(f) and Q(m) =% Wo Qq(]u), for some Q(yz) €

ZP. We consider the first case only, the second being symmetric. Since
|01] < |8] and |d2] < |§] we apply the induction hypothesis and find two

control words v; € (71(d;) and 5 € ¢! (52) such that G™ has derivations
71

[Qgr)YQéx)] prndl and [Qy (= )ZQ(“)] ? ws. By case |i of the definition
df(k—1

of A", G™ has a production p = ([Q T)XQ(“)] [Qs (r )YQ(T)][ (2 )ZQ(u)]).

Since ¢’ = 1 d2, we define v = p~y; 2. It is immediate to check that C(y)=9¢

and [QéT)Xqu)] — w. |

af(k)

In the rest of this section, for a given bounded expression b = wf ... w;‘ over 3,
we associate the strict d-letter-bounded expression b= af ...a} over an alphabet
A, disjoint from X, i.e. An X = ¢, and a homomorphism h: A — X* mapping
as follows: a; — wy, for all 1 < i < d. The next step is to define a grammar

M= (5™, A, A™), such that =™ = 57 and, forall X €e 5,1 < s <z < d:

h‘l(L[Qgnggz)](G“)) nb=1L (G™) .

[af* Xa{"]

The grammar G™ is defined from G", by the following modification of the
productions from A”, defined by a function ¢: A” — A™:

b([QgT)XQq(;u)] - w) = [Q(g )XQ(U)] — z where
1. if |lw| = 0 then z = ¢.
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(r) (u)

. if Jw| = 1 then we have Qs =>gb wQy ~ and we let z = a, if v =1 else
z =€
3. if |w| = 2 then we have Qi) =ab (w); Q) =gb (w)1(w)2 Q1" for some
z,y. Define the word z = 2’ - 2” of length at most 2 such that z’ = a, if
z=1;else 2’ =cand 2" =a, if v=1else 2"’ =¢.
— [V X" 1-b[R7Yel]) = [V Xal"] - ¢[af” Yol ] where ¢ = a,
if y=1; else ¢ = ¢.
— ([e"Xa"] - [aYQ{"1b) = [@"XQl] — [Vl ¢ where ¢ = a,
ifv=1;else c=c.
— «(p) = p otherwise.
Let A = {u(p) | p € A™}. In addition, for every control word v € (A™)* of
length n, let «(y) = ¢((7)1) - t((7)n) € A™. A consequence of the following
proposition is that the inverse relation =1 € A™ x A" is a total function.

Proposition 1. For each production p € A™, the set 1=1(p) is a singleton.

Proof. By case split, based on the type of the production p € A™. Since G™ is in
2NF we have:
—ifp=([Q (T)XQ(U)] — a) then :71(p) = {[Qs " x ] — w}, where Q" = =%
wQS, " is the shortest step sequence of GP between Q( " and Qq(, Y which is
unique by G? and produces we X*,
—ifp = ([o{" xo"] — [Qy )YQEz)]), then either one of the cases below must
hold:

(i) @) = Q! and qf
determmed by QS
b[oy”Y Q).

(i) Q(T) = (x) and Q;

QRN ab b Q,, , for some y # 1. In this case b is uniquely

7 and @\, thus we get «1(p) = {[a{”Xq{™] —

(2) ()

=cb bQy”, for some t # £,. In this case we get,
Symmetrlcally, ( ) ={[Qs I x ] [Q (I)YQ(Z)] b}.
(ii) Qi) = Q") and Q" =l Then L(p) = {p}.

—ifp = ([ xe"] = a, [} YQ(U)]) for some a, € A, hence y = 1 (re-
spectively, [Q (T)XQ(U)] [Q (T)YQ(m)]aT hence v = 1) and then the only
possibility is t71(p) = {[Q (I x gl ] = (wy)e, [Q (r)YQ(")]} (respectively,
087X Qi) = [&7Y Q)] (w,)r, )-

—ifp = ([ X Qi) — [y ai ] [0l 2Qi”]) then 1 (1) = {p}. 5

Lemma 6. Given a grammar G = (2, X, A) and a bounded expression b =

wi ... wh over X, for every X € =, every 1 < s <2 < d and every k > 0, the
followmg hold:

k 1k ~
Loty (G7) = WML oy (@) 0D,
2. for each control set I' < (A™)*, such that L EQ; XQYC’](GN) c L[Q( >XQ<“>](F G™),
we have LE QS)X 2 (G™) € Lo oo (1), G,

3. G™ is computable in time (’)(|b|3 -1Gl).
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Proof. We start by proving the following facts:

Fact 1. For all X € Z and 1 < s < x < d, we have L, (s, ,(G™) S b.
[e17 XQ™]

Proof. Let w € L (G™). We have [Q (s)Xle)] < 4@ is a derivation

[0f” X ai")]

of G™ for some control word v over A™. By contradiction, assume w ¢ b,

that is there exist p,p’ such that p < p’ and (@), = a; and (@), = a; with

i < j. The definition of ¢ shows that there exists w € L[Q<S>Xq<m>](Gﬁ) such
1 1

that [Q{¥ Xq!{"] LD in G, hence that w € b since L

and finally that Qgs) =%, ngz)
production in its image produces a a, when, in the underlying GP, either control

moves forward from Qgr) to Q(u), . [@ T)XQ(T)] — a, [Qlu)YQ(T)] or control

moves backward form Qg Y to Qi e.g. [Q 3(, )Xqu)] [Qz(, )YQST)] a,. Therefore,

by the previous assumption on @ where a; occurs before a;, we have that a
()

[o{” Xxq{™] (G7) &b,

. Now, the mapping ¢ is defined such that a

production of Q — (wj)e, qu) for some u > j and then a production of

Q)

this is a contradiction because j > 4 and the definition of GP prohibits control to

move from Qg) to Qé? for any p;, p;. ]

Fact 2. Forall Xe Z,1<s<z<d,vye(A™)* k>0 and iy,...,iqg€ N:

— (wy)e, Q1 ) for some v’ > i necessarily occurs in that order in ¢~1(v). But

[Qg )XQII)] ﬁ} wit .. wl in GO if and only if [QES)Xle)] % all...akin G

Proof. By induction on |y| > 0, and case analysis on the right-hand side of

(M1 m|

“c” Let w e L* 2 ) Xl®] (G™). By Fact [I| we have that @ € b. It remains
[o{* Xq

to show that @ € h™~ ( [Q§S>XQ§m>](G’“)), i.e. that h(w) € L[QES)XQEM](G“)’ which

follows by Fact [2| “2” Let @ € h=}(L Ez() ) xql® )](G“)) n b be a word, hence

W = al'...a} for some iy,...,iq € N. Then h( ) € LES?S)XQ(I)](G“) by Fact
1 1

and we are done.

1] Let w = wi' ... wj e LES()S)XQ(w)](G“) be a word. Then G has a derivation
1 1

[QES)XQII)] ?* w. By Fact [2| also G™ has a derivation [Q (S)XQ(I)] (k)

ail .. .afid. By the hypothesis LES(S’XQ‘”’](GN) clL (I, G™), there exists

a control word v € I" such that [Q!” XQ!"] = ai* ... a’ in G*, and by Fact 2| we

S 1( ) T4 Ie) T — N
have [Q) ( )XQ( )] SN wi' ... wi in G*. Hence w € L[QggXng)](L Yr),G").

[af* Xa{")]

Given that each production p™ € A™ is the image of a production p™ € A"
via ¢, we have [p™| = |¢(p")| < |p"|. Hence |G™| < |G™|. Now, each production
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p™ € A" corresponds to a production p of G, such that the nonterminals occurring
on both sides of p are decorated with at most 3 nonterminals from =P. Since
|Z®] = |b|, we obtain that, for each production p of G, G has at most |b|®
productions of size |p|. Hence |G| < |G"| < |b]*+|G|, and G* can be constructed
in time |b[* - |G =

Remark 2. Given G = (5, A, A), X € =, and a strict d-letter-bounded expression
b = af...a}, the check Lx(G) < b can be decided in time O(|b| - |G|), by
building a grammar G® such that Ly (GP) = ¥ *\b (see Remark and checking
Lx(G) n Loy (GY) 2 . A similar argument shows that queries Lx (G) n (A* -
as - A*) L &, 1< s <d, can be answered in time O(|G)) [B, Section 5].

B Other proofs

Lemma 7. Given G = (5, X, A) and a k-index depth-first step sequence XY AN

ar(k)
w, for two nonterminals X,Y € Z, w e X*, and v € A*. There exist wy,wq € X*
such that wy wy = w, and 1,72 € A* such that either one of the following holds:

71 Y2
1. X == wi and Y == ws and v = 1 Y2, or
df(k—1) df (k)

Y1 2
2. X = w1 and Y ———= wy and v = Y2 71.
df (k) df(k—1)

Proof. The step sequence XY =L~ w has one of two possible forms, by the
df(k)

definition of a depth-first sequence:

71 V2
- XY — w1 Y == w;j ws, or
df (k) df (k)

for some words w1, ws € X* and control words 1,72 € A*. Let us consider the
first case, the second being symmetric. Since X Y SESN wy Y is a k-index step
df (k)

sequence, the sequence X MEN wy obtained by erasing the Y nonterminal from the

last position in all steps of the sequence, is of index k —1, i.e. X = wy. Also,
df(k—1)

. Y2 . Y2 .
since w; Y == w; wy, we obtain Y == wy, by erasing the first |w;| symbols
df(k) df(k)

in all steps of the sequence. Clearly, in this case we have v = ;1 s. ]

B.1 Proof of Lemma[i]

First, we formally define the notion of depth-first derivations by annotating
symbols occurring in every step with a positive integer called the rank. Intuitively,
the rank assigns a priority between symbols in a word. For a set S of symbols
(e.g. the terminals and nonterminals) and a set I < N, we define S’ = {s© | s e
S, ie I} and call ST a ranked alphabet. We also sometimes write S when T is
a singleton. A ranked word (r-word) is a word over a ranked alphabet. Given a
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word w of length n and an n-dimensional vector av € N, the ranked word w® is
the sequence (w)1<(a)1> e (w)n<(a)”>, in which the ith element of o annotates

the ith symbol of w. We also denote w<®> = (w);‘” ... (w)‘w|<c> as a shorthand.

Let G =(&Z, X, A) be a grammar and u Z98 ybea step, for a vector o € NI,

we define the ranked step (r-step) u® L 1B if and only if (u); = Z and

0P = (u®)--- (u™);1 wlm+1» (u™)jg1 - (™)}
where each symbol in w has rank m + 1 and
m =max ({(a); | Ji: 1 <i < |ul,i #j,(u); e E}u{-1})

is the maximum among the ranks of the nonterminals in u®, with position j
omitted’l An r-step is said to be depth-first, denoted u® = v? iff the rank of
df

the nonterminal at position j where the rule applies is maximal, i.e. (a); = m.
For instance the transition labelled py in Fig. [1] (d) is a depth-first r-step. A
r-step sequence is said to be depth-first if all of its r-steps are depth-first. Finally,

()1 (v) . .
an unranked step sequence wy == Wy ...W,_1 == W, is said to be depth-first,
. Y . .
written wy = wn, iff there exist vectors a; € NI“tl . a,, € NI“nl guch that
df

cn—1
Let T = {w™ | Juf: uP = (w*)| zn, [uP| < k, B is contiguous, max;(3); <
k—1} be the set of r-words such that when deleting ranked terminals, the resulting
word is no longer than k and has ranks between 0 and k£ — 1. It is routine to check

that T®) is closed for the relation e For a r-word w® € T let [w®] be
df(k

the r-word (w®|zcwy) (W*| =) ... (W*| =& ). Intuitively, [w®] projects out the
terminals of w, and orders the remaining nonterminals in the increasing order of
their ranks. For instance, [a<1>Y<1>Z<0>] = ZOy<® The [.] operator is naturally
lifted from r-words to sets of r-words. Recall that we define the set @ of states of
A¥® = (Q,A,—) as Q = {w® | w e =¥, |w| < k, a is contiguous, (a); < -+ <
(@)jw|}- It is routine to check that [T(k)] = @ holds. Now let us consider —

which we defined as follows. Let ¢,¢’ € Q, (X, w) € A we have ¢ Xow), q iff

— ¢ =uX®y for some u,v and where i is the maximum rank in ¢, and

0y (M1 ne1 (Dn
wé< » 2 w L wet Tt = w holds.
df df

0 ifuv=c¢
— ¢ =uv(wl=) where [uv (w] 5)CP| < kand i = { i else if (uv)|zw =¢
i+ 1 else
As g € Q, we find that g € [T(k)]. Furthermore, it is an easy exercise to show

that ¢ Kow), ¢ iff there exists w” € T*) such that ¢ :Xf:(:)} w™ and [w"] = ¢'. It
follows that, we can equivalently write AG " = ([T(®], A, —) for the labeled
graph the edge relation, is defined as: u® 2> v@ iff Jw” € T*) 4 ﬁ w? AvP =
[w"].

" If Z = (u); is the only non-terminal in u, we have m + 1= —141 = 0.
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Proof (of Lemma . “=” We shall prove the following more general statement.

Let u® —= wB where u® € T® be a k-index depth-first r-step sequence. By
df(k)
induction on |y| > 0, we show the existence of a path [u®] %> [wP] in A4®).
For the base case |y| = 0, we have u® = w® which yields [u*] = [w?] and since
u® € T™®) the hypothesis shows that u®, w® € T*) hence that [u®], [wﬁ] €
[T(k)] and we are done. For the induction step |y| > 0, let v" —2 wA be the
ar(k)

last step of the sequence, for some p € A, i.e. v = o - p with ¢ € A*. By the

induction hypothesis, A%* has a path [u®] % [v"]. Since [v"], [wP] € [T*]

and v == w?, we have that [v7] 2> [w?] by definition of —, hence we obtain
daf(k)

a path [u®] 5 [w?].

“<” We prove a more general statement. Let U > W be a path in Ag(k), for

some words U, W € [T(k)]. We show by induction on |y| that there exist r-words

u®, wP € T™  such that [u®] = U, [wﬁ] = W, and u® =L w™. The base

daf (k)
case |y| = 0 is trivial, because U = W and since U € [Y¥)] then there exists
u® € T such that [u*] = U = W and we are done. For the induction step
|v] > 0, let v = o - p, for some production p € A and o € A*. By the induction
hypothesis, there exist r-words u®, v € T*) such that U = [u®] 5 [v] & W

. . o . . o
is a path in A¥*®  and u® == v" is a k-index r-step sequence. The definition
df(k)

of the edge relation in A4® and [v7] £ w shows that v7 == w® for some

df (k)
wP e T such that [wﬂ] =W.

For the upper bound on the size of A4®, recall that each vertex of A4*® is a
ranked word of length at most k, consisting of non-terminals only, with ranks in
the interval [0, k — 1]. Moreover, the productions of G do not produce more than
2 nonterminals at a time. Hence, in every vertex of A¥™  at most 2 positions
carry the same rank. Since the length of each vertex in @ is at most k and, for
each i € [0,k — 1], there are at most |Z|* choices of nonterminals with rank 4,
we have [AZ™®| < |Z]* < |G)*". =

B.2 Proof of Lemma [2]

When Lxy(G) < b, because b = a¥ ... a* is a strict s-letter-bounded expression

with s a fixed constant, for every step sequence X éc uwY v, we have uv =
Yday -+ Vla, - Also remark that uv = agu)l .. .ag”)s for some v € N°, hence that
(v)e = |vl,,| for each £ = 1,...,s. For convenience, given v € A*, we denote
g =7ay - Va,-

We recall the definition of the labeled graph A**® = (@, A, —) whose number
of vertices we denote by N. Due to the form of the productions in G, we can
safely restrict () to r-words with at most 2 nonterminals having the same rank,
hence N < |G|2k. We define £2(q) is the set of elementary cycles with ¢ € @ as
endpoints.
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Proposition 2. Let G = (5, X, A) be a grammar, X € = be a nonterminal
and b = a¥...a¥ be a strict s-letter bounded expression, for some s = 0. For
any two vertices q,q' € Q of A¥*®  and any path 7 € II(q,q’), there exists a
path 7' € 11(q,q") such that |7| = |7'|, w(m)lly = w(n’) g and 7’ is of the form
S101--Go 00 Goy1, where 1 € I1(q,q1), sev1 € 11(qe,q') and s; € 11(gj-1,4;),
for each 1 < j < L, are acyclic paths, 01 € (2(q1))*,...,00 € (£2(q))* are cycles,
and { < |Q)].

Proof. The proof goes along the lines of that of Lemma 7.3.2 in Lin’s PhD thesis
[19]). This proof is carried on graphs labeled with integer tuples, and addition,
instead of concatenation. Since the only property of integer tuple addition, used
in the proof of [19, Lemma 7.3.2], is commutativity, it suffices to observe that
w(m)lly = w(n’)llg, whenever w() is a permutation of w(7’). o

Proof (of Lemma B) Given two step sequences X 2q uY v, X Lo Y o', the
following are equivalent:

— el =1V g, forall £=1,...,s,

- vllg =7Us

—uv=uv.
Since Lx y(G) < b where b is a strict s-letter bounded expression, for every
7 € 02(q) the induced word a¥* ... ak = w(m)|lg is such that: 377, k; < 2N,
i.e. each production in A issues at most 2 symbols from {aq,...,as}, and each
elementary cycle is of length at most IN. The nonnegative solutions of the
inequation ijl k; < 2N are solutions to the equation ijl kj +y = 2N, for a
nonnegative slack variable y > 0. Since the number of nonnegative solutions to
the latter equatio is (HSQN ), we have:

lwtmis |7 26 = (*7 ) o0 )

For each vertex ¢, we are interested in a set Cy < £2(g) such that |Cy| = O(N*®
and, moreover, for each m € 2(q) there exists 7' € Cy such that w(m)lly =
w(n') g when I1(X?, q) # & and II(q,Y?) # & holds.

For now we assume we have computed such sets {Cy} ., (their effective
computation will be described later). We are now ready to define the bounded
expression I};. Given a finite set I" = {v1,...,7} S A* of control words indexed
following some total ordering (e.g. we assume a total order < on Z'u.A, and define
(X1, w1) <a (Xo,ws) & X1 -wy <'® Xy - ws in the lexicographical extension of
<, then extend <A to a lexicographical order <$* on control words), we define
the bounded expression: concat(I') = v -+ vk Let Q = {q1,...,qn} be the set
of vertices of A%"™ taken in some order. We define the set {B;},., of bounded

m+n—1) )

® The number of nonnegative solutions of an equation n = z1 + -+ + @y, is ("1"]
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expressions as follows:

By = concat({w(m) | m€ Cq }) - - - concat({w(m) | m e Cyy })
By = concat(A)N~1 - By - concat(A)N !
B, = concazf(A)N*1 By B;_1, foralli>2
Finally, let:
I =By .

Let us now prove the language inclusion.

It follows from Theorem |1} that Lg?’)Y(G) = IA/X’y(F;f’(;’,G) for every X € =,
Y e Zu{e} and k > 0. Hence we trivially have Lxy (I n I'y'y),G) <

ﬁX’y(F;(i({;),G) = Lg?’)Y(G). For the contrapositive L()?’)Y(G) c IA/X’y(FS N
r ;{f%ﬁ), G), it suffices to show the following: given a k-index depth first step se-
quence X Ly v, there exists a control word 4" € Iy such that X WY
df (k) df (k)
and uv = u'v'.
Because Lemma [1{ shows that each path 7 € IT(X<? Y<®) corresponds to

a control word w(w) such that X % uY v, and because Lgl;)y (G) < b where
df(k ’

b is a strict s-letter bounded expression, it suffices to show that exists a path
p e (XD YD) such that w(p) € Iy and w(m)lly = w(p)lly. We apply the
result from Prop. [2| which shows that there exists a path p € IT(X O y<O) such
that |p| = ||, w(p)lly = w(m)llg and p is of the form ¢; -0y - -+ ¢ 0p - Go11, where
1 € I(XY,q;)), o1 € I(g;,, Y?), and ; € II(g;,_,.q;,) for each 1 < j < ¢
are acyclic paths, 01 € (2(¢;,))*,...,00 € (£2(¢;,))* are cycles, ¢;,,-..,qi, are
vertices, and ¢ < ||@]. Hence we conclude that

— w(sj) € concat(A)N=1 forall 1 <j<l+1,

— for each cycle 6; € (£2(¢s,;))*, consisting of a concatenation of several elemen-

tary cycles 0]1, ce ij € £2(qs;), the cycle 0;” obtained by a lexicographic
reordering of 931'7 . ,Hfj (based on the lexicographic order of their value in
A*) belongs to By, for all 1 < j < £. Second, it is easy to see that the words
produced by 6; and 996” are the same, since the order of productions labeling
0; (9;"‘”) is not important.

Let m' be the path ¢ - 01¢% - ¢, - 01¢® - ¢,,1. By Prop. |2, we have that w(r) Uy =

w(n') |l Moreover, w(n’) € By = I;. Since X wim) uY v and X ) W'Y
df(k) df(k)

are step sequences of G, the previous equality implies uv = v’ v'.

Concerning the time needed to construct the bounded expression I}, the
main ingredient in the previous, is the definition of the sets of cycles {Cq}qu,
such that |C,| = O(N?®) and, moreover, for each 7 € §2(q) there exists n’ € C,
such that w(m) |l = w(r’) |l when II(X?, q) # & and II(q, Y<9) % & holds.
Below we describe the construction of such sets.
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Define Val = {a‘* ...a% ¢ b | Z‘;=1 ¢; < 2N}. Using previous arguments (i.e.
equation (6])), it is routine to check that | Val| = O(N*). Consider the labeled
graph H = (V, A, —), defined upon A¥™®  where:

-V =Q x Val, and
— g alt iy D (g ad L ade ) iff ¢ 22 ¢ and al’ = alf -2l,, for each
1

First, observe that the number of vertices in this graph is |V| < N2¥ .

(S+32N) = |G|O(k). Second, it is routine to check (by induction on the length of

a path) that given a path 7 € 3 ({q,€),{q,a’" ...a')) for some iy,...,is € N
we have w(m)lly = a' .. .a’s. Next, for each ¢ € Q define the set P, of paths
of H consisting for each @' ...a' € Val of a single path (one with the least
number of edges) from (g, &) to {g,a}" ...a% ). By definition of Val, we have that
[Pyl = | Val| = O(N®) and, moreover, for each p € £2(q) (p is a path of A% ®)
there exists a path m € P, such that w(p)lly = w(m)lly = al' ... al where (g, ¢)
and (g,a’" ...a%) are the endpoints of 7.

Hence, we define Cy to be the set of cycles in A%** corresponding to the paths
in P,. The latter can be computed applying Dijkstra’s single source shortest path
algorithm on H, with source vertex (g, €), and assuming that the distance between
adjacent vertices is always 1. The running time of the Dijkstra’s algorithm is
o(V|?) = |G|O(k). Upon termination, one can reconstruct a shortest path 7
from (g, ) to each vertex (g, a’* ...a%), and add the corresponding cycle of A%*)

to Cy. Since there are at most |G|O(k) vertices {g,a’" ...a%) in V, and building

k)

a shortest path for each such vertex takes at most |G \O( time, we can populate

the set Cy in time |G \O(k). Once the sets C, are built, it remains to compute the
bounded expressions concat({w(r) | m € Cy}), concat(A)N~1 and By,..., Bn.

As shown below, they are all computable in time |G|O(k).

Algorithm (I} gives the construction of I};. An upper bound on the time
needed for building I'; can be derived by a close analysis of the running time
of Algorithm [I} The input to the algorithm is a grammar G, a strict s-letter
bounded expression b and an integer k > 0. First (lines the algorithm builds
the H graph, which takes time |G|O(k). The loop on (lines computes, for
each vertex ¢q € ), and each s-dimensional vector v € Vul, an elementary path
from (q,e) to (g, agv)l ...agv)5> in H. For each ¢, this set is kept in a variable
Cy (line E[) The variable By at the end of the loop contains the expression

concat({w(m) | € Py, }) - - concat({w(x) | 7 € Pyy}), Since both [Q] = |G|°H)
and || Val| = \G\O(k), the loop at (lines takes time |G|O(k) as well.

The remaining part of the algorithm computes first an over-approximation
of concat(A)N=1 (lines 13) in the variable C—observe that the algorithm
computes concat(A)IC"" — 1 instead of concat(A)N=1. Finally, the control set

Iy with the needed property is produced by |G \% > N repeated concatenations

of the bounded expression C - By, at lines ((15H16)). Since both loops take time at

O(k)

most |G|*", we conclude that Algorithm [1|runs in time |G| |
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B.3

Proof of Lemma [3]

A grammar G is said to be reduced for X iff Lx y(G) # & and Ly (G) # &,
for every Y € =, X # Y. A grammar can be reduced in polynomial time, by
eliminating unreachable and unproductive nonterminals [12, Lemma 1.4.4].

Proof (of Lemma @ We start by proving a series of five facts.

(4)

(i)

First, no production of G has the form (Y, v), where Y € Z— and v contains
a symbol of =~. By contradiction, assume such a production exists where
Z € E is a nonterminal occurring in v. Because Z € =i, a1 occurs
in some word of Lz(G) and a4 occurs in some word of Lz(G). On the
other hand, we have that either no word of Ly (G) contains a; or no word

of Ly (G) contains a4, since Y € Z—. Because G is reduced, we have
Y,
{u|v="u} # &. We reach a contradiction, since {u | Y ) v =% u}

contains a word in which aq occurs and a word in which a4 occurs, because
Z occurs in v.
Define Q(u,v) to be the following proposition:

{We(EUvA* |u="d} < ({ar} v Em)*
and

e (EVA)* |v=*v}c ({agt v E=)* .

We show that Q(u,v) holds if X; =* v X, v with X, X; € =~. By contra-
diction, assume that there exists v/ such that u =* v’ and v’ ¢ ({a1}U=E7=)*
(a similar argument holds for v). Then either (a) u’ contains a symbol ay,
for £ > 1 or (b) u' contains a nonterminal Z € 5. Because G is reduced,
we have {v' | u =" v/} # &. In either case (a) or (b), there exists a step
sequence v’ =* uj ayug € A* such that £ > 1. Since X; € =, we have
that X; v =* a1 ug € A*, hence that X; =* w1 as u2 a1 u3 and finally that
Lx(G) ¢ IN), since G is reduced, a contradiction.

For every step sequence X; =* x, where X; € =i, « cannot be of the form
uy Xqug X ug where Xy, X, € =1. In fact, take the decomposition u = uy
and v = us X ug (the case u = u; X4ue and v = ug yields the same result).
Because applies, we find that Q(u,v) holds but v ¢ ({aq} v AU Z—)*,
hence a contradiction.

If X =7>G u X; v is a step sequence of G, for some X; € 5, v € A* then

X gcﬁ u X; v is also a step sequence of G*. The proof goes by induction

onn = |y|. Let X = wg gc W1 W1 gc w, =uX;v.lfn=20

then v = ¢, X = X, € 5 and u = v = ¢, which trivially yields a step
sequence of G, For the inductive case, because of (i) we find that, necessarily,
(Wp—1)¢ € E for some ¢. We thus can apply the induction hypothesis

onto X Mﬁ; wy—1 and conclude that X %Gﬁ wWp_1. Next,

since w,,—1 % w,, it cannot be the case that w,,_1 M w, where p # {

and (7), = (Y,t) with Y € 5~ for otherwise X =¢ w,_; contradicts
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(recall that both (w,_1), and X belong to Z;~). Thus we have (v),, € Af,

hence wy,_1 %Gﬁ Wy, and finally X =qs uX; v.

(v) If L1,Ls < band L; - Ly C aj...ak, for some 1 < ¢ < r < d, then there
exists £ < ¢ < r such that Ly S aj...a} and Ly S a} ...a}. Assume,
by contradiction, that there is no such g. Then there exist words w; =
aé‘f . ..a?‘ € L1 and wy = a%“ ...a{” € Ly, two positions p1,p2 such that

¢ < py < p1 <rsuch that ip, # 0, jp, # 0. Because all a; are distinct, we

conclude that wy - wo ¢ a;f‘ ...a}, hence a contradiction.

We continue with the proof of the five items of the lemma:

o v . .
1. The derivation X == w, where |y| = n, has a unique corresponding r-
af(k)
(1 (M)n
step sequence X< = wg® == wi'... = wg" = w*". Now, we define a

parent relationship in that step sequence, denoted <1, between r-annotated
nonterminals: Y<* < Z<¥ iff there exists a step in the sequence that rewrites

V< to ZP, that is u® BD/ 8 where (u®); = Y and (vP), = ZP for
some j << j—1+[t.

Let (7)¢, = (Xi,,aybz) be the last occurrence, in 7, of a production with
head X;, € Zi~. Notice that such an occurrence always exists since X € =i~
and moreover we have that a,b € Au{e}, y,2z € Z— U {e}. In fact, since v is a
derivation, if y € Zi or z € 5= then (7)., would clearly not be the last such

occurrence. Let X = X i<OT°> <X §:1> <X f:’”> be the sequence of ranked
ancestors of X;  in the r-step sequence, and (), = (Xi;,aym; b X;,,,) € A
(or, symmetrically (v)e, = (Xi;,a Xi,,, bzm,) € A), for some a,b e Au {e},
Zm;,Ym; € = U {e}, be the productions introducing these nonterminals, for all
0<j<p.

If ym; € =, let 7, be the subword of v corresponding to the derivation
Ym; Y Wy, for some w,,, € A*. Notice that no X;, has y,,, for ancestor,

A,.
and that y,; = Wy, must be a depth-first derivation because X = wis.
Otherwise, if y,,, = €, let 5, = . Let Y= Ve Fo (Ver T1 (Vepes Fp_1-
7
Observe that, since each y,, = Wiy, is a depth-first derivation, we have
by by i b .
ijilyfnf = ijilwfj;j (or with X,
step sequence because y,,;, and X;, , have the same rank b. Clearly, oL

corresponds to a valid step sequence of G which, moreover, is depth first,
since whenever (), fires, X;; is the only nonterminal left (and whose rank

and y,,; swapped) is a depth-first

j+1

f
is therefore maximal). It follows from that because X ;>G u X;, v holds
¢
and X, X; € 5 then X ;Gﬂ u X;, v holds (notice the use of G"* instead of

#
G). Moreover, the definition of v# shows that X ;>Gﬁ u X;, v is a depth-first
step sequence and u,v € A*.
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. 2 . . e Vi
Since X =¢ w is a k-index derivation, each step sequence y,,; = w.,; are

of index at most k. Therefore the index of each step sequence X, Ym,; Y

Xi, W, (or in reverse order) is at most k + 1. Also, when each (v), fires,

X, is the only nonterminal left and so the index of the step is at most 2.
#

!
Therefore we find that X —— u X; v, and finally that X ——uX; vin
(k+1) P ar(k+1) ?
GH.

. Assume that y,z € Z;— (the cases y = € or z = ¢ are similar). Since v of
('Y)£p+1-'~(7)n
_

length n induces a k-index depth first derivation, we have that y z
df (k)

uy u, € A* can be split into two derivations of G as follows: y LN uy and
df(ky)

z % u, such that max(k., k,) < k and min(k., k) < k— 1 (see Lem. |7| for
df (ks

a proof). Assume k, < k — 1, the other case being symmetric. Since the only
production in (), - - (7)n Whose left hand side is a nonterminal from S~
is (7)e, = (Xi,,aybz), which, moreover, occurs only in the first position, we
have that v, € F;““”(Giwaybz) and 7, € I'Y*™ (G, ayb-), by the definition
of Gip,aybz-

. It suffices to notice that 4% - (v), - -+ ()n results from reordering the produc-
tions of v and that reordering the productions of y result into a step sequence
producing the same word w = azf .. aff since Lx(G) < b where b is a strict
d-letter bounded expression. That the resulting derivation has index k and is
depth-first follow easily from and .

. Given that A" € A we find that X =%, uX;, v implies X =% u X; v, hence
Q(u,v) holds by and X, X; € Z~. By the definition of Q(u,v), we have:

{fWe(ZuvA)* |u=*d} < ({a1} uZ—)* and
{e (FuA)* [v="2} < ({aa} v 5i)*

Since G is reduced, {v' € A* |u=*u'} # J and {v/ € A* |v=* '} # .
But because X; € 5=, it must be the case that {u' € A* [u =" u'} C af
and {v' € A* | v =" 0"} < a, otherwise we would contradict the fact that
Lx(G)<hb.

. 'yu (Xipaa?/bz) .
. Since X =¢ u X;, v ==——=>¢ uaybzv and G is reduced, we have that

e A* [u=F(u'}-a-Ly(G) b L(G)-{v e A* [v =¥ v'} < Lx(G) c b,
and thus L, (G) - L,(G) < b. We consider only the case y, z € Z——the cases
y = € or z = ¢ use similar arguments, and are left as an easy exercise. Hence,
our proof falls into 4 cases:

(a) Ly(Giaybz) N (a1 - A*) = & and L,(Giayp-) N (a1 - A*¥) = . Thus
Ly(Giayvz) - L:(Giayvz) S aj...a}. Then fact @ for{=2andr=d
concludes this case.

(b) Ly(Giaybz) N (A* - aq) = & and L.(Giayp-) N (A* - aq) = . Thus
Ly(Giaybz) - L(Giayp-) S af...a}_ ;. Then fact @ for £ = 1 and
r = d — 1 concludes this case.
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(¢) Ly(Giaybz) N (A*-aq) = & and L, (G ayp2) N (a1 - A*) = &. Thus we
have Ly (Giaypz) S af...a}_; and L.(Giays=) S a3 ...a}5. By the fact
@ (with £ =1, r = d) there exists ¢, 1 < ¢ < d such that L, (G qyp-) S
a¥ . ..a;“ and L;(Giaybz) S a;" ...a}. Next we show 1 < ¢ < d holds. In
fact, assume the inclusions hold for ¢ = 1. Then they also hold for g = 2
since L.(Giayb=) S a3 ...a%. A similar reasoning holds when ¢ = d since
Ly(Gi,aybz) < CLT R a:’;il.

(d) Ly(Giaypz)n(a1-A*) = Fand L.(Giayp2) N (A*-aq) = &. We first ob-
serve that it cannot be the case that L, (G 4 y5-) contains some word where
ag occurs and L, (Gi,aybz) contains some word where a; occurs for other-
wise concatenating those two words shows Ly(Giaybz) - L2(Giayvz)
af ...a}. This leaves us with three cases: (a) If Ly (Gj.ayp2)n(A*-aq) # &
we find that L.(Gjiayp-) S af, hence that L, (G ayp2) S as ...a} since
Ly(Giaybz) N (a1 - A*) = &. (b) If L(Giaybz) N (a1 - A*) # & we
find that Ly(Giays-) < af, hence that L.(Giayb-) S af...al_; since
L.(Giayvz) N (A* -aq) = . (¢) Then Ly(Giayp-) N (A* - aq) = &
and Lz(Gi,aybz) N (CL1 . .A*) = . Hence Ly(Gi,aybz) . Lz(Gi,aybz) <
a¥ ...a}_, and by the fact (o) for £ = 2 and 7 = d—1 there exists 1 < ¢ < d

such that Ly(Giayb.) S a5 ...af and L.(Giaypz) S aj...aj_;. O

B.4 Proof of Theorem [3|

Proof (of Theorem@. We prove the theorem by induction on d > 0. If d = 1,2, we
obtain I from Lemma [2} and time needed to compute [}, using Algorithm [1} is
1G|°™®) . Moreover, we have LY (G) = Lx(TynIT$™,G) C Lx(TynI'$™™,G).

For the induction step, assume d > 3. W.l.o.g. we assume that G is reduced
for X, and that af ...a¥ is the minimal bounded expression such that Lx(G) <
af ...a%. Consider the partition 5 U Z7—; = 5 and 5 n 5 = &, defined
in the previous. Since G is reduced for X, then X € =. Define

Apivor = {(Xi,aybz)e A| X, e 5w and a,be Au{e}, y,z€ Z v {e}} .

By Lemma |2, for each X; € =, such that Lx x,(G) < afa}, there exists

a bounded expression ;X" such that Lg?’;(li) = Lxx,(I75% A Iysmr, G).
Moreover, by the induction hypothesis, for each £, m,r such that 1 < /< m <
r<d m-—¥f¢<d-—1andr—m < d-—1, and for each Y, Z € = such that

Ly(G) c af...af, and Lz(G) < af, ...a}, there exist two sets S}, SZ . of

bounded expressions over A; 4,5, such that Lgf) (@) < Ly (USY ,, n I, @)
and Lgc)(G) < Ly(JSZ , n g™V G). We extend this notation to ¢, and
assume that Sf ; = {e}. We define:
IH={{l,mr)|1<l<m<r<d m—L<d—1Arr—m<d-—1}
Sy = {Fl)féxi (Xiyaybz)* I I | (Xi,aybz) € Apivor A
Lxx,(G)<cafaynl’eS] , ~AIT"eS8 . Al m,r)elH}

m...”"
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First, let us prove that LEI(C)(G) c Lx( Sy nIYY,G). Let we LEI(C)(G)
be a word, and X —= w be a k-index depth first derivation of w in G. Since

df (k)
w E Lg?) (G), such a derivation is guaranteed to exist. By Lemma |3] there
exists (X;,aybz) € Apivor, and vF € (AN)*, ~,, 7. € (Aiayp:)*, such that +# -
(Xi,aybz) -7y -7, is a permutation of v, and:

#

— X =—— u X, v is a step sequence of G¥ with u,v e A*;
df (k+1)

e z . .
— y == u, and z === u, are derivations of G; 4y. (hence u,u, € A*),
df(ky) df(kz)
max(ky, k,) < k and min(k,, k,) <k —1;
Eox, .
(X aybz) vy -y . . . . v . . .
— X =—————= w is a derivation of G* if y =——= uy is a derivation of
df(k+1) df(k—1)
Gi,aybz;

f.(x, .

YH(Xj,aybz) vz vy . . . . v . . .

— X —————"% y is a derivation of G! if z === w, is a derivation of
df(k+1) df(k—1)

Gi,aybz;
- Lxx,(G") < afa};
— Ly(Giappz) S aj ...a}, if y e 505 Lo(Giap:) S af, .. ak if z € 57—, with
1</<m<r<d,suchthat m—f¢<d—1landr—m<d—1.
Let us consider the case where y, z € & (the other cases of y = € or z = ¢ being
similar, are left to the reader). We also assume k, < k — 1 the other case being
symmetric.
Therefore, by the induction hypothesis there exist bounded expressions I €

"

Sy . and I € 87, such that y === u,, and 2 === u,, for some control
df(ky+1) df (k2 +1)
words 7/ € I and 7" € I'". If Ly x,(G*) < afa}, by Lemma there exists a
. !
control word ¥ € le 0,le such that X === u X; v is a (k + 1)-index depth first
J df(k+1)

step sequence in GF. It follows that:

(X;.aybz)

8 o o
X ——=uX;v uaybzv =—=uvauybzv =—=>uauybu,v=w .
df(k+1) df (ky+2) df (k. +1)
’Y,
Observe that uaybzv ——— uwau,bzv because a,b,u,v € A*, z € 5 and
df (ky+2)

— uy. Since ky, < k—1 and k, < k, we find that k£, +2 < k+ 1
df(ky+1) - - ©

and k, + 1 < k + 1, respectively. Hence the overall index of the foregoing
derivation with control word (¥ (X, aybz) ' ") is at most k + 1. Since it is
also a depth-first derivation, we finally find that w e Lx (|J Sy nITFHTY.G), e
LE(@) € Lx(US n IE™0,G).

In the following, we address the time complexity of the construction of
S;;, and of each bounded expression I' € ;. We refer to Algorithm |2| in the
following. Notice first that both the MINIMIZEEXPRESSION and PARTITION-
NONTERMINALS functions take time O(|G|), because emptiness of the inter-
section between a context-free grammar and a finite automaton of constant
size is linear in the size of the grammar [5, Section 5]. Moreover, the inclu-
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sion check on (line is possible also in time O(|G|) (see Remark2). By
Lemma |2, a call to CONSTANTBOUNDEDCONTROLSET(G, b, k) will take time
|G \O(k). Lemma |3 shows that the sizes of the bounded expression considered at
lines and in a recursive call, sum up to the size of the bounded expres-
sion for the current call. Thus the total number of recursive calls is at most d.
We thus let T'(d) denote the time needed for the top-level call of the function
LETTERBOUNDEDCONTROLSET(G, X, a} ... a}, k) to complete. Since the loop
on (lines will be taken at most |A| < |G| times, we obtain:

7(d) = |G|7" +|GI(O(G]) + 2 T(d-1))

where 2T (d—1) is the time needed for the two recursive calls at lines [L6[ and
to complete. Because T'(0) = O(|G|) + |G|O(k)7 we find that T'(d) = |G|O<k)+d .

Finally, the time needed to build each bounded expression I" € Sy can be evalu-
ated by observing that each such expression is uniquely determined by a sequence
o € A* of productions of G that are successively chosen at line Let us consider
now a slightly modified version of Algorithm [2]that is guided by a sequence o € A*
received in input — the function LETTERBOUNDEDCONTROLSET(G, X, a* ... af, k, o)
receives an extra parameter and returns also the suffix of o that remains after
processing the first production on o, i.e. the recursive calls at lines[I6| and [I9 have
returned. Since the sum of sizes of the bounded expressions for these recursive
calls is at most ¢ — s, by Lemma [3] we obtain that, in total, Algorithm [2] initiates
at most d calls to LETTERBOUNDEDCONTROLSET. We recall also that the prefix
of each call (before making recursive calls) takes time O(|G|) + |G|°™*. Since
Lx(G) < b, assuming that b is minimal, we have |b| < |G|. Hence, the time
needed to compute a bounded expression I' € S is bounded by:

d- (0(G)) +1G1°™) < 1G] - (0(IG]) +|G|°™) = |G|°™) .

B.5 Proof of Lemma [4]

Proof (of Lemma . Given k > 0, consider the following grammar:

Notice that Lx, (G) = {azk} c a* and |G| = O(k). Moreover, every depth-first
derivation of G has index k + 1.

For each i € {1,...,n}, let p; be the production X; — X;_1 X;_1 of G, and
let pg be Xg — a. It is easy to see that, because the derivation is depth-first, the
control word y generating a2" from X &, is unique. Now suppose that there exists
I' = wf ... wj such that v = w’f ...wfid, for some i1, ...,iq = 0. Next we show
that, for all j = 1,...,d we must have 7; < 2.

We first make this crucial observation, since the derivation tree is binary and
its traversal is depth-first, we have that for every p;, every three consecutive

35



occurrences {1 < ly < 3 of p— (7)o, = (V)e, = (¥)es = pi—implies that there
exists a position ¢ between ¢; and ¢3 such that (v); = p;+1. Otherwise that would
imply that the derivation tree has a node X,;;; with three X; children; or that
the tree was not traversed in depth-first.

Take an arbitrary w; in I" and let g be the greatest index of a production
occurring in w;. The number 7; of repetitions of w; cannot be greater than two
for otherwise p, contradicts the previous fact. So this concludes that no i; can
be larger than 2.

Now, since the only string of Ly« (G) has length 2¥ and that no rule produces
more than one terminal then necessarily |y| > 2¥. So we show that |I'| has to be
at least 2¥~1. By contradiction, suppose |I'| < (2¥~! — 1), then since in order to
capture v no word of I" can occur more than twice, the longest control word that
I can capture is 2 - (2571 — 1) = 2¥ — 2 which is shorter than 2% = ||, hence a
contradiction. O

B.6 Proof of Theorem [2|

Proof (of Theorem @/ The Np-hard lower bound is by reduction from the Positive
Integer Linear Programming (PILP) problem, which is known to be Np-complete
[26], Corollary 18.1a]. Consider the following instance of PILP, with variables
ki,...,kn, ranging over positive integers:

a1 ki+...+am -k +tc <0

ain " k1+ ...+ amn km + ¢, <0

and denote a; = {(a;1,...,amy € Z", for alli=1,...,m, and ¢ = {¢1,...,Cpy €
Z". Let x = {x1,...,2,} be a set of integer variables. Consider the program
Prip = {G, Xo, [.]), where G =(5, X, A):

- E={Xo,. -, Xm+1}s
Y={rli=0,....m+1} u{)\|i=0,...,m},
- A= {Xz g TiXH—l | 1= O,...,m}u{Xi g )\zXz ‘ 1= 1,...,m}u{Xm+1 g Tm+1},
the semantics of the words w € Lx,(G) is defined by the following relations:

Pro =x'=0

pr;, =% =x foralli=1,...,m—1
pr, =x=x+a; foralli=1,....m
pr,, =X =x+c

Prmis =X <0

Let bpiLp = 7§ Af7{ ... NS 787 | be a bounded expression. It is immediate to

check that the PILP problem has a solution if and only if REACHj, (Ppip, f)pILp)
holds. This settles the NpP-hard lower bound for the class of fo-reachability
problems.

We show next that the class of fo-reachability problems REACHy, (P, b) is
included in NEXPTIME. Let P = (G, I,[.]) be a given program, where G =
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(Z,%, A) is its underlying grammar, and b = wj ... w} a bounded expression.
By Lemmal[5] there exists a grammar G” = (£, X, A”) such that:

U L[Q(IS)IQYC)](GQ) =L;(G)nb .

1<s<z<d

Moreover, we have that |G°| = O(|b|* - |G]). Let P, = (G, [Q 9)IQ 1,[.]) be
a program, for each 1 < s < x < d. Since the alphabets of G and G” coincide,
the mapping of symbols to octagonal relations is the same for G and G, hence:

U [Psa] = [P]b :
1<s<z<d
Then [P],, # & if and only if [P, ] # ¢, for some 1 < s < & < d. We have
reduced the original problem REACHy,(P,b) to O(|b?) reachability problems,
of size O(|b[* - |G]) each. In the following we fix 1 < s < x < d, focus w.L.o.g on

the problem REACH,(Ps 5, b) and we denote by X = [Qgs)Ing)] in the rest of
this proof. N
Let A = {ai,...,aq} be an alphabet disjoint from X' and b = a}...a} be

a strict letter-bounded expression, such that b = h(b), where h : A — X* is
the homomorphism h(a;) = w;, for all i = 1,...,d. By Lemma |§| there exists a
grammar G™ = (5", A, A™) such that, for every k > 0:

LG = - 1(LP(G@) n b,
2. for each I' < (A™)*, such that L(k)(GN) c Lx(I',G™), we have Lg’;)(G“) c
Lx(7H(I),G).
Moreover, we have |G| = O(|b[® - |G]). Since Lg];)(G‘x’) < b, by Theorem
there exists a set Sy of bounded expressions over A™ such that:

L(k)(GN) g (U S~ Fdf(k+1)(G><1) G[Xi)
Hence, by Lemma [6] we obtain:
(Gm ( -1 (US ) A F;(f(k+l)(Gm),Gm)

We used the fact that (=} (I'g* " (G™)) = I'Y*"V(G"). Because Lx(G") S b,
there exists K = O(|G"|) such that Lx(G") = L&K)(G“) as Theoremshows.
Hence K = O(|b|” - |G]) as well. We obtain the following:

Lx(G) c @Gy ek (—1 (US)mF}“K“)(Gﬂ,G“)ng(G“)

thus, Lx (G") = Lx (T (USg) n Fdf(K“)(G“) G"). Assume that S, = {I1,...

for some m > 0, and denote .~1(I;) by I;. We have that, for each derivation
X %} wof G7, [w] =g iff [y] =& [11, Lemma 2]. As a result, [Ps ] # &
df(k+1
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iff there exists i = 1,...,m and v € I} n ['S**9(G"), such that [y] # &. By
Theorem [3] each set I'; can be constructed in time:

1671°%) = (b - |G)OE) = (|b]? - |G])CIPIHIED = gO(bIMIGI-(og|bl+log|GD)

We have used the facts |G*| = O(|b]* - |G]) and K = O(|b]* - |G]).

By Lemma there exists a finite automaton AgﬁK“) that recognizes the
language I'y “ "7 (G"). Equivalently, we consider a grammar G****1_ such that
Ly, (GHFEHD) = [FERD(G), where X% is the ranked nonterminal corre-
sponding to the initial state of Az ("*" in Lemma Let Q = (G <+ X< [
be the program associated with G¥#¥*+1_If P was assumed to be an octagonal
program, then so is Q.

The problem REACHf, (Ps 4, b) is thus equivalent to the finite set of problems
REACH, (9, Z:l)7 for i = 1,...,m. The size of G¥E+D ig

|gdf(K+1)| _ |Gm|O(K) _ (‘b‘B . |G|)O(K) _ 20(|b|3-|G\-(log|b|+log\G|)) )

Hence the size of the input to each problem REACH,(Q, ﬁ) is 20(IbI*-|G]-(log [b|+log |GI))
Since Q is a procedure-less octagonal program, and each such problem can be
solved in NPTIME [7, Theorem 10], this provides a NEXPTIME decision procedure

for the problem REACHy, (Ps 4, b).

We are left with proving that the REACH, (P, b) problem is in Np, when
[P] = [P](k)7 for a constant k& > 0. To this end, we define a grammar Gy =
(2 x{0,0,...,k k}, X, A) such that Lx(G)*®) = Lx ;) (Gy) 22, Definition
3.1]. Using the fact that, for each production (Z,w) € A, there are at most two
nonterminals in w, we establish that |Gy| < 3k|G| + k(k + 1), hence |G| =
O(k? - |G)).

The corresponding program is Py, = (Gy, (I, k), [.]). By applying the reduction
above, we obtain a set of problems REACHfO(Qk,f 3), each of which of size
(Ib]* - |GLC®) = (1b]* - (k2 - |G]))°™®). Since k is constant, we can solve this
problem in NPTIME, using an NP procedure [7, Theorem 10]. Since the NP-hard
lower bound was proved above, the problem is NP-complete. O
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