
HAL Id: hal-01418886
https://hal.science/hal-01418886

Submitted on 17 Dec 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Public Domain

Interprocedural Reachability for Flat Integer Programs
Pierre Ganty, Radu Iosif

To cite this version:
Pierre Ganty, Radu Iosif. Interprocedural Reachability for Flat Integer Programs. 20th International
Symposia on Fundamentals of Computation Theory (FCT 2015), Aug 2015, Gdansk, Poland. pp.133-
145, �10.1007/978-3-319-22177-9_11�. �hal-01418886�

https://hal.science/hal-01418886
https://hal.archives-ouvertes.fr

Interprocedural Reachability for Flat Integer
Programs

Pierre Ganty1 and Radu Iosif2

1IMDEA Software Institute 2 CNRS/VERIMAG, Grenoble, France

Abstract. We study programs with integer data, procedure calls and
arbitrary call graphs. We show that, whenever the guards and updates
are given by octagonal relations, the reachability problem along control
flow paths within some language w˚1 . . . w

˚
d over program statements is

decidable in Nexptime. To achieve this upper bound, we combine a
program transformation into the same class of programs but without
procedures, with an Np-completeness result for the reachability problem
of procedure-less programs. Besides the program, the expression w˚1 . . . w

˚
d

is also mapped onto an expression of a similar form but this time over the
transformed program statements. Several arguments involving context-
free grammars and their generative process enable us to give tight bounds
on the size of the resulting expression. The currently existing gap between
Np-hard and Nexptime can be closed to Np-complete when a certain
parameter of the analysis is assumed to be constant.

1 Introduction

This paper studies the complexity of the reachability problem for a class of
programs featuring procedures and local/global variables ranging over integers.
In general, the reachability problem for this class is undecidable [24]. Thus, we
focus on a special case of the reachability problem which restricts both the class of
input programs and the set of executions considered. The class of input programs
is restricted by considering that all updates to the integer variables x are defined
by octagonal constraints, that are conjunctions of atoms of the form ˘x˘ y ď c,
with x, y P xYx1, where x1 denote the future values of the program variables. The
reachability problem is restricted by limiting the search to program executions
conforming to a regular expression of the form w˚1 . . . w

˚
d where the wi’s are finite

sequences of program statements.
We call this problem flat-octagonal reachability (fo-reachability, for short).

Concretely, given: (i) a program P with procedures and local/global variables,
whose statements are specified by octagonal constraints, and (ii) a bounded
expression b “ w˚1 . . . w

˚
d , where wi’s are sequences of statements of P, the fo-

reachability problem REACHfopP,bq asks: can P run to completion by executing
a sequence of program statements w P b ? Studying the complexity of this
problem provides the theoretical foundations for implementing efficient decision
procedures, of practical interest in areas of software verification, such as bug-
finding [10], or counterexample-guided abstraction refinement [15,14].

ar
X

iv
:1

40
5.

30
69

v3
 [

cs
.F

L
]

 1
1

Ju
n

20
15

Our starting point is the decidability of the fo-reachability problem in the
absence of procedures. Recently, the precise complexity of this problem was coined
to Np-complete [7]. However, this result leaves open the problem of dealing with
procedures and local variables, let alone when the graph of procedure calls has
cycles, such as in the example of Fig. 1 (a). Pinning down the complexity of the
fo-reachability problem in presence of (possibly recursive) procedures, with local
variables ranging over integers, is the challenge we address here.

The decision procedure we propose in this paper reduces REACHfopP,bq,
from a program P with arbitrary call graphs, to procedure-less programs as
follows:

1. we apply a source-to-source transformation returning a procedure-less pro-
gram Q, with statements also defined by octagonal relations, such that
REACHfopP,bq is equivalent to the unrestricted reachability problem for Q,
when no particular bounded expression is supplied.

2. we compute a bounded expression Γb over the statements of Q, such that
REACHfopP,bq is equivalent to REACHfopQ, Γbq.

The above reduction allows us to conclude that the fo-reachability problem
for programs with arbitrary call graphs is decidable and in Nexptime. Naturally,
the Np-hard lower bound [7] for the fo-reachability problem of procedure-less
programs holds in our setting as well. Despite our best efforts, we did not close
the complexity gap yet. However we pinned down a natural parameter, called
index, related to programs with arbitrary call graphs, such that, when setting
this parameter to a fixed constant (like 3 in 3-SAT), the complexity of the
resulting fo-reachability problem for programs with arbitrary call graphs becomes
Np-complete. Indeed, when the index is fixed, the aforementioned reduction
computing REACHfopQ, Γbq runs in polynomial time. Then the Np decision
procedure for the fo-reachability of procedure-less programs [7] shows the rest.

The index parameter is better understood in the context of formal languages.
The control flow of procedural programs is captured precisely by the language of
a context-free grammar. A k-index (k ą 0) underapproximation of this language
is obtained by filtering out the derivations containing a sentential form with
k` 1 occurrences of nonterminals. The key to our results is a toolbox of language
theoretic constructions of independent interest that enables to reason about the
structure of context-free derivations generating words into b “ w˚1 . . . w

˚
d , that is,

words of the form wi11 . . . widd for some integers i1, . . . , id ě 0.

To properly introduce the reader to our result, we briefly recall the important
features of our source-to-source transformation through an illustrative example.
We apply first our program transformation [11] to the program P shown in Fig.
1 (a). The call graph of this program consists of a single state P with a self-loop.
The output program Q given Fig. 1 (e), has no procedures and it can thus be
analyzed using any existing intra-procedural tool [6,4]. The relation between the
variables x and z of the input program can be inferred from the analysis of the
output program. For instance, the input-output relation of the program P is
defined by z1 “ 2x, which matches the precondition zO “ 2xI of the program
Q. Consequently, any assertion such as “there exists a value n ą 0 such that

2

xJ “ zK “ 0

x1 “ x

xJ “ xI ´ 1
zL “ zK
xL “ xI
havocpq

zO “ 0
xI “ 0

t2

t3

t1

X
x0y
1 X

x0y
3

X
x0y
3 X

x1y
3

p1

p3

X
x0y
3 X

x1y
1 X

x1y
3 ¨ ¨ ¨

p1

ε

X
x0y
3

p3

(c)

X
x0y
2

X
x0y
1 X

x0y
3X

x0y
3

ε

X3

X2

ε

X1

x “ 0

z1 “ 0

x1 “ x
z1 “ z ` 2

z1 “ Ppx ´ 1q
x1 “ x

X
x0y
3 X

x1y
2 X

x0y
3 X

x1y
1

zO “ zL ` 2
xO “ xL

p1 : X1 Ñ t1X2

p2 : X2 Ñ xt2 X1 t2y X3

p3 : X3 Ñ t3

p4 : X1 Ñ t4

X
x0y
1

(b)The program P(a)

int P(int x) {
int z;

1: assume(x ě 0);

2: if (x ą 0)

3: z := P(x-1);

4: z := z+2;

6: z := 0

7: return z; }

5: else

t4

p4

p1

X
x0y
1 X

x0y
2

p4 p3 p2

p4 p1

p2
p3

z0 “ zI ` 2
xI “ xO

x1I “ xJ
x1O “ xK

havocpxL,xJ ,xKq

(d) (e)The program Q

xI ą 0

havocpxI q

x1I “ xL

x ą 0

Fig. 1: xI “ txI , zIu (xO “ txO, zOu) are for the input (output) values of x and z,
respectively. xJ,K,L provide extra copies. havocpyq stands for

Ź

xPxI,O,J,K,Lzy
x1 “

x, and x1α “ xβ for
Ź

xPx x
1
α “ xβ .

Ppnq ă n” can be phrased as: “there exist values n ă m such that Qpn,mq reaches
its final state”. While the former can be encoded by a reachability problem on P ,
by adding an extra conditional statement, the latter is an equivalent reachability
problem for Q.

For the sake of clarity, we give several representations of the input program
P that we assume the reader is familiar with including the text of the program
in Fig. 1 (a) and the corresponding control flow graph in Fig. 1 (b).

In this paper, the formal model we use for programs is based on context-free
grammars. The grammar for P is given at Fig. 1 (c). The rôle of the grammar is
to define the set of interprocedurally valid paths in the control-flow graph of the
program P. Every edge in the control-flow graph matches one or two symbols
from the finite alphabet tt1, xt2, t2y, t3, t4u, where xt2 and t2y denote the call and
return, respectively. The set of nonterminals is tX1, X2, X3, X4u. Each edge in
the graph translates to a production rule in the grammar, labeled p1 to p4. For

instance, the call edge X2
t2
ÝÑ X3 becomes X2 Ñ xt2X1t2yX3. The language of the

grammar of Fig. 1 (c) (with axiom X1) is the set L “ tpt1xt2q
n

t4 pt2yt3q
n
| n P Nu

of interprocedurally valid paths in the control-flow graph. Observe that L is
included in the language of the regular expression b “ pt1xt2q

˚
t4
˚ pt2yt3q

˚
.

Our program transformation is based on the observation that the semantics
of P can be precisely defined on the set of derivations of the associated grammar.
In principle, one can always represent this set of derivations as a possibly infinite
automaton (Fig. 1 (d)), whose states are sequences of nonterminals annotated

3

with priorities (called ranks)1, and whose transitions are labeled with production

rules. Each finite path in this automaton, starting from X
x0y
1 , defines a valid

prefix of a derivation. Since L Ď b, Luker [20] shows that it is sufficient to keep
a finite sub-automaton, enclosed with a dashed box in Fig. 1 (d), in which each
state consists of a finite number of ranked nonterminals (in our case at most 2).

Finally, we label the edges of this finite automaton with octagonal constraints
that capture the semantics of the relations labeling the control-flow graph from
Fig. 1 (b). We give here a brief explanation for the labeling of the finite au-
tomaton in Fig. 1 (e), in other words, the output program Q (see [11] for more
details). The idea is to compute, for each production rule pi, a relation ρipxI ,xOq,
based on the constraints associated with the symbols occurring in pi (labels

from Fig. 1 (b)). For instance, in the transition X
x0y
2

p2
ÝÑ X

x0y
1 X

x0y
3 , the aux-

iliary variables store intermediate results of the computation of p2 as follows:
rxI s xt2 rxJ s X1 rxKs t2y rxLs X3 rxOs. The guard of the transition can be
understood by noticing that xt2 gives rise to the constraint xJ “ xI ´ 1, t2y to
zL “ zK , xI “ xL corresponds to the frame condition of the call, and havocpq
copies all current values of xI,J,K,L,O to the future ones. It is worth pointing out
that the constraints labeling the transitions of the program Q are necessarily
octagonal if the statements of P are defined by octagonal constraints.

An intra-procedural analysis of the program Q in Fig. 1 (e) infers the pre-
condition xI ě 0 ^ zO “ 2xI which coincides with the input/output relation
of the recursive program P in Fig. 1 (a), i.e. x ě 0 ^ z1 “ 2x. The original
query Dn ą 0: Ppnq ă n translates thus into the satisfiability of the formula
xI ą 0^ zO “ 2xI ^ xI ă zO, which is clearly false.

The paper is organised as follows: basic definitions are given Section 2,
Section 3 defines the fo-reachability problem, Section 4 presents an alternative
program semantics based on derivations and introduces subsets of derivations
which are sufficient to decide reachability, Section 5 starts with on overview of
our decision procedure and our main complexity results and continues with the
key steps of our algorithms. The appendix contains all the missing details.

2 Preliminaries

Let Σ be a finite nonempty set of symbols, called an alphabet. We denote by Σ˚

the set of finite words over Σ which includes ε, the empty word. The concatenation
of two words u, v P Σ˚ is denoted by u ¨ v or u v. Given a word w P Σ˚, let
|w| denote its length and let pwqi with 1 ď i ď |w| be the ith symbol of w.
Given w P Σ˚ and Θ Ď Σ, we write wÓΘ for the word obtained by deleting
from w all symbols not in Θ, and sometimes we write wÓa for wÓtau. A bounded
expression b over alphabet Σ is a regular expression of the form w˚1 . . . w

˚
d , where

w1, . . . , wd P Σ
˚ are nonempty words and its size is given by |b| “

řd
i“1 |wi|.

We use b to denote both the bounded expression and its language. We call a
language L bounded when L Ď b for some bounded expression b.

1 The precise definition and use of ranks will be explained in Section 4.

4

A grammar is a tuple G “ xΞ,Σ,∆y where Ξ is a finite nonempty set
of nonterminals, Σ is an alphabet of terminals, such that Ξ X Σ “ H, and
∆ Ď Ξ ˆ pΣ Y Ξq˚ is a finite set of productions. For a production pX,wq P ∆,
often conveniently noted X Ñ w, we define its size as |pX,wq| “ |w| ` 1, and
|G| “

ř

pP∆ |p| defines the size of G.
Given two words u, v P pΣ Y Ξq˚, a production pX,wq P ∆ and a po-

sition 1 ď j ď |u|, we define a step u
pX,wq{j

ùùùùñG v if and only if puqj “ X
and v “ puq1 ¨ ¨ ¨ puqj´1 w puqj`1 ¨ ¨ ¨ puq|u|. We omit pX,wq or j above the ar-
row when clear from the context. A control word is a finite word γ P ∆˚

over the alphabet of productions. A step sequence u
γ

ùñG v is a sequence

u “ w0
pγq1
ùùñG w1 . . . wn´1

pγqn
ùùñG wn “ v where n “ |γ|. If u P Ξ is a non-

terminal and v P Σ˚ is a word without nonterminals, we call the step sequence
u

γ

ùñG v a derivation. When the control word γ is not important, we write uñ˚
G v

instead of u
γ

ùñG v, and we chose to omit the grammar G when clear from the
context.

Given a nonterminal X P Ξ and Y P Ξ Y tεu, i.e. Y is either a nonterminal
or the empty word, we define the set LX,Y pGq “ tu v P Σ

˚ | X ñ˚ uY vu. The
set LX,εpGq is called the language of G produced by X, and is denoted LXpGq in
the following. For a set Γ Ď ∆˚ of control words (also called a control set), we

denote by L̂X,Y pΓ,Gq “ tu v P Σ
˚ | Dγ P Γ : X

γ
ùñ uY vu the language generated

by G using only control words from Γ . We also write L̂XpΓ,Gq for L̂X,εpΓ,Gq.
Let x denote a nonempty finite set of integer variables, and x1 “ tx1 | x P xu.

A valuation of x is a function ν : x ÝÑ Z. The set of all such valuations is denoted
by Zx. A formula φpx,x1q is evaluated with respect to two valuations ν, ν1 P Zx, by
replacing each occurrence of x P x with νpxq and each occurrence of x1 P x1 with
ν1pxq. We write pν, ν1q |ù φ when the formula obtained from these replacements
is valid. A formula φRpx,x

1q defines a relation R Ď Zx ˆ Zx whenever for all
ν, ν1 P Zx, we have pν, ν1q P R iff pν, ν1q |ù φR. The composition of two relations
R1, R2 Ď Zx ˆ Zx defined by formulae ϕ1px,x

1q and ϕ2px,x
1q, respectively, is

the relation R1 ˝R2 Ď Zx ˆZx, defined by Dy . ϕ1px,yq ^ ϕ2py,x
1q. For a finite

set S, we denote its cardinality by ||S||.

3 Interprocedural Flat Octogonal Reachability

In this section we define formally the class of programs and reachability problems
considered. An octagonal relation R Ď Zx ˆ Zx is a relation defined by a finite
conjunction of constraints of the form ˘x ˘ y ď c, where x, y P x Y x1 and
c P Z. The set of octagonal relations over the variables in x and x1 is denoted
as Octpx,x1q. The size of an octagonal relation R, denoted |R| is the size of the
binary encoding of the smallest octagonal constraint defining R.

An octagonal program is a tuple P “ xG, I, rr.ssy, where G is a grammar G “
xΞ,Σ,∆y, I P Ξ is an initial location, and rr.ss : LIpGq Ñ Octpx,x1q is a mapping
of the words produced by the grammar G, starting with the initial location I, to
octagonal relations. The alphabet Σ contains a symbol t for each internal program

5

statement (that is not a call to a procedure) and two symbols xt, ty for each call
statement t. The grammar G has three kinds of productions: (i) pX, tq if t is a
statement leading from X to a return location, (ii) pX, t Y q if t leads from X to Y ,
and (iii) pX, xt Y tyZq if t is a call statement, Y is the initial location of the callee,
and Z is the continuation of the call. Through several program transformations,
we may generate another grammar with other kinds of productions. The only
property we need for our results is that every grammar G with we deal with has
each of its productions pX,wq satisfying: |wÓΣ | ď 2 and |wÓΞ | ď 2 where Σ and
Ξ are the terminals and nonterminals of G, respectively. Each edge t that is not
a call has an associated octagonal relation ρt P Octpx,x1q and each matching pair
xt, ty has an associated frame condition φt P Octpx,x1q, which equates the values
of the local variables, that are not updated by the call, to their future values.
The size of an octagonal program P “ xG, I, rr.ssy, with G “ xΞ,Σ,∆y, is the
sum of the sizes of all octagonal relations labeling the productions of G, formally
|P| “

ř

pX, tqP∆ |ρt| `
ř

pX, tY qP∆ |ρt| `
ř

pX, xt Y tyZqP∆p|ρxt| ` |ρty| ` |φt|q.

For example, the program in Fig. 1 (a,b) is represented by the grammar in Fig.
1 (c). The terminals are mapped to octagonal relations as: ρt1 ” x ą 0^ x1 “ x,
ρxt2 ” x1 “ x´1, ρt2y ” z1 “ z, ρt3 ” x1 “ x^z1 “ z`2 and ρt4 ” x “ 0^z1 “ 0.
The frame condition is φt2 ” x1 “ x, as only z is updated by the call z1 “ Ppx´1q.

Word-based semantics. For each word w P LIpGq, each occurrence of a ter-
minal xt in w is matched by an occurrence of ty, and the matching positions
are nested2. The semantics of the word rrwss is an octagonal relation defined
inductively3 on the structure of w: (i) rrtss “ ρt, (ii) rrt ¨ vss “ ρt ˝ rrvss, and
(iii) rrxt ¨ u ¨ ty ¨ vss “

``

ρxt ˝ rruss ˝ ρty
˘

X φt
˘

˝ rrvss, for all t, xt, ty P Σ such that xt and
ty match. For instance, the semantics of the word w “ t1xt2t4t2yt3 P LX1

pGq, for
the grammar G given in Fig. 1 (c), is rrwss ” x “ 1 ^ z1 “ 2. Observe that this
word defines the effect of an execution of the program in Fig. 1 (a) where the
function P is called twice—the first call is a top-level call, and the second is a
recursive call (line 3).

Reachability problem. The semantics of a program P “ xG, I, rr.ssy is defined
as rrPss “

Ť

wPLIpGq
rrwss. Consider, in addition, a bounded expression b, we define

rrPssb “
Ť

wPLIpGqXb rrwss. The problem asking whether rrPssb ‰ H for a pair P,b is

called the flat-octagonal reachability problem. We use REACHfopP,bq to denote
a particular instance.

4 Index-bounded depth-first derivations

In this section, we give an alternate but equivalent program semantics based
on derivations. Although simple, the word semantics is defined using a nesting
relation that pairs the positions of a word labeled with matching symbols xt and
ty. In contrast, the derivation-based semantics just needs the control word.

2 A relation Ď t1, . . . , |w|u ˆ t1, . . . , |w|u is said to be nested [2] when no two pairs
i j and i1 j1 cross each other, as in i ă i1 ď j ă j1.

3 Octagonal relations are closed under intersections and compositions [23].

6

To define our derivation based semantics, we first define structured subsets
of derivations namely the depth-first and bounded-index derivations. The rea-
son is two-fold: (a) the correctness proof of our program transformation [11]
returning the procedure-less program Q depends on bounded-index depth-first
derivations, and (b) in the reduction of the REACHfopP,bq problem to that of
REACHfopQ, Γbq, the computation of Γb depends on the fact that the control
structure of Q stems from a finite automaton recognizing bounded-index depth-
first derivations. Key results for our decision procedure are those of Luker [20,21]
who, intuitively, shows that if LXpGq Ď b then it is sufficient to consider depth-
first derivations in which no step contains more than k simultaneous occurrences
of nonterminals, for some k ą 0 (Theorem 1).

Depth-first derivations. It is well-known that a derivation can be associated
a unique parse tree. A derivation is said to be depth-first if it corresponds to a
depth-first traversal of the corresponding parse tree. More precisely, given a step

sequence w0
pX0,v0q{j0
ùùùùùùñ w1 . . . wn´1

pXn´1,vn´1q{jn´1

ùùùùùùùùùùùñ wn, and two integers m and
i such that 0 ď m ă n and 1 ď i ď |wm| define fmpiq to be the index ` of the
first word w` of the step sequence in which the particular occurrence of pwmqi
appears. A step sequence is depth-first [21] iff for all m, 0 ď m ă n:

fmpjmq “ maxtfmpiq | 1 ď i ď |wm| and pwmqi P Ξu .

For example, X
pX,Y Y q{1

ùùùùùñ Y Y
pY,Zq{2

ùùùùñ Y Z
pZ,aq{2

ùùùùñ Y a is depth-first, whereas

X
pX,Y Y q{1

ùùùùùñ Y Y
pY,Zq{2

ùùùùñ Y Z
pY,Zq{1

ùùùùñ ZZ is not. We have f2p1q “ 1 because
pw2q1 “ Y first appeared at w1, f2p2q “ 2 because pw2q2 “ Z first appeared at

w2, j2 “ 1 and f2p2q ę f2pj2q since 2 ę 1. We denote by u
γ

ùñ
df
w a depth-first

step sequence and call it depth-first derivation when u P Ξ and w P Σ˚.

Depth-first derivation-based semantics. In previous work [11], we defined
the semantics of a procedural program based on the control word of the derivation
instead of the produced words. We briefly recall this definition here. Given a
depth-first derivation X

γ

ùñ
df
w, the relation rrγss Ď Zx ˆ Zx is defined inductively

on γ as follows: (i) rrpX, tqss “ ρt, (ii) rrpX, t Y q ¨γ1ss “ ρt ˝ rrγ
1ss where Y

γ1

ùñ
df
w1, and

(iii) rrpX, xt Y tyZq ¨γ1 ¨γ2ss “ rrpX, xt Y tyZq ¨γ2 ¨γ1ss “
``

ρxt ˝ rrγ
1ss ˝ ρty

˘

X φt
˘

˝ rrγ2ss

where Y
γ1

ùñ
df
w1 and Z

γ2

ùñ
df
w2. We showed [11, Lemma 2] that, whenever X

γ

ùñ
df
w,

we have rrwss ‰ H iff rrγss ‰ H.

Index-bounded derivations. A step u ñ v is said to be k-index (k ą 0) iff
neither u nor v contains k ` 1 occurrences of nonterminals, i.e. |uÓΞ | ď k and

|vÓΞ | ď k. We denote by u
γ

ùñ
pkq

v a k-index step sequence and by u
γ

ùùñ
dfpkq

v a step

sequence which is both depth-first and k-index. For X P Ξ, Y P ΞYtεu and k ą 0,

we define the k-index language L
pkq
X,Y pGq “ tu v P Σ

˚ | Dγ P ∆˚ : X
γ

ùñ
pkq

uY vu,

the k-index depth-first control set Γ dfpkq

X,Y pGq “ tγ P ∆
˚ | Du, v P Σ˚ : X

γ

ùùñ
dfpkq

uY vu. We write L
pkq
X pGq and Γ dfpkq

X pGq when Y “ ε, and dropG from the previous
notations, when the grammar is clear from the context. For instance, for the

7

grammar in Fig. 1 (c), we have L
p2q
X1
pGq “ tpt1xt2q

n
t4 pt2yt3q

n
| n P Nu “ LX1pGq

and Γ dfp2q

X1
“ pp1p2p3q

˚
pp4 Y p1p2p4p3q.

Theorem 1 (Lemma 2 [21], Theorem 1 [20]). Given a grammar G “

xΞ,Σ,∆y and X P Ξ:
– for all w P Σ˚, X ùñ

pkq

˚ w if and only if X ùùñ
dfpkq

˚ w;

– if LXpGq Ď b for a bounded expression b over Σ then LXpGq “ L
pKq
X pGq

where K “ Op|G|q.

The introduction of the notion of index naturally calls for an index de-
pendent semantics and an index dependent reachability problem. As we will
see later, we have tight complexity results when it comes to the index depen-

dent reachability problem. Given k ą 0, let rrPsspkq “
Ť

wPL
pkq
I pGq

rrwss and let

rrPsspkqb “
Ť

wPL
pkq
I pGqXb

rrwss. Thus we define, for a constant k not part of the input,

the problem REACH
pkq
fo pP,bq, which asks whether rrPsspkqb ‰ H.

Finite representations of bounded-index depth-first control sets. It is
known that the set of k-index depth-first derivations of a grammar G is recogniz-
able by a finite automaton [21, Lemma 5]. Below we give a formal definition of
this automaton, that will be used to produce bounded control sets for covering
the language of G. Moreover, we provide an upper bound on its size, which will
be used to prove an upper bound for the time to compute this set (Section 5).

Given k ą 0 and a grammar G “ xΞ,Σ,∆y, we define a labeled graph Adfpkq

G

such that its paths defines the set of k-index depth-first step sequences of G. To
define the vertices and edges of this graph, we introduce the notion of ranked
words, where the rank plays the same rôle as the value fmpiq defined previously.
The advantage of ranks is that only k of them are needed for k-index depth-first
derivations whereas the set of fmpiq values grows with the length of derivations.
Since we restrict ourselves to k-index depth-first derivations, we thus only need
k ranks, from 0 to k ´ 1. The rank based definition of depth-first derivations can
be found in Appendix B.1.

For a d-dimensional vector v P Nd, we write pvqi for its ith element (1 ď i ď d).
A vector v P Nd is said to be contiguous if tpvq1, . . . , pvqdu “ t0, . . . , ku, for some
k ě 0. Given an alphabet Σ define the ranked alphabet ΣN to be the set
tσxiy | σ P Σ, i P Nu. A ranked word is a word over a ranked alphabet. Given a
word w of length n and an n-dimensional vector α P Nn, the ranked word wα is

the sequence pwq1
xpαq1y . . . pwqn

xpαqny, in which the ith element of α annotates

the ith symbol of w. We also denote wxxcyy “ pwq1
xcy
. . . pwq|w|

xcy
as a shorthand.

Let Adfpkq

G “ xQ,∆,Ñy be the following labeled graph, where:

Q “ twα | w P Ξ˚, |w| ď k,α P N|w| is contiguous, pαq1 ď ¨ ¨ ¨ ď pαq|w|u

is the set of vertices, the edges are labeled by the set ∆ of productions of G, and
the edge relation is defined next. For all vertices q, q1 P Q and labels pX,wq P ∆,

we have q
pX,wq
ÝÝÝÝÑ q1 if and only if

– q “ uXxiy v for some u, v, where i is the maximum rank in q, and

8

– q1 “ u v pwÓΞq
xxi1yy, where |u v pwÓΞq

xxi1yy| ď k and i1 “

$

’

&

’

%

0 if u v “ ε

i else if pu vqÓΞxiy “ ε

i` 1 else

We denote by |Adfpkq

G | “ ||Q|| the size (number of vertices) of Adfpkq

G . In the
following, we omit the subscript G from Adfpkq

G , when the grammar is clear from
the context. For example, the graph Adfp2q for the grammar from Fig. 1 (c), is
the subgraph of Fig. 1 (d) enclosed in a dashed line.

Lemma 1. Given G “ xΞ,Σ,∆y, and k ą 0, for each X P Ξ, Y P Ξ Y tεu and
γ P ∆˚, we have γ P Γ dfpkq

X,Y pGq if and only if Xx0y
γ
ÝÑ Y x0y is a path in Adfpkq

G .

Moreover, we have |Adfpkq

G | “ |G|
Opkq

.

5 A Decision Procedure for REACHfopP, bq

In this section we describe a decision procedure for the problem REACHfopP,bq
where P “ xG, I, rr.ssy is an octagonal program, whose underlying grammar is
G “ xΞ,Σ,∆y, and b “ w˚1 . . . w

˚
d is a bounded expression over Σ. The procedure

follows the roadmap described next.
First, we compute, in time polynomial in the sizes of P and b, a set of

programs tPi “ xGX, Xi, rr.ssyu
`
i“1, such that LIpGq X b “

Ť`
i“1 LXipG

Xq, which

implies rrPssb “
Ť`
i“1 rrPiss. The grammar GX is an automata-theoretic product

between the grammar G and the bounded expression b. For space reasons, the
formal definition of GX is deferred to Appendix A, and we refer the reader to
Example 1. Deciding REACHfopP,bq reduces thus to deciding several instances

tREACHfopPi,bqu`i“1 of the fo-reachability problem.

Example 1. Let us consider the bounded expression b “ pacq˚ pabq˚ pdbq˚. Con-

sider the grammar Gb with the following productions: q
p1q
1 Ñ aq

p1q
2 | ε, q

p2q
1 Ñ

aq
p2q
2 | ε, q

p3q
1 Ñ dq

p3q
2 | ε, q

p1q
2 Ñ cq

p1q
1 | cq

p2q
1 | cq

p3q
1 , q

p2q
2 Ñ bq

p2q
1 |

bq
p3q
1 , q

p3q
2 Ñ bq

p3q
1 . It is easy to check that b “

Ť3
i“1 Lq

piq
1
pGbq. Let G “

xtX,Y, Z, T u, ta, b, c, du, ∆y where∆ “ tX Ñ aY, Y Ñ Zb, Z Ñ cT, Z Ñ ε, T Ñ Xdu,
i.e. we have LXpGq “ tpacq

n ab pdbqn | n P Nu. The following productions define
a grammar GX:

rq
pjq
1 Xq

p3q
1 s

p1
Ñ a rq

pjq
2 Y q

p3q
1 s rq

p1q
2 Y q

p3q
1 s

p2
Ñ rq

p1q
2 Zq

p3q
2 s b

rq
p1q
2 Zq

p3q
2 s

p3
Ñ c rq

pjq
1 Tq

p3q
2 s rq

p2q
2 Zq

p2q
2 s

p4
Ñ ε

rq
pjq
1 Tq

p3q
2 s

p5
Ñ rq

pjq
1 Xq

p3q
1 s d , for j “ 1, 2 rq

p2q
1 Xq

p3q
1 s

p6
Ñ a rq

p2q
2 Y q

p3q
1 s

rq
p2q
2 Y q

p3q
1 s

p7
Ñ rq

p2q
2 Zq

p2q
2 s b

One can check LXpGq “ LXpGq X b “ L
rq
p1q
1 Xq

p3q
1 s
pGXq Y L

rq
p2q
1 Xq

p3q
1 s
pGXq. �

A bounded expression b “ w˚1 . . . w
˚
d over alphabet Σ is said to be d-letter-

bounded (or simply letter-bounded, when d is not important) when |wi| “ 1, for

all i “ 1, . . . , d. A letter-bounded expression rb is strict if all its symbols are

9

distinct. A language L Ď Σ˚ is (strict, letter-) bounded iff L Ď b, for some
(strict, letter-) bounded expression b.

Second, we reduce the problem from b “ w˚1 . . . w
˚
d to the strict letter-bounded

case rb “ a˚1 . . . a
˚
d , by building a grammar G’, with the same nonterminals as

GX, such that, for each i “ 1, . . . , ` (i) LXipG
’q Ď rb, (ii) wi11 . . . widd P L

pkq
Xi
pGXq

iff ai11 . . . aidd P L
pkq
Xi
pG’q, for all k ą 0 (iii) from each control set Γ that covers the

language L
pkq
Xi
pG’q Ď L̂XipΓ,G

’q for some k ą 0, one can compute, in polynomial

time, a control set rΓ that covers the language L
pkq
Xi
pGXq Ď L̂Xip

rΓ ,GXq.

Example 2 (contd. from Example 1). Let A “ ta1, a2, a3u, rb “ a˚1a
˚
2a
˚
3 and

h : AÑ Σ˚ be the homomorphism given by hpa1q “ ac, hpa2q “ ab and hpa3q “

db. The grammar G’ results from deleting a’s and d’s in GX and replacing b in p2

by a3, b in p7 by a2 and c by a1. Then, it is easy to check that h´1pLXpGqqX rb “
L
rq
p1q
1 Xq

p3q
1 s
pG’q Y L

rq
p2q
1 Xq

p3q
1 s
pG’q “ tan1 a2 a

n
3 | n P Nu. �

Third, for the strict letter-bounded grammar G’, we compute a control set
Γ Ď p∆’q˚ using the result of Theorem 3, which yields a set of bounded expres-

sions S
rb “ tΓi,1, . . . , Γi,miu, such that L

pkq
Xi
pG’q Ď

Ťmi
j“1 L̂XipΓi,jXΓ

dfpk`1q

Xi
, G’q.

By applying the aforementioned transformation (iii) from Γ to rΓ , we obtain

that L
pkq
Xi
pGXq Ď

Ťmi
j“1 L̂Xip

rΓi,j X Γ
dfpk`1q

Xi
, GXq. Theorem 1 allows to effectively

compute value K ą 0 such that LXipG
Xq “ L

pKq
Xi
pGXq, for all i “ 1, . . . , `. Thus

we obtain4 LXipG
Xq “

Ťmi
j“1 L̂Xip

rΓi,j X Γ
dfpK`1q

Xi
, GXq, for all i “ 1, . . . , `.

The final step consists in building a finite automaton AdfpK`1q that recognizes
the control set Γ dfpK`1q

Xi
(Lemma 1). This yields a procedure-less program Q,

whose control structure is given by AdfpK`1q, and whose labels are given by the
semantics of control words. We recall that, for every word w P LXipG

Xq there
exists a control word γ P Γ dfpK`1q

Xi
such that rrwss ‰ H iff rrγss ‰ H. We have

thus reduced each of the instances tREACHfopPi,bqu`i“1 of the fo-reachability

problem to a set of instances tREACHfopQ, rΓi,jq | 1 ď i ď `, 1 ď j ď miu. The
latter problem, for procedure-less programs, is decidable in Nptime [7]. Next is
our main result whose proof is in Appendix B.6.

Theorem 2. Let P “ xG, I, rr.ssy be an octagonal program, where G “ xΞ,Σ,∆y
is a grammar, and b is a bounded expression over Σ. Then the problem REACHfopP,bq
is decidable in Nexptime, with a Np-hard lower bound. If, moreover, k is a

constant, REACH
pkq
fo pP,bq is Np-complete.

The rest of this section describes the construction of the control sets S
rb and

gives upper bounds on the time needed for this computation. We use the following
ingredients: (i) Algorithm 1 for building bounded control sets for s-letter bounded
languages, where s ě 0 is a constant (in our case, at most 2) (Section 5.1), and
(ii) a decomposition of k-index depth-first derivations, that distinguishes between

4 Because LXipG
X
q Ď L

pKq
Xi
pGXq Ď

Ťmi
j“1 L̂Xip

rΓi,j X Γ
dfpk`1q

Xi
, GXq Ď LXipG

X
q .

10

a prefix producing a word from the 2-letter bounded expression a˚1a
˚
d , and a

suffix producing two words included in bounded expressions strictly smaller
than rb (Section 5.2). The decomposition enables the generalization from s-
letter bounded languages where s is a constant to arbitrary letter bounded
languages. In particular, the required set of bounded expressions S

rb is built
inductively over the structure of this decomposition, applying at each step
Algorithm 1 which computes bounded control sets for 2-letter bounded languages.
The main algorithm (Algorithm 2) returns a finite set S

rb of bounded expressions
tΓ1, . . . , Γmu. Below we abuse notation and write

Ť

S
rb for

Ťm
i“1 Γi. The time

needed to build each bounded expression Γi P Srb is |G|
Opkq

and does not depend

of |rb| “ d, whereas the time needed to build the entire set S
rb is |G|

Opkq`d
.

These arguments come in handy when deriving an upper bound on the (non-
deterministic) time complexity of the fo-reachability problem for programs with
arbitrary call graphs. A non-deterministic version of Algorithm 2 that choses one
set Γi P Srb, instead of building the whole set S

rb, is used to establish the upper

bounds for the REACHfopP,bq and REACH
pkq
fo pP,bq problems in the proof of

Theorem 2.

5.1 Constant s-Letter Bounded Languages

Here we define an algorithm for building bounded control sets that are sufficient
for covering a s-letter bounded language LXpGq Ď a˚1 . . . a

˚
s , when s ě 0 is a

constant5, i.e. not part of the input of the algorithm. In the following, we consider
the labeled graph Adfpkq “ xQ,∆,Ñy, whose paths correspond to the k-index
depth-first step sequences of G (Lemma 1). Recall that the number of vertices in

this graph is |Adfpkq| ď |G|
2k

.
Given q, q1 P Q, we denote by Πpq, q1q the set of paths with source q and

destination q1. For a path π, we denote by ωpπq P ∆˚ the sequence of edge labels
on π. A path π is a cycle if its endpoints coincide. Furthermore, the path is
said to be an elementary cycle if it contains no other cycle than itself. Finally,
π is acyclic if it contains no cycle. The word induced by a path in Adfpkq is the
sequence of terminal symbols generated by the productions fired along that path.
Observe that, since LXpGq Ď a˚1 . . . a

˚
s , any word induced by a subpath of some

path π P ΠpXx0y, εq is necessarily of the form ai11 . . . aiss , for some i1, . . . , is ě 0.
Algorithm 1 describes the effective construction of a bounded expression Γ

over the productions of G using the sets of elementary cycles of Adfpkq. The crux
is to find, for each vertex q of Adfpkq, a subset Cq of elementary cycles having q
at the endpoints, such that the set of words induced by Cq is that of the entire
set of elementary cycles having q at endpoints. Since the only vertex occurring
more than once in an elementary cycle ρ is the endpoint q, we have that |ρ| is
at most the number of vertices |Adfpkq|, and each production rule generates at
most 2 terminal symbols, hence no word induced by a elementary cycle is longer
than 2|Adfpkq| ď 2|G|

2k
. The number of words ai11 . . . aiss induced by elementary

5 In our case s “ 0, 1, 2, but the construction can be generalized to any constant s ě 0.

11

cycles with endpoints q is thus bounded by the number of nonnegative solutions

of the inequality x1 ` ¨ ¨ ¨ ` xs ď 2|G|
2k

, which, in turn, is of the order of |G|
Opkq

.

So for each vector v P Ns such that pvq1 ` ¨ ¨ ¨ ` pvqs ď 2|G|
2k

, it suffices to

include in Cq only one elementary cycle inducing the word a
pvq1
1 . . . a

pvqs
s . Thus it

is sufficient to consider sets Cq of cardinality ||Cq|| “ |G|
Opkq

, for all q P Q.
Lines (2–5) of Algorithm 1 build a graph H with vertices xq, ai11 . . . aiss y, where

q P Q is a vertex of Adfpkq and i1, . . . , is a solution to the above inequality
(line 2), hence H is a finite and computable graph. There is an edge between
two vertices xq, ai11 . . . aiss y and xq1, aj11 . . . ajss y in H if and only if q

p
ÝÑ q1 in Adfpkq

and aj`` “ ai`` ¨ ppÓa`q for every `, that is j` is the sum of i` and the number
of occurrences of a` produced by p (which is precisely captured by the word
pÓa`) (line 4). The sets Cq are computed by applying the Dijkstra’s single source
shortest path algorithm6 to the graph H (line 7) and retrieving in Cq the paths

xq, εy Ñ˚ xq, ai11 . . . aiss y, such that i1 ` ¨ ¨ ¨ ` is ď 2|G|
2k

(line 9).
For a finite set of words S “ tu1, . . . , uhu, the function ConcatpSq returns

the bounded expression u˚1 . . . u
˚
h. Algorithm 1 uses this function to build a

bounded expression Γ that covers all words induced by paths from ΠpXx0y, εq.
This construction relies on the following argument: for each π P ΠpXx0y, εq, there
exists another path π1 P ΠpXx0y, εq, such that their induced words coincide, and,
moreover, π1 can be factorizedas ς1 ¨ θ1 ¨ ¨ ¨ ς` ¨ θ` ¨ ς``1, where ς1 P ΠpX

x0y, q1q,
ς``1 P Πpq`, εq and ςj P Πpqj´1, qjq for each 1 ă j ď ` are acyclic paths,
θ1, . . . , θ` are elementary cycles with endpoints q1, . . . , q`, respectively, and ` ď
|Adfpkq|. Thus we can cover each segment ςi by a bounded expression C “

Concatp∆q|G|
2k
´1 (line 13), and each segment θj by the bounded expression

B0 “ Concatp

ωpπq | π P Cqj
(

q (line 10), yielding the required expression Γ .
The following lemma proves the correctness of Algorithm 1 and gives an upper
bound on its runtime.

Lemma 2. Let G “ xΞ,A, ∆y be a grammar and a˚1 . . . a
˚
s is a strict s-letter-

bounded expression over A, where s ě 0 is a constant. Then, for each k ą 0 there
exists a bounded expression Γ over ∆ such that, for all X P Ξ and Y P Ξ Y tεu,

we have L
pkq
X,Y pGq “ L̂X,Y pΓ X Γ dfpkq

X,Y , Gq, provided that LX,Y pGq Ď a˚1 . . . a
˚
s .

Moreover, Γ is computable in time |G|
Opkq

.

5.2 The General Case

The key to the general case is a lemma decomposing derivations.
Decomposition Lemma. Our construction of a bounded control set that covers
a strict letter-bounded context-free language LXpGq Ď a˚1 . . . a

˚
d is by induction

on d ě 1, and is inspired by a decomposition of the derivations in G, given by
Ginsburg [12, Chapter 5.3, Lemma 5.3.3]. Because his decomposition is oblivious
to the index or the depth-first policy, it is too weak for our needs. Therefore, we
give first a stronger decomposition result for k-index depth-first derivations.

6 We consider all edges to be of weight 1.

12

Algorithm 1 Control Sets for the Case of Constant Size Bounded Expressions
input A grammar G “ xΞ,A, ∆y,

a strict s-letter-bounded expression a˚1 . . . a
˚
s over A, where s ě 0 is a fixed constant,

and k ą 0
output a bounded expression Γ over ∆ such that L

pkq
X,Y pGq “ L̂X,Y pΓ XΓ

dfpkq
X,Y , Gq for all X P Ξ

and Y P Ξ Y tεu, such that LX,Y pGq Ď a˚1 . . . a
˚
s

1: function ConstantBoundedControlSet(G, a˚1 . . . a
˚
s , k)

2: Val Ð ta
k1
1 ¨ ¨ ¨ akss |

řs
j“1 kj ď 2|G|2ku

3: V Ð Qˆ Val Ź Q are the vertices of Adfpkq, considering ||Q|| ď |G|2k suffices

4: δ Ð txq, a
i1
1 . . . aiss y

p
ÝÑ xq1, a

j1
1 . . . ajss y | q

p
ÝÑ q1 in Adfpkq, @` P t1, . . . , su. a

j`
` “a

i`
` ¨

`

pÓa`

˘

u

5: HÐ xV,∆, δy
6: B0 Ð ε
7: DijkstraShortestPathspHq
8: for q P Q do
9: Cq Ð

Ť

wPVal GetShortestPathpH, xq, εy, xq, wyq
10: B0 Ð B0 ¨ Concatptωpπq | π P Cquq

11: C Ð ε
12: for i “ 1 . . . |G|2k ´ 1 do
13: C Ð C ¨ Concatp∆q

14: Γ Ð ε
15: for i “ 1 . . . |G|2k do
16: Γ Ð Γ ¨ C ¨ B0

17: Γ Ð Γ ¨ C ¨ B0 ¨ C
18: return Γ

Without loss of generality, the decomposition lemma assumes the bounded
expression covering LXpGq to be minimal : a strict letter-bounded expression rb is

minimal for a language L iff L Ď rb and for every subexpression b1, resulting from
deleting some a˚i from rb, we have L Ę b1. Clearly, each strict letter-bounded
language has a unique minimal expression.

Basically, for every k-index depth-first derivation with control word γ, its pro-
ductions can be rearranged into a pk ` 1q-index depth-first derivation, consisting
of a prefix γ7 producing a word in a˚1 a

˚
d , then a production pXi, wq followed by

two control words γ1 and γ2 that produce words contained within two bounded
expressions a˚` . . . a

˚
m and a˚m . . . a

˚
r , respectively, where maxpm´`, r´mq ă d´1

(Lemma 3). Let us first define the partition pΞ
y1..d, Ξ}1..dq of Ξ, as follows:

Y P Ξ
y1..d ô LY pGq X pa1 ¨A˚q ‰ H and LY pGq X pA˚ ¨ adq ‰ H .

Naturally, define Ξ
}1..d “ ΞzΞ

y1..d. Since the bounded expression a˚1 . . . a
˚
d is, by

assumption, minimal for LXpGq, then a1 occurs in some word of LXpGq and
ad occurs in some word of LXpGq. Thus it is always the case that Ξ

y1..d ‰ H,
since X P Ξ

y1..d. The partition of nonterminals into Ξ
y1..d and Ξ

}1..d induces a
decomposition of the grammar G. First, let G7 “ xΞ,A, ∆7y, where:

∆7 “ tpXj , wq P ∆ | Xj P Ξ
}1..du Y tpXj , uXr vq P ∆ | Xj , Xr P Ξ

y1..du .

Then, for each production pXi, wq P ∆ such that Xi P Ξ
y1..d and w P pΞ

}1..dYAq˚,
we define the grammar Gi,w “ xΞ,A, ∆i,wy, where:

∆i,w “ tpXj , vq P ∆ | Xj P Ξ
}1..du Y tpXi, wqu .

The decomposition of derivations is formalized by the following lemma:

13

Lemma 3. Given a grammar G “ xΞ,A, ∆y, a nonterminal X P Ξ such that

LXpGq Ď a˚1 . . . a
˚
d for some d ě 3, and k ą 0, for every derivation X

γ
ùùñ
dfpkq

G w,

there exists a production p “ pXi, a y b zq P ∆ with Xi P Ξ
x1..d, a, b P AY tεu and

y, z P Ξ
|1..d Y tεu, and control words γ7 P p∆7q˚, γy, γz P p∆i,aybzq

˚, such that
γ7 p γy γz is a permutation of γ and:

1. X
γ7

ùùùùñ
dfpk`1q

G7 uXi v is a step sequence in G7 with u, v P A˚;

2. y
γy

ùùùñ
dfpkyq

Gi,aybz
uy and z

γz
ùùùñ
dfpkzq

Gi,aybz uz are (possibly empty) derivations in

Gi,aybz (uy, uz P A˚), for some integers ky, kz ą 0, such that maxpky, kzq ď k
and minpky, kzq ď k ´ 1;

3. X
γ7 p γy γz
ùùùùùùñ

dfpk`1q
G w if y

γy
ùùùùñ
dfpk´1q

Gi,aybz uy, and X
γ7 p γz γy
ùùùùùùñ

dfpk`1q
G w if z

γz
ùùùùñ
dfpk´1q

Gi,aybz

uz;
4. LX,XipG

7q Ď a˚1a
˚
d ;

5. LypGi,aybzq Ď a˚` . . . a
˚
m if y P Ξ

|1..d, and LzpGi,aybzq Ď a˚m . . . a
˚
r if z P Ξ

|1..d,
for some integers 1 ď ` ď m ď r ď d, such that maxpm´ `, r ´mq ă d´ 1.

Let us now turn to the general case, in which the size of the strict letter-
bounded expression rb “ a˚1 . . . a

˚
d is not constant, i.e. d is part of the input of

the algorithm. The output of Algorithm 2 is a finite set of bounded expressions

S
rb such that L

pkq
X pGq Ď L̂Xp

Ť

S
rb X Γ

dfpk`1q

X , Gq. The construction of the set S
rb

by Algorithm 2 (function LetterBoundedControlSet) follows the structure
of the decomposition of control words given by Lemma 3. For every k-index
depth-first derivation with control word γ, its productions can be rearranged into
a pk`1q-index depth-first derivation, consisting of (i) a prefix γ7 producing a word
in a˚1 a

˚
d , then (ii) a pivot production pXi, wq followed by two words γ1 and γ2 such

that: (iii) γ1 and γ2 produce words included in two bounded expressions a˚` . . . a
˚
m

and a˚m . . . a
˚
r , respectively, where maxpm ´ `, r ´mq ă d ´ 1. The algorithm

follows this decomposition and builds bounded expressions Γ 7, pXi, wq
˚, and

the sets S 1 and S2 with the goal of capturing γ7, pXi, wq, γ and γ2, respectively,
for all the control words such as γ. Because γ7 produces a word from a˚1 a

˚
d ,

the bounded expression Γ 7 is built calling ConstantBoundedControlSet
(line 9). Since γ1 and γ2 produce words within two sub-expressions of a˚1 . . . a

˚
d

with as many as d´ 2 letters, these cases are handled by two recursive calls to
LetterBoundedControlSet (lines 16 and 19).

Theorem 3. Given a grammar G “ xΞ,A, ∆y, and X P Ξ, such that LXpGq Ď
rb, where rb is the minimal strict d-letter bounded expression for LXpGq, for
each k ą 0, there exists a finite set of bounded expressions S

rb over ∆ such that

L
pkq
X pGq Ď L̂Xp

Ť

S
rb X Γ dfpk`1q

X , Gq. Moreover, S
rb can be constructed in time

|G|
Opkq`d

and each Γ P S
rb can be constructed in time |G|

Opkq
.

The next lemma shows that the worst-case exponential blowup in the value k is
unavoidable.

14

Algorithm 2 Control Sets for Letter-Bounded Grammars
input A grammar G “ xΞ,A, ∆y, a nonterminal X P Ξ,

a strict d-letter-bounded expression rb over A, such that LXpGq Ď rb, and k ą 0

output a set S
rb

of bounded expressions over ∆, such that L
pkq
X pGq Ď L̂Xp

Ť

S
rb
X Γ

dfpk`1q
X , Gq

1: function LetterBoundedControlSet(G0, X0, a
˚
i1
. . . a˚id

, k)

2: match G0 with xΞ,A, ∆0y

3: a˚j1
¨ ¨ ¨ a˚js Ð minimizeExpressionpG0, X0, a

˚
i1
¨ ¨ ¨ a˚id

q Ź tj1, . . . , jsu Ď ti1, . . . , idu

4: if |a˚j1
. . . a˚js | ď 2 then

5: return tConstantBoundedControlSetpG0, a
˚
j1
. . . a˚js , kqu

6: pΞ
{j1..js

, Ξ
­j1..js

q Ð partitionNonterminalspG0, a
˚
j1
a˚js q

7: ∆7 Ð tpXj , wq P ∆0 | Xj P Ξ
­j1..js

u Y tpXj , uXr vq P ∆0 | Xj , Xr P Ξ
{j1..js

u

8: G7 Ð xΞ,A, ∆7y
9: Γ 7 Ð ConstantBoundedControlSetpG7, a˚j1

a˚js , k ` 1q

10: S
rb
Ð H

11: for pXi, aybzq P ∆0 such that Xi P Ξ
{j1..js

, a, b P AY tεu and y, z P Ξ
­j1..js

Y tεu do

12: if LX0,Xi
pG7q Ď a˚j1

a˚js then

13: ∆i,aybz Ð tpXj , vq P ∆ | Xj P Ξ
­j1..js

u Y tpXi, a y b zqu

14: Gi,aybz Ð xΞ,A, ∆i,aybzy
15: if y P Ξ then
16: S1 Ð LetterBoundedControlSetpGi,aybz, y, a

˚
j1
¨ ¨ ¨ a˚js , kq

17: else S1 Ð H Ź y “ ε in this case

18: if z P Ξ then
19: S2 Ð LetterBoundedControlSetpGi,aybz, z, a

˚
j1
¨ ¨ ¨ a˚js , kq

20: else S2 Ð H Ź z “ ε in this case

21: S
rb
Ð S Y

Ť

ΓPS1YS2 Γ
7
¨ pXi, a y b zq

˚
¨ Γ

22: return S
rb

1: function minimizeExpression(G,X, a˚i1
. . . a˚id

)

2: exprÐ ε
3: for ` “ 1, . . . , d do
4: if LXpGq X pA˚ ¨ ai` ¨A

˚
q ‰ H then

5: exprÐ expr ¨ a˚i`
6: return expr

1: function partitionNonterminals(G, a˚j1
a˚js)

2: match G with xΞ,A, ∆y
3: varsÐ H

4: for Y P Ξ do
5: if LY pGqXaj1 A˚‰H^ LY pGqXA˚ ajs‰H then

6: varsÐ varsY tY u

7: return pvars, Ξzvarsq

15

Lemma 4. For every k ą 0 there exists a grammar G “ xΞ,Σ,∆y and X P Ξ
such that |G| “ Opkq and every bounded expression Γ , such that LXpGq “
L̂XpΓ X Γ

dfpk`1q

X , Gq has length |Γ | ě 2k´1.

6 Related Work

The programs we have studied feature unbounded control (the call stack) and
unbounded data (the integer variables). The decidability and complexity of the
reachability problem for such programs pose challenging research questions. A
long standing and still open one is the decidability of the reachability problem
for programs where variables behave like Petri net counters and control paths
are taken in a context-free language. A lower bound exists [17] but decidability
remains open. Atig and Ganty [3] showed decidability when the context-free
language is of bounded index. The complexity of reachability was settled for
branching VASS by Lazic and Schmitz [18]. When variables updates/guards are
given by gap-order constraints, reachability is decidable [1,25]. It is in PSPACE
when the set of control paths is regular [8]. More general updates and guard (like
octagons) immediately leads to undecidability. This explains the restriction to
bounded control sets. Demri et al. [9] studied the case of updates/guards of the
form

řn
i“1 ai ¨ xi ` b ď 0^ x1 “ x` c. They show that LTL is Np-complete on

for bounded regular control sets, hence reachability is in Np. Godoy and Tiwari
[13] studied the invariant checking problem for a class of procedural programs
where all executions conform to a bounded expression, among other restrictions.

References

1. P. A. Abdulla, M. F. Atig, G. Delzanno, and A. Podelski. Push-down automata
with gap-order constraints. In FSEN ’13, volume 8161 of LNCS, page 199–216.
Springer, 2013.

2. R. Alur and P. Madhusudan. Adding nesting structure to words. J. ACM, 56(3):16:1–
16:43, 2009.

3. M. F. Atig and P. Ganty. Approximating petri net reachability along context-free
traces. In FSTTCS ’11, volume 13 of LIPIcs, pages 152–163. Schloss Dagstuhl,
2011.

4. S. Bardin, A. Finkel, J. Leroux, and L. Petrucci. Fast: Fast acceleration of symbolic
transition systems. In CAV ’03, volume 2725 of LNCS, pages 118–121. Springer,
2003.

5. A. Bouajjani, J. Esparza, A. Finkel, O. Maler, P. Rossmanith, B. Willems, and
P. Wolper. An efficient automata approach to some problems on context-free
grammars. Information Processing Letters, 74:221–227, 2000.

6. M. Bozga, R. Iosif, and F. Konečný. Fast acceleration of ultimately periodic
relations. In CAV ’10, volume 6174 of LNCS, pages 227–242. Springer, 2010.

7. M. Bozga, R. Iosif, and F. Konečný. Safety problems are np-complete for flat
integer programs with octagonal loops. In VMCAI ’14, volume 8318 of LNCS, 2014.

8. L. Bozzelli and S. Pinchinat. Verification of gap-order constraint abstractions of
counter systems. Theoretical Computer Science, 523:1–36, 2014.

16

9. S. Demri, A. K. Dhar, and A. Sangnier. Taming past ltl and flat counter systems.
In IJCAR ’12, volume 7364 of LNCS, page 179–193. Springer, 2012.

10. J. Esparza and P. Ganty. Complexity of pattern-based verification for multithreaded
programs. In POPL ’11, pages 499–510. ACM Press, 2011.

11. P. Ganty, R. Iosif, and F. Konečný. Underapproximation of procedure summaries
for integer programs. In TACAS’13, volume 7795 of LNCS, pages 247–261. Springer,
2013.

12. S. Ginsburg. The Mathematical Theory of Context-Free Languages. McGraw-Hill,
Inc., New York, NY, USA, 1966.

13. G. Godoy and A. Tiwari. Invariant checking for programs with procedure calls. In
SAS ’09, volume 5673 of LNCS, pages 326–342. Springer, 2009.

14. H. Hojjat, R. Iosif, F. Konečný, V. Kuncak, and P. Rümmer. Accelerating inter-
polants. In ATVA ’12, 2012.

15. D. Kroening, M. Lewis, and G. Weissenbacher. Under-approximating loops in C
programs for fast counterexample detection. In CAV ’13, LNCS, pages 381–396.
Springer, 2013.

16. M. Lange and H. Leiß. To CNF or not to CNF? An efficient yet presentable version
of the CYK algorithm. Informatica Didactica, 8, 2008-2010.

17. R. Lazic. The reachability problem for vector addition systems with a stack is not
elementary. RP ’12, 2012.

18. R. Lazic and S. Schmitz. Non-elementary complexities for branching VASS, MELL,
and extensions. In CSL-LICS ’14. ACM, 2014.

19. A. W. Lin. Model Checking Infinite-State Systems: Generic and Specific Approaches.
PhD thesis, School of Informatics, University of Edinburgh, August 2010.

20. M. Luker. A family of languages having only finite-index grammars. Inf. and
Control, 39(1):14–18, 1978.

21. M. Luker. Control sets on grammars using depth-first derivations. Math. Systems
Theory, 13:349–359, 1980.

22. M. Luttenberger and M. Schlund. An extension of parikh’s theorem beyond
idempotence. CoRR, abs/1112.2864, 2011.

23. A. Miné. The octagon abstract domain. Higher-Order and Symbolic Computation,
19(1):31–100, 2006.

24. M. Minsky. Computation: Finite and Infinite Machines. Prentice-Hall, 1967.
25. P. Z. Revesz. A closed-form evaluation for datalog queries with integer (gap)-order

constraints. Theoretical Computer Science, 116(1):117 – 149, 1993.
26. A. Schrijver. Theory of Linear and Integer Programming. Wiley, 1998.

17

Appendix

The appendix is divided in two parts. Appendix A contains easy results about
context-free languages and have been included for the sake of being self-contained.
They are variations of classical constructions so as to take into account index
and depth-first policy. To keep proofs concise, we assume that the grammars are
in 2-normal form (2NF for short). A grammar is in 2NF if all its productions
pX,wq satisfy |w| ď 2. Any grammar G can be converted into an equivalent 2NF

grammar H, such that |H| “ Op|G|q, in time Op|G|
2
q [16]. Note that 2NF is a

special case of the general form we assumed where each production pX,wq is such
that w contains at most 2 terminals and 2 nonterminals. Appendix B contains
the rest of the proofs about the combinatorial properties of derivations.

A From Bounded to Letter-bounded Languages

It is well-known that the intersection between a context-free and a regular lan-
guage is context-free. Below we define the grammar that generates the intersection
between the language of a given grammar G “ xΞ,Σ,∆y and a regular language
given by a bounded expression b “ w˚1 . . . w

˚
d over Σ where `i denotes the

length of each wi. Let Gb “ xΞb, Σ,∆by be the grammar generating the regular
language of b, where:

Ξb “

!

q
psq
r | 1 ď s ď d ^ 1 ď r ď `s

)

∆b “

!

q
psq
i Ñ pwsqi q

psq
i`1 | 1 ď s ď d ^ 1 ď i ă `s

)

Y
!

q
psq
`s
Ñ pwsq`s q

ps1q
1 | 1 ď s ď s1 ď d

)

Y
!

q
psq
1 Ñ ε | 1 ď s ď d

)

.

It is routine to check that tw | q
piq
1 ñ˚ w for some 1 ď i ď du “ b. Moreover,

notice that the number of nonterminals in Gb equals the size of b, i.e. ||Ξb|| “ |b|.

Remark 1. Note that when b is letter-bounded (b “ a˚1 . . . a
˚
d), the grammar

Gb
1 “ pΞ

b
1 , Σ,∆

b
1 q generating is given by:

Ξb
1 “

qpsq | 1 ď s ď d
(

Y tqsinku

∆b
1 “

!

qpsq Ñ as1 q
ps1q | 1 ď s ď s1 ď d

)

Y

qpsq Ñ bqsink | b P Σztas, as`1, . . . , adu
(

Y

qpsq Ñ ε | 1 ď s ď d
(

Y

tqsink Ñ bqsink | b P Σu

is such that Lqp1qpG
b
1 q “ b. Furthermore, Gb

1 is complete—all terminals can be
produced from all nonterminals—and it is deterministic when b is strict. Then a

18

grammar Gb
1 , such that Lqp1qpG

b
1 q “ Σ˚zb, can be computed in time Op|Gb

1 |q,

by replacing each production qpsq Ñ ε, 1 ď s ď d, with qsink Ñ ε.

Given Gb, and a grammar G “ pΞ,Σ,∆q in 2NF and X P Ξ, our goal is to
define a grammar GX “ xΞX, Σ,∆Xy that produces the language LXpGqXLpbq,
for some X P Ξ. The definition of GX “ xΞX, Σ,∆Xy follows:

– ΞX “
!

rq
prq
s Xq

puq
v s | X P Ξ ^ q

prq
s P Ξb ^ q

puq
v P Ξb ^ r ď u

)

– ∆X is defined as follows:
‚ for every production X Ñ w P ∆ where w P Σ˚, ∆X has a production

rqprqs Xqpuqv s Ñ w if qprqs ñ˚ w qpuqv ; (1)

‚ for every production X Ñ Y P ∆, where Y P Ξ, ∆X has a production

rqprqs Xqpuqv s Ñ rqprqs Y qpuqv s ; (2)

‚ for every production X Ñ a Y P ∆, where a P Σ and Y P Ξ, ∆X has a
production

rqprqs Xqpuqv s Ñ a rqpxqy Y qpuqv s if qprqs Ñ aqpxqy P ∆b ; (3)

‚ for every production X Ñ Y a P ∆, where Y P Ξ and a P Σ, ∆X has a
production

rqprqs Xqpuqv s Ñ rqprqs Y qpxqy s a if qpxqy Ñ aqpuqv P ∆b ; (4)

‚ for every production X Ñ Y Z P ∆, ∆X has a production

rqprqs Xqpuqv s Ñ rqprqs Y qpxqy s rqpxqy Zqpuqv s ; (5)

‚ ∆X has no other production.

Let ζ : ΞX Ñ Ξ be the function that “strips” every nonterminal rq
psq
r Xq

puq
v s P

ΞX of the nonterminals from Ξb, i.e. ζprq
psq
r Xq

puq
v sq “ X. In the following,

we abuse notation and extend the ζ function to symbols from Σ Y ΞX, by
defining ζpaq “ a, for each a P Σ, and further to words w P pΣ Y ΞXq˚ as
ζpwq “ ζppwq1q ¨ ¨ ¨ ζppwq|w|q. Finally, for a production p “ pX,wq P ∆X, we
define ζppq “ pζpXq, ζpwqq, and for a control word γ P p∆Xq˚, we write ζpγq for
ζppγq1q ¨ ¨ ¨ ζppγq|γ|q.

Lemma 5. Given a grammar G “ xΞ,Σ,∆y and a grammar Gb “ xΞb, Σ,∆by

generating b, for every X P Ξ, q
prq
s ,q

puq
v P Ξb, w P Σ˚, and every k ą 0, we

have:

(i) for every γ P p∆Xq˚, rq
prq
s Xq

puq
v s

γ
ùùñ
dfpkq

˚

w only if X
ζpγq
ùùñ
dfpkq

w and q
prq
s ñ˚

Gb

w q
puq
v

(ii) for every δ P ∆˚, X
δ

ùùñ
dfpkq

w and q
prq
s ùñ˚

Gb w q
puq
v only if rq

prq
s Xq

puq
v s

γ
ùùñ
dfpkq

˚

w, for some γ P ζ´1pδq.

19

Consequently, we have
Ť

1ďsďxďd Lrqpsq1 Xq
pxq
1 s
pGXq “ LXpGq X b .

Proof. (i) By induction on |γ| ą 0. For the base case |γ| “ 1—γ is the production

prq
prq
s Xq

puq
v s ÝÑ wq P ∆X with w P Σ˚—by case (1) of the definition of ∆X, we

have q
prq
s ñ˚

Gb w q
puq
v and there exists a production X ÝÑ w P ∆. Since, moreover,

ζprq
prq
s Xq

puq
v s ÝÑ wq “ pX ÝÑ wq, we have that X

ζpγq
ùùñ
dfp1q

w in G.

For the induction step |γ| ą 1, we have γ “ prq
prq
s Xq

puq
v s ÝÑ τq ¨ γ1, for some

production rq
prq
s Xq

puq
v s ÝÑ τ P ∆X, and a word τ P pΣ YΞXq˚ of length |τ | ď 2.

We distinguish four cases, based on the structure of τ :

1. if τ “ rq
prq
s Y q

puq
v s then τ

γ1

ùùñ
dfpkq

w is a derivation of GX. By the induction

hypothesis, we obtain that q
prq
s ñ˚

Gb w q
puq
v and Y

ζpγ1q
ùùùñ
dfpkq

w is a derivation of

G. But X ÝÑ Y P ∆—case (2) of the definition of ∆X—hence ζpγq “ pX ÝÑ

Y q ¨ ζpγ1q and X
ζpγq
ùùñ
dfpkq

w is a derivation of G.

2. if τ “ a rq
pxq
y Y q

puq
v s then w “ a ¨w1 and GX has derivation rq

pxq
y Y q

puq
v s

γ1

ùùñ
dfpkq

w1. By the induction hypothesis, we obtain q
pxq
y ùñ˚

Gb w1q
puq
v and G has

a derivation Y
ζpγ1q
ùùùñ
dfpkq

w1. By the case (3) of the definition of ∆X, we have

q
prq
s Ñ aq

pxq
y P ∆b and ζprq

prq
s Xq

puq
v s ÝÑ τq “ pX ÝÑ aY q P ∆. Thus

q
prq
s ùñ˚

Gb w q
puq
v and X

ζpγq
ùùñ
dfpkq

w, since ζpγq “ pX ÝÑ aY q ¨ ζpγ1q.

3. the case τ “ rq
prq
s Y q

pxq
y s a is symmetric, using the case (4) of the definition

of ∆X.
4. if τ “ rq

prq
s Y q

pxq
y s rq

pxq
y Zq

puq
v s then, by Lemma 7, there exist words w1, w2 P

Σ˚ such that w “ w1w2 and either one of the following applies:

(a) rq
prq
s Y q

pxq
y s

γ1
ùùùùñ
dfpk´1q

w1, rq
pxq
y Zq

puq
v s

γ2
ùùñ
dfpkq

w2 and γ1 “ γ1 γ2, or

(b) rq
prq
s Y q

pxq
y s

γ1
ùùñ
dfpkq

w1, rq
pxq
y Zq

puq
v s

γ2
ùùùùñ
dfpk´1q

w2 and γ1 “ γ2 γ1.

We consider the first case only, the second being symmetric. Since |γ1| ă

|γ| and |γ2| ă |γ|, we apply the induction hypothesis and find out that

q
prq
s ùñ˚

Gb w1 q
pxq
y , q

pxq
y ùñ˚

Gb w2 q
puq
v , and G has derivations Y

ζpγ1q
ùùùùñ
dfpk´1q

w1

and Z
ζpγ2q
ùùùñ
dfpkq

w2. Then q
prq
s ùñ˚

Gb w1 w2 q
puq
v where w1 w2 “ w. By case (5) of

the definition of ∆X, ∆ has a production pX ÝÑ Y Zq “ ζprq
prq
s Xq

puq
v s ÝÑ τq.

Since γ1 “ γ1 γ2, then ζpγq “ pX ÝÑ Y Zq ¨ ζpγ1q ζpγ2q, and G has a k-index

depth-first derivation X
ζpγq
ùùñ
dfpkq

w.

(ii) By induction on |δ| ą 0. For the base case |δ| “ 1, we have δ “ pX ÝÑ wq P ∆.

By the case (1) from the definition of ∆X, GX has a rule rq
psq
r Xq

puq
v s ÝÑ w and,

since, moreover, ζprq
psq
r Xq

puq
v s ÝÑ wq “ δ, we have γ “ prq

psq
r Xq

puq
v s ÝÑ wq.

20

For the induction step |δ| ą 1, we have δ “ pX ÝÑ τq ¨ δ1. We distinguish four
cases, based on the structure of τ :

1. if τ “ Y , for some Y P Ξ, by the induction hypothesis, GX has a derivation

rq
psq
r Y q

puq
v s

γ1

ùùñ
dfpkq

w, for some γ1 P ζ´1pδ1q. Since q
prq
s ñ˚

Gb w q
puq
v —by case

(2) of the definition of ∆X— GX has a production p “ prq
psq
r Xq

puq
v s ÝÑ

rq
psq
r Y q

puq
v sq. We define γ “ p ¨ γ1. It is immediate to check that ζpγq “ δ.

2. if τ “ a Y , for some a P Σ and Y P Ξ, then w “ a ¨w1. Hence q
prq
s ùñGb aq

pxq
y ,

q
pxq
y ùñ˚

Gb w1 q
puq
v and G has a derivation Y

δ1

ùùñ
dfpkq

w1. By the induction

hypothesis, GX has a derivation rq
pxq
y Y q

puq
v s

γ1

ùùñ
dfpkq

w1, for some γ1 P ζ´1pδ1q.

By the case (3) of the definition of ∆X, there exists a production p “

prq
psq
r Xq

puq
v s ÝÑ aY q P ∆X. We define γ “ p ¨γ1. It is immediate to check that

ζpγq “ δ, hence rq
psq
r Xq

puq
v s

γ
ùùñ
dfpkq

w.

3. the case τ “ Y a, for some Y P Ξ and a P Σ, is symmetrical.
4. if τ “ Y Z, for some Y,Z P Ξ, then, by Lemma 7, there exist words w1, w2 P

Σ˚ such that w “ w1 w2 and either one of the following cases applies:

(a) Y
δ1

ùùùùñ
dfpk´1q

w1, Z
δ2
ùùñ
dfpkq

w2 and δ1 “ δ1 δ2, or

(b) Y
δ1
ùùñ
dfpkq

w1, Z
δ2

ùùùùñ
dfpk´1q

w2 and δ1 “ δ2 δ1.

Moreover, we have q
prq
s ùñ˚

Gb w1 q
pxq
y and q

pxq
y ùñ˚

Gb w2 q
puq
v , for some q

pxq
y P

Ξb. We consider the first case only, the second being symmetric. Since
|δ1| ă |δ| and |δ2| ă |δ| we apply the induction hypothesis and find two
control words γ1 P ζ

´1pδ1q and γ2 P ζ
´1pδ2q such that GX has derivations

rq
prq
s Y q

pxq
y s

γ1
ùùùùñ
dfpk´1q

w1 and rq
pxq
y Zq

puq
v s

γ2
ùùñ
dfpkq

w2. By case (5) of the definition

of ∆X, GX has a production p “ prq
prq
s Xq

puq
v s ÝÑ rq

prq
s Y q

pxq
y srq

pxq
y Zq

puq
v sq.

Since δ1 “ δ1 δ2, we define γ “ p γ1 γ2. It is immediate to check that ζpγq “ δ

and rq
prq
s Xq

puq
v s

γ
ùùñ
dfpkq

w. [\

In the rest of this section, for a given bounded expression b “ w˚1 . . . w
˚
d over Σ,

we associate the strict d-letter-bounded expression rb “ a˚1 . . . a
˚
d over an alphabet

A, disjoint from Σ, i.e. AXΣ “ H, and a homomorphism h : AÑ Σ˚ mapping
as follows: ai ÞÑ wi, for all 1 ď i ď d. The next step is to define a grammar
G’ “ xΞ’,A, ∆’y, such that Ξ’ “ ΞX and, for all X P Ξ, 1 ď s ď x ď d:

h´1pL
rq
psq
1 Xq

pxq
1 s
pGXqq X rb “ L

rq
psq
1 Xq

pxq
1 s
pG’q .

The grammar G’ is defined from GX, by the following modification of the
productions from ∆X, defined by a function ι : ∆X ÞÑ ∆’:

– ιprq
prq
s Xq

puq
v s Ñ wq “ rq

prq
s Xq

puq
v s Ñ z where

1. if |w| “ 0 then z “ ε.

21

2. if |w| “ 1 then we have q
prq
s ñGb w q

puq
v and we let z “ ar if v “ 1 else

z “ ε.
3. if |w| “ 2 then we have q

prq
s ñGb pwq1 q

pyq
x ñGb pwq1pwq2 q

puq
v for some

x, y. Define the word z “ z1 ¨ z2 of length at most 2 such that z1 “ ar if
x “ 1; else z1 “ ε and z2 “ ay if v “ 1 else z2 “ ε.

– ιprq
prq
s Xq

puq
v s Ñ b rq

pxq
y Y q

puq
v sq “ rq

prq
s Xq

puq
v s Ñ c rq

pxq
y Y q

puq
v s where c “ ar

if y “ 1; else c “ ε.

– ιprq
prq
s Xq

puq
v s Ñ rq

prq
s Y q

pxq
y s bq “ rq

prq
s Xq

puq
v s Ñ rq

prq
s Y q

pxq
y s c where c “ ax

if v “ 1; else c “ ε.
– ιppq “ p otherwise.

Let ∆’ “ tιppq | p P ∆Xu. In addition, for every control word γ P p∆Xq˚ of
length n, let ιpγq “ ιppγq1q ¨ ¨ ¨ ιppγqnq P ∆

’. A consequence of the following
proposition is that the inverse relation ι´1 Ď ∆’ ˆ∆X is a total function.

Proposition 1. For each production p P ∆’, the set ι´1ppq is a singleton.

Proof. By case split, based on the type of the production p P ∆’. Since G’ is in
2NF we have:

– if p “ prq
prq
s Xq

puq
v s ÝÑ aq then ι´1ppq “ trq

prq
s Xq

puq
v s ÝÑ wu, where q

prq
s ùñ˚

Gb

w q
puq
v is the shortest step sequence of Gb between q

prq
s and q

puq
v which is

unique by Gb and produces w P Σ˚.

– if p “ prq
prq
s Xq

puq
v s ÝÑ rq

pxq
y Y q

pzq
t sq, then either one of the cases below must

hold:
(i) q

pvq
u “ q

ptq
z and q

prq
s ùñGb bq

pxq
y , for some y ‰ 1. In this case b is uniquely

determined by q
prq
s and q

pxq
y , thus we get ι´1ppq “ trq

prq
s Xq

puq
v s ÝÑ

b rq
pxq
y Y q

pzq
t su.

(ii) q
prq
s “ q

pxq
y and q

pzq
t ùñGb bq

puq
v , for some t ‰ `z. In this case we get,

symmetrically, ι´1ppq “ trq
prq
s Xq

puq
v s ÝÑ rq

pxq
y Y q

pzq
t s bu.

(iii) q
pvq
u “ q

ptq
z and q

prq
s “ q

pxq
y . Then ι´1ppq “ tpu.

– if p “ prq
prq
s Xq

puq
v s ÝÑ ar rq

pxq
y Y q

puq
v sq for some ar P A, hence y “ 1 (re-

spectively, rq
prq
s Xq

puq
v s ÝÑ rq

prq
s Y q

pxq
y s ar hence v “ 1) and then the only

possibility is ι´1ppq “ trq
prq
s Xq

puq
v s ÝÑ pwrq`r rq

pxq
y Y q

puq
v su (respectively,

rq
prq
s Xq

puq
v s ÝÑ rq

prq
s Y q

pxq
y s pwrq`r).

– if p “ prq
prq
s Xq

pxq
y s Ñ rq

prq
s Y q

puq
v s rq

puq
v Zq

pxq
y sq then ι´1ppq “ tpu. [\

Lemma 6. Given a grammar G “ xΞ,Σ,∆y and a bounded expression b “

w˚1 . . . w
˚
d over Σ, for every X P Ξ, every 1 ď s ď x ď d and every k ą 0, the

following hold:

1. L
pkq

rq
psq
1 Xq

pxq
1 s
pG’q “ h´1pL

pkq

rq
psq
1 Xq

pxq
1 s
pGXqq X rb,

2. for each control set Γ Ď p∆’q
˚

, such that L
pkq

rq
psq
1 Xq

pxq
1 s
pG’q Ď L̂

rq
psq
1 Xq

pxq
1 s
pΓ,G’q,

we have L
pkq

rq
psq
1 Xq

pxq
1 s
pGXq Ď L̂

rq
psq
1 Xq

pxq
1 s
pι´1pΓ q, GXq,

3. G’ is computable in time O
`

|b|
3
¨ |G|

˘

.

22

Proof. We start by proving the following facts:

Fact 1. For all X P Ξ and 1 ď s ď x ď d, we have L
rq
psq
1 Xq

pxq
1 s
pG’q Ď rb.

Proof. Let w̃ P L
rq
psq
1 Xq

pxq
1 s
pG’q. We have rq

psq
1 Xq

pxq
1 s

γ
ùñ w̃ is a derivation

of G’ for some control word γ over ∆’. By contradiction, assume w̃ R rb,
that is there exist p, p1 such that p ă p1 and pw̃qp “ aj and pw̃qp1 “ ai with
i ă j. The definition of ι shows that there exists w P L

rq
psq
1 Xq

pxq
1 s
pGXq such

that rq
psq
1 Xq

pxq
1 s

ι´1
pγq

ùùùùñ w in GX, hence that w P b since L
rq
psq
1 Xq

pxq
1 s
pGXq Ď b,

and finally that q
psq
1 ñ˚

Gb w q
pxq
1 . Now, the mapping ι is defined such that a

production in its image produces a ar when, in the underlying Gb, either control

moves forward from q
prq
s to q

puq
1 , e.g. rq

prq
s Xq

pxq
y s Ñ ar rq

puq
1 Y q

pxq
y s or control

moves backward form q
puq
1 to q

prq
s , e.g. rq

pxq
y Xq

puq
1 s Ñ rq

pxq
y Y q

prq
s s ar. Therefore,

by the previous assumption on w̃ where aj occurs before ai, we have that a

production of q
pjq
`j
Ñ pwjq`j q

puq
1 for some u ě j and then a production of

q
piq
`i
Ñ pwiq`i q

pu1q
1 for some u1 ě i necessarily occurs in that order in ι´1pγq. But

this is a contradiction because j ą i and the definition of Gb prohibits control to

move from q
pjq
pj to q

piq
pi for any pi, pj . [\

Fact 2. For all X P Ξ, 1 ď s ď x ď d, γ P p∆Xq˚, k ą 0 and i1, . . . , id P N:

rq
psq
1 Xq

pxq
1 s

γ
ùñ
pkq

wi11 . . . widd in GX if and only if rq
psq
1 Xq

pxq
1 s

ιpγq
ùùñ
pkq

ai11 . . . aidd in G’ .

Proof. By induction on |γ| ą 0, and case analysis on the right-hand side of
pγq1. [\

(1) “Ď” Let w̃ P L
pkq

rq
psq
1 Xq

pxq
1 s
pG’q. By Fact 1, we have that w̃ P rb. It remains

to show that w̃ P h´1pL
rq
psq
1 Xq

pxq
1 s
pGXqq, i.e. that hpw̃q P L

rq
psq
1 Xq

pxq
1 s
pGXq, which

follows by Fact 2. “Ě” Let w̃ P h´1pL
pkq

rq
psq
1 Xq

pxq
1 s
pGXqq X rb be a word, hence

w̃ “ ai11 . . . aidd for some i1, . . . , id P N. Then hpw̃q P L
pkq

rq
psq
1 Xq

pxq
1 s
pGXq by Fact 2

and we are done.

(2) Let w “ wi11 . . . widd P L
pkq

rq
psq
1 Xq

pxq
1 s
pGXq be a word. Then GX has a derivation

rq
psq
1 Xq

pxq
1 s ùñ

pkq

˚ w. By Fact 2, also G’ has a derivation rq
psq
1 Xq

pxq
1 s ùñ

pkq

˚

ai11 . . . aidd . By the hypothesis L
pkq

rq
psq
1 Xq

pxq
1 s
pG’q Ď L̂

rq
psq
1 Xq

pxq
1 s
pΓ,G’q, there exists

a control word γ P Γ such that rq
psq
1 Xq

pxq
1 s

γ
ùñ ai11 . . . aidd in G’, and by Fact 2, we

have rq
psq
1 Xq

pxq
1 s

ι´1
pγq

ùùùùñ wi11 . . . widd in GX. Hence w P L̂
rq
psq
1 Xq

pxq
1 s
pι´1pΓ q, GXq.

(3) Given that each production p’ P ∆’ is the image of a production pX P ∆X

via ι, we have |p’| “ |ιppXq| ď |pX|. Hence |G’| ď |GX|. Now, each production

23

pX P ∆X corresponds to a production p of G, such that the nonterminals occurring
on both sides of p are decorated with at most 3 nonterminals from Ξb. Since
||Ξb|| “ |b|, we obtain that, for each production p of G, GX has at most |b|

3

productions of size |p|. Hence |G’| ď |GX| ď |b|
3
¨|G|, and G’ can be constructed

in time |b|
3
¨ |G|. [\

Remark 2. Given G “ xΞ,A, ∆y, X P Ξ, and a strict d-letter-bounded expression
rb “ a˚1 . . . a

˚
d , the check LXpGq Ď rb can be decided in time Op|rb| ¨ |G|q, by

building a grammar Gb
1 such that Lqp1qpG

b
1 q “ Σ˚zrb (see Remark 1) and checking

LXpGq X Lqp1qpG
b
1 q

?
“ H. A similar argument shows that queries LXpGq X pA˚ ¨

as ¨A˚q
?
“ H, 1 ď s ď d, can be answered in time Op|G|q [5, Section 5].

B Other proofs

Lemma 7. Given G “ xΞ,Σ,∆y and a k-index depth-first step sequence X Y
γ

ùùñ
dfpkq

w, for two nonterminals X,Y P Ξ, w P Σ˚, and γ P ∆˚. There exist w1, w2 P Σ
˚

such that w1 w2 “ w, and γ1, γ2 P ∆
˚ such that either one of the following holds:

1. X
γ1

ùùùùñ
dfpk´1q

w1 and Y
γ2
ùùñ
dfpkq

w2 and γ “ γ1 γ2, or

2. X
γ1
ùùñ
dfpkq

w1 and Y
γ2

ùùùùñ
dfpk´1q

w2 and γ “ γ2 γ1.

Proof. The step sequence X Y
γ

ùùñ
dfpkq

w has one of two possible forms, by the

definition of a depth-first sequence:

– X Y
γ1
ùùñ
dfpkq

w1 Y
γ2
ùùñ
dfpkq

w1 w2, or

– X Y
γ2
ùùñ
dfpkq

X w2
γ1
ùùñ
dfpkq

w1 w2,

for some words w1, w2 P Σ
˚ and control words γ1, γ2 P ∆

˚. Let us consider the

first case, the second being symmetric. Since X Y
γ1
ùùñ
dfpkq

w1 Y is a k-index step

sequence, the sequence X
γ1
ùñ w1 obtained by erasing the Y nonterminal from the

last position in all steps of the sequence, is of index k´ 1, i.e. X
γ1

ùùùùñ
dfpk´1q

w1. Also,

since w1 Y
γ2
ùùñ
dfpkq

w1 w2, we obtain Y
γ2
ùùñ
dfpkq

w2, by erasing the first |w1| symbols

in all steps of the sequence. Clearly, in this case we have γ “ γ1 γ2. [\

B.1 Proof of Lemma 1

First, we formally define the notion of depth-first derivations by annotating
symbols occurring in every step with a positive integer called the rank. Intuitively,
the rank assigns a priority between symbols in a word. For a set S of symbols
(e.g. the terminals and nonterminals) and a set I Ď N, we define SI “ tsxiy | s P
S, i P Iu and call SI a ranked alphabet. We also sometimes write Sxiy when I is
a singleton. A ranked word (r-word) is a word over a ranked alphabet. Given a

24

word w of length n and an n-dimensional vector α P Nn, the ranked word wα is

the sequence pwq1
xpαq1y . . . pwqn

xpαqny, in which the ith element of α annotates

the ith symbol of w. We also denote wxxcyy “ pwq1
xcy
. . . pwq|w|

xcy
as a shorthand.

Let G “ xΞ,Σ,∆y be a grammar and u
pZ,wq{j

ùùùùñ v be a step, for a vector α P N|u|,
we define the ranked step (r-step) uα

pZ,wq{j

ùùùùñ vβ if and only if puqj “ Z and

vβ “ puαq1 ¨ ¨ ¨ pu
αqj´1 w

xxm`1yy puαqj`1 ¨ ¨ ¨ pu
αq|u|

where each symbol in w has rank m` 1 and

m “ max ptpαqi | Di : 1 ď i ď |u|, i ‰ j, puqi P Ξu Y t´1uq

is the maximum among the ranks of the nonterminals in uα, with position j
omitted7. An r-step is said to be depth-first, denoted uα ùñ

df
vβ iff the rank of

the nonterminal at position j where the rule applies is maximal, i.e. pαqj “ m.
For instance the transition labelled p2 in Fig. 1 (d) is a depth-first r-step. A
r-step sequence is said to be depth-first if all of its r-steps are depth-first. Finally,

an unranked step sequence w0
pγq1
ùùñ w1 . . . wn´1

pγqn
ùùñ wn is said to be depth-first,

written w0
γ

ùñ
df

wn, iff there exist vectors α1 P N|w1|, . . . ,αn P N|wn| such that

w
xx0yy
0

pγq1
ùùñ

df
wα1

1 . . . w
αn´1

n´1

pγqn
ùùñ

df
wαnn holds.

Let Υ pkq “ twα | Duβ : uβ “ pwαqÓΞN , |uβ| ď k,β is contiguous,maxipβqi ď
k´1u be the set of r-words such that when deleting ranked terminals, the resulting
word is no longer than k and has ranks between 0 and k´1. It is routine to check
that Υ pkq is closed for the relation ùùñ

dfpkq
. For a r-word wα P Υ pkq, let rwαs be

the r-word pwαÓΞx0yq pw
αÓΞx1yq . . . pw

αÓΞxkyq. Intuitively, rwαs projects out the
terminals of w, and orders the remaining nonterminals in the increasing order of
their ranks. For instance,

“

ax1yY x1yZx0y
‰

“ Zx0yY x1y. The r.s operator is naturally
lifted from r-words to sets of r-words. Recall that we define the set Q of states of
Adfpkq “ pQ,∆,Ñq as Q “ twα | w P Ξ˚, |w| ď k,α is contiguous, pαq1 ď ¨ ¨ ¨ ď
pαq|w|u. It is routine to check that

“

Υ pkq
‰

“ Q holds. Now let us consider Ñ

which we defined as follows. Let q, q1 P Q, pX,wq P ∆ we have q
pX,wq
ÝÝÝÝÑ q1 iff

– q “ uXxiy v for some u, v and where i is the maximum rank in q, and

– q1 “ u v pwÓΞq
xxi1yy where |u v pwÓΞq

xxi1yy| ď k and i1 “

$

’

&

’

%

0 if u v “ ε

i else if pu vqÓΞxiy “ ε

i` 1 else

As q P Q, we find that q P
“

Υ pkq
‰

. Furthermore, it is an easy exercise to show

that q
pX,wq
ÝÝÝÝÑ q1 iff there exists wη P Υ pkq such that q

pX,wq
ùùùñ
dfpkq

wη and rwηs “ q1. It

follows that, we can equivalently write Adfpkq

G “ x
“

Υ pkq
‰

, ∆,Ñy for the labeled

graph the edge relation, is defined as: uα
p
ÝÑ vβ iff Dwη P Υ pkq. uα

p
ùùñ
dfpkq

wη^vβ “

rwηs.

7 If Z “ puqj is the only non-terminal in u, we have m` 1 “ ´1` 1 “ 0.

25

Proof (of Lemma 1). “ñ” We shall prove the following more general statement.

Let uα
γ

ùùñ
dfpkq

wβ where uα P Υ pkq be a k-index depth-first r-step sequence. By

induction on |γ| ě 0, we show the existence of a path ruαs
γ
ÝÑ

“

wβ
‰

in Adfpkq.

For the base case |γ| “ 0, we have uα “ wβ which yields ruαs “
“

wβ
‰

and since

uα P Υ pkq the hypothesis shows that uα, wβ P Υ pkq, hence that ruαs ,
“

wβ
‰

P
“

Υ pkq
‰

and we are done. For the induction step |γ| ą 0, let vη
p

ùùñ
dfpkq

wβ be the

last step of the sequence, for some p P ∆, i.e. γ “ σ ¨ p with σ P ∆˚. By the
induction hypothesis, Adfpkq has a path ruαs

σ
ÝÑ rvηs. Since rvηs ,

“

wβ
‰

P
“

Υ pkq
‰

and vη
p

ùùñ
dfpkq

wβ, we have that rvηs
p
ÝÑ

“

wβ
‰

by definition of Ñ, hence we obtain

a path ruαs
γ
ÝÑ

“

wβ
‰

.

“ð” We prove a more general statement. Let U
γ
ÝÑ W be a path in Adfpkq

G , for
some words U,W P

“

Υ pkq
‰

. We show by induction on |γ| that there exist r-words

uα, wβ P Υ pkq, such that ruαs “ U ,
“

wβ
‰

“ W , and uα
γ

ùùñ
dfpkq

wα. The base

case |γ| “ 0 is trivial, because U “ W and since U P
“

Υ pkq
‰

then there exists

uα P Υ pkq such that ruαs “ U “ W and we are done. For the induction step
|γ| ą 0, let γ “ σ ¨ p, for some production p P ∆ and σ P ∆˚. By the induction

hypothesis, there exist r-words uα, vη P Υ pkq such that U “ ruαs
σ
ÝÑ rvηs

p
ÝÑW

is a path in Adfpkq, and uα
σ

ùùñ
dfpkq

vη is a k-index r-step sequence. The definition

of the edge relation in Adfpkq and rvηs
p
ÝÑ w shows that vη

p
ùùñ
dfpkq

wβ for some

wβ P Υ pkq such that
“

wβ
‰

“W .
For the upper bound on the size of Adfpkq, recall that each vertex of Adfpkq is a

ranked word of length at most k, consisting of non-terminals only, with ranks in
the interval r0, k´ 1s. Moreover, the productions of G do not produce more than
2 nonterminals at a time. Hence, in every vertex of Adfpkq, at most 2 positions
carry the same rank. Since the length of each vertex in Q is at most k and, for
each i P r0, k ´ 1s, there are at most ||Ξ||

2
choices of nonterminals with rank i,

we have |Adfpkq

G | ď ||Ξ||
2k
ď |G|

2k
. [\

B.2 Proof of Lemma 2

When LX,Y pGq Ď rb, because rb “ a˚1 . . . a
˚
s is a strict s-letter-bounded expression

with s a fixed constant, for every step sequence X
γ
ùñG uY v, we have u v “

γÓa1 . . . γÓas . Also remark that u v “ a
pvq1
1 . . . a

pvqs
s for some v P Ns, hence that

pvq` “ |γÓa` | for each ` “ 1, . . . , s. For convenience, given γ P ∆˚, we denote
γÓ

rb “ γÓa1 . . . γÓas .
We recall the definition of the labeled graph Adfpkq “ xQ,∆,Ñy whose number

of vertices we denote by N . Due to the form of the productions in G, we can
safely restrict Q to r-words with at most 2 nonterminals having the same rank,
hence N ď |G|

2k
. We define Ωpqq is the set of elementary cycles with q P Q as

endpoints.

26

Proposition 2. Let G “ xΞ,Σ,∆y be a grammar, X P Ξ be a nonterminal

and rb “ a˚1 . . . a
˚
s be a strict s-letter bounded expression, for some s ě 0. For

any two vertices q, q1 P Q of Adfpkq, and any path π P Πpq, q1q, there exists a
path π1 P Πpq, q1q such that |π| “ |π1|, ωpπqÓ

rb “ ωpπ1qÓ
rb and π1 is of the form

ς1 ¨ θ1 ¨ ¨ ¨ ς` ¨ θ` ¨ ς``1, where ς1 P Πpq, q1q, ς``1 P Πpq`, q
1q and ςj P Πpqj´1, qjq,

for each 1 ă j ď `, are acyclic paths, θ1 P pΩpq1qq
˚, . . . , θ` P pΩpq`qq

˚ are cycles,
and ` ď ||Q||.

Proof. The proof goes along the lines of that of Lemma 7.3.2 in Lin’s PhD thesis
[19]. This proof is carried on graphs labeled with integer tuples, and addition,
instead of concatenation. Since the only property of integer tuple addition, used
in the proof of [19, Lemma 7.3.2], is commutativity, it suffices to observe that
ωpπqÓ

rb “ ωpπ1qÓ
rb, whenever ωpπq is a permutation of ωpπ1q. [\

Proof (of Lemma 2). Given two step sequences X
γ
ùñG uY v, X

γ1

ùñG u1 Y v1, the
following are equivalent:

– |γÓa` | “ |γ
1Óa` | for all ` “ 1, . . . , s,

– γÓ
rb “ γ1Ó

rb,
– u v “ u1 v1.

Since LX,Y pGq Ď rb where rb is a strict s-letter bounded expression, for every

π P Ωpqq the induced word ak11 . . . akss “ ωpπqÓ
rb is such that:

řs
j“1 kj ď 2N ,

i.e. each production in ∆ issues at most 2 symbols from ta1, . . . , asu, and each
elementary cycle is of length at most N . The nonnegative solutions of the
inequation

řs
j“1 kj ď 2N are solutions to the equation

řs
j“1 kj ` y “ 2N , for a

nonnegative slack variable y ě 0. Since the number of nonnegative solutions to
the latter equation8 is

`

s`2N
s

˘

, we have:

||tωpπqÓ
rb | π P Ωpqqu|| “

ˆ

s` 2N

s

˙

“ OpNsq . (6)

For each vertex q, we are interested in a set Cq Ď Ωpqq such that ||Cq|| “ OpNsq

and, moreover, for each π P Ωpqq there exists π1 P Cq such that ωpπqÓ
rb “

ωpπ1qÓ
rb when ΠpXx0y, qq ‰ H and Πpq, Y x0yq ‰ H holds.

For now we assume we have computed such sets tCquqPQ (their effective

computation will be described later). We are now ready to define the bounded
expression Γ

rb. Given a finite set Γ “ tγ1, . . . , γnu Ď ∆˚ of control words indexed
following some total ordering (e.g. we assume a total order ă on ΞYA, and define
pX1, w1q ă∆ pX2, w2q ô X1 ¨ w1 ălex X2 ¨ w2 in the lexicographical extension of
ă, then extend ă∆ to a lexicographical order ălex

∆ on control words), we define
the bounded expression: concatpΓ q “ γ˚1 ¨ ¨ ¨ γ

˚
n . Let Q “ tq1, . . . , qNu be the set

of vertices of Adfpkq, taken in some order. We define the set tBiuiě0 of bounded

8 The number of nonnegative solutions of an equation n “ x1 ` ¨ ¨ ¨ ` xm is
`

m`n´1
m´1

˘

.

27

expressions as follows:

B0 “ concatptωpπq | π P Cq1uq ¨ ¨ ¨ concatptωpπq | π P CqN uq

B1 “ concatp∆qN´1 ¨B0 ¨ concatp∆qN´1

Bi “ concatp∆qN´1 ¨B0 ¨Bi´1, for all i ě 2

Finally, let:

Γ
rb “ BN .

Let us now prove the language inclusion.

It follows from Theorem 1, that L
pkq
X,Y pGq “ L̂X,Y pΓ

dfpkq

X,Y , Gq for every X P Ξ,

Y P Ξ Y tεu and k ą 0. Hence we trivially have L̂X,Y pΓrb X Γ dfpkq

X,Y , Gq Ď

L̂X,Y pΓ
dfpkq

X,Y , Gq “ L
pkq
X,Y pGq. For the contrapositive L

pkq
X,Y pGq Ď L̂X,Y pΓrb X

Γ dfpkq

X,Y , Gq, it suffices to show the following: given a k-index depth first step se-

quence X
γ

ùùñ
dfpkq

uY v, there exists a control word γ1 P Γ
rb such that X

γ1

ùùñ
dfpkq

u1 Y v1

and u v “ u1 v1.
Because Lemma 1 shows that each path π P ΠpXx0y, Y x0yq corresponds to

a control word ωpπq such that X
ωpπq
ùùñ
dfpkq

uY v, and because L
pkq
X,Y pGq Ď

rb where

rb is a strict s-letter bounded expression, it suffices to show that exists a path
ρ P ΠpXx0y, Y x0yq such that ωpρq P Γ

rb and ωpπqÓ
rb “ ωpρqÓ

rb. We apply the

result from Prop. 2 which shows that there exists a path ρ P ΠpXx0y, Y x0yq, such
that |ρ| “ |π|, ωpρqÓ

rb “ ωpπqÓ
rb and ρ is of the form ς1 ¨ θ1 ¨ ¨ ¨ ς` ¨ θ` ¨ ς``1, where

ς1 P ΠpX
x0y, qi1q, ς``1 P Πpqi` , Y

x0yq, and ςj P Πpqij´1
, qij q for each 1 ă j ď `

are acyclic paths, θ1 P pΩpqi1qq
˚, . . . , θ` P pΩpqi`qq

˚ are cycles, qi1 , . . . , qi` are
vertices, and ` ď ||Q||. Hence we conclude that

– ωpςjq P concatp∆qN´1, for all 1 ď j ď `` 1,
– for each cycle θj P pΩpqij qq

˚, consisting of a concatenation of several elemen-

tary cycles θ1
j , . . . , θ

`j
j P Ωpqij q, the cycle θlexj obtained by a lexicographic

reordering of θ1
j , . . . , θ

`j
j (based on the lexicographic order of their value in

∆˚) belongs to B0, for all 1 ď j ď `. Second, it is easy to see that the words
produced by θj and θlexj are the same, since the order of productions labeling

θj (θlexj) is not important.

Let π1 be the path ς1 ¨ θ
lex
1 ¨ ¨ ¨ ς` ¨ θ

lex
` ¨ ς``1. By Prop. 2, we have that ωpπqÓ

rb “

ωpπ1qÓ
rb. Moreover, ωpπ1q P BN “ Γ

rb. Since X
ωpπq
ùùñ
dfpkq

uY v and X
ωpπ1q
ùùùñ
dfpkq

u1 Y v1

are step sequences of G, the previous equality implies u v “ u1 v1.
Concerning the time needed to construct the bounded expression Γ

rb, the
main ingredient in the previous, is the definition of the sets of cycles tCquqPQ,

such that ||Cq|| “ OpNsq and, moreover, for each π P Ωpqq there exists π1 P Cq
such that ωpπqÓ

rb “ ωpπ1qÓ
rb when ΠpXx0y, qq ‰ H and Πpq, Y x0yq ‰ H holds.

Below we describe the construction of such sets.

28

Define Val “ ta`11 . . . a`ss P
rb |

řs
j“1 `j ď 2Nu. Using previous arguments (i.e.

equation (6)), it is routine to check that ||Val || “ OpNsq. Consider the labeled
graph H “ xV,∆,ÝÑy, defined upon Adfpkq, where:

– V “ QˆVal , and

– xq1, ai11 . . . aiss y
pZ,zq
ÝÝÝÑ xq2, aj11 . . . ajss y iff q1

pZ,zq
ÝÝÝÑ q2 and aj`` “ ai`` ¨zÓa` for each

`

First, observe that the number of vertices in this graph is ||V || ď N2k ¨
`

s`2N
s

˘

“ |G|
Opkq

. Second, it is routine to check (by induction on the length of

a path) that given a path π P ΠHpxq, εy, xq, a
i1
1 . . . aiss yq for some i1, . . . , is P N

we have ωpπqÓ
rb “ ai11 . . . aiss . Next, for each q P Q define the set Pq of paths

of H consisting for each ai11 . . . aiss P Val of a single path (one with the least
number of edges) from xq, εy to xq, ai11 . . . aiss y. By definition of Val , we have that
||Pq|| “ ||Val || “ OpNsq and, moreover, for each ρ P Ωpqq (ρ is a path of Adfpkq)
there exists a path π P Pq such that ωpρqÓ

rb “ ωpπqÓ
rb “ ai11 . . . aiss where xq, εy

and xq, ai11 . . . aiss y are the endpoints of π.

Hence, we define Cq to be the set of cycles in Adfpkq corresponding to the paths
in Pq. The latter can be computed applying Dijkstra’s single source shortest path
algorithm on H, with source vertex xq, εy, and assuming that the distance between
adjacent vertices is always 1. The running time of the Dijkstra’s algorithm is

Op||V ||2q “ |G|Opkq. Upon termination, one can reconstruct a shortest path π
from xq, εy to each vertex xq, ai11 . . . aiss y, and add the corresponding cycle of Adfpkq

to Cq. Since there are at most |G|
Opkq

vertices xq, ai11 . . . aiss y in V , and building

a shortest path for each such vertex takes at most |G|
Opkq

time, we can populate

the set Cq in time |G|
Opkq

. Once the sets Cq are built, it remains to compute the
bounded expressions concatptωpπq | π P Cquq, concatp∆qN´1 and B0, . . . , BN .

As shown below, they are all computable in time |G|
Opkq

.

Algorithm 1 gives the construction of Γ
rb. An upper bound on the time

needed for building Γ
rb can be derived by a close analysis of the running time

of Algorithm 1. The input to the algorithm is a grammar G, a strict s-letter
bounded expression rb and an integer k ą 0. First (lines 2–5) the algorithm builds

the H graph, which takes time |G|
Opkq

. The loop on (lines 8–10) computes, for
each vertex q P Q, and each s-dimensional vector v P Val , an elementary path

from xq, εy to xq, a
pvq1
1 . . . a

pvqs
s y in H. For each q, this set is kept in a variable

Cq (line 9). The variable B0 at the end of the loop contains the expression

concatptωpπq | π P Pq1uq ¨ ¨ ¨ concatptωpπq | π P PqN uq, Since both ||Q|| “ |G|
Opkq

and ||Val || “ |G|
Opkq

, the loop at (lines 8–10) takes time |G|
Opkq

as well.

The remaining part of the algorithm computes first an over-approximation
of concatp∆qN´1 (lines 11–13) in the variable C—observe that the algorithm

computes concatp∆q|G|
2k

´ 1 instead of concatp∆qN´1. Finally, the control set

Γ
rb with the needed property is produced by |G|

2k
ě N repeated concatenations

of the bounded expression C ¨B0, at lines (15–16). Since both loops take time at

most |G|
2k

, we conclude that Algorithm 1 runs in time |G|
Opkq

. [\

29

B.3 Proof of Lemma 3

A grammar G is said to be reduced for X iff LX,Y pGq ‰ H and LY pGq ‰ H,
for every Y P Ξ, X ‰ Y . A grammar can be reduced in polynomial time, by
eliminating unreachable and unproductive nonterminals [12, Lemma 1.4.4].

Proof (of Lemma 3). We start by proving a series of five facts.
(i) First, no production of G has the form pY, vq, where Y P Ξ

}1..d and v contains
a symbol of Ξ

y1..d. By contradiction, assume such a production exists where
Z P Ξ

y1..d is a nonterminal occurring in v. Because Z P Ξ
y1..d, a1 occurs

in some word of LZpGq and ad occurs in some word of LZpGq. On the
other hand, we have that either no word of LY pGq contains a1 or no word
of LY pGq contains ad, since Y P Ξ

}1..d. Because G is reduced, we have

tu | v ùñ˚ uu ‰ H. We reach a contradiction, since tu | Y
pY,vq
ùùùñ v ùñ˚ uu

contains a word in which a1 occurs and a word in which ad occurs, because
Z occurs in v.

(ii) Define Qpu, vq to be the following proposition:

u1 P pΞ YAq˚ | uñ˚ u1
(

Ď pta1u YΞ
}1..dq

˚

and

v1 P pΞ YAq˚ | v ñ˚ v1
(

Ď ptadu YΞ
}1..dq

˚ .

We show that Qpu, vq holds if Xi ñ
˚ uXj v with Xi, Xj P Ξ

y1..d. By contra-
diction, assume that there exists u1 such that u ùñ˚ u1 and u1 R pta1uYΞ

}1..dq
˚

(a similar argument holds for v). Then either (a) u1 contains a symbol a`,
for ` ą 1 or (b) u1 contains a nonterminal Z P Ξ

y1..d. Because G is reduced,
we have tu1 | u ùñ˚ u1u ‰ H. In either case (a) or (b), there exists a step
sequence u1 ñ˚ u1 a` u2 P A˚ such that ` ą 1. Since Xj P Ξ

y1..d, we have
that Xj v ñ

˚ a1 u3 P A˚, hence that Xi ñ
˚ u1 a` u2 a1 u3 and finally that

LXpGq Ę rb, since G is reduced, a contradiction.
(iii) For every step sequence Xj ñ

˚ x, where Xj P Ξ
y1..d, x cannot be of the form

u1Xd u2Xe u3 where Xd, Xe P Ξ
y1..d. In fact, take the decomposition u “ u1

and v “ u2Xe u3 (the case u “ u1Xd u2 and v “ u3 yields the same result).
Because piiq applies, we find that Qpu, vq holds but v R ptadu YAYΞ

}1..dq
˚,

hence a contradiction.
(iv) If X

γ
ùñG uXi v is a step sequence of G, for some Xi P Ξ

y1..d, γ P ∆˚ then

X
γ
ùñG7 uXi v is also a step sequence of G7. The proof goes by induction

on n “ |γ|. Let X “ w0
pγq1
ùùñG w1 ¨ ¨ ¨wn´1

pγqn
ùùñG wn “ uXi v. If n “ 0

then γ “ ε, X “ Xi P Ξ
y1..d and u “ v “ ε, which trivially yields a step

sequence of G7. For the inductive case, because of piq we find that, necessarily,
pwn´1q` P Ξ

y1..d for some `. We thus can apply the induction hypothesis

onto X
pγq1...pγqn´1

ùùùùùùùùñG wn´1 and conclude that X
pγq1...pγqn´1

ùùùùùùùùñG7 wn´1. Next,

since wn´1
pγqn
ùùñ wn it cannot be the case that wn´1

pγqn{p
ùùùùñ wn where p ‰ `

and pγqn “ pY, tq with Y P Ξ
y1..d for otherwise X ñ˚

G wn´1 contradicts piiiq

30

(recall that both pwn´1q` and X belong to Ξ
y1..d). Thus we have pγqn P ∆

7,

hence wn´1
pγqn
ùùñG7 wn, and finally X

γ
ùñG7 uXi v.

(v) If L1, L2 Ď rb and L1 ¨ L2 Ď a˚` . . . a
˚
r , for some 1 ď ` ď r ď d, then there

exists ` ď q ď r such that L1 Ď a˚` . . . a
˚
q and L2 Ď a˚q . . . a

˚
r . Assume,

by contradiction, that there is no such q. Then there exist words w1 “

ai`` . . . a
ir
r P L1 and w2 “ aj`` . . . a

jr
r P L2, two positions p1, p2 such that

` ď p2 ă p1 ď r such that ip1 ‰ 0, jp2 ‰ 0. Because all ai are distinct, we
conclude that w1 ¨ w2 R a

˚
` . . . a

˚
r , hence a contradiction.

We continue with the proof of the five items of the lemma:

1. The derivation X
γ

ùùñ
dfpkq

w, where |γ| “ n, has a unique corresponding r-

step sequence Xx0y “ wα0
0

pγq1
ùùñ wα1

1 . . .
pγqn
ùùñ wαnn “ wαn . Now, we define a

parent relationship in that step sequence, denoted Ÿ, between r-annotated
nonterminals: Y xay Ÿ Zxby iff there exists a step in the sequence that rewrites

Y xay to Zxby, that is uα
pY,tq{j
ùùùùñ vβ where puαqj “ Y xay, and pvβq` “ Zxby for

some j ď ` ď j ´ 1` |t|.
Let pγq`p “ pXip , a y b zq be the last occurrence, in γ, of a production with
head Xip P Ξy1..d. Notice that such an occurrence always exists since X P Ξ

y1..d

and moreover we have that a, b P AYtεu, y, z P Ξ
}1..dYtεu. In fact, since γ is a

derivation, if y P Ξ
y1..d or z P Ξ

y1..d then pγq`p would clearly not be the last such

occurrence. Let X “ X
xr0y
i0

ŸX
xr1y
i1

Ÿ ¨ ¨ ¨ ŸX
xrpy
ip

be the sequence of ranked

ancestors of Xip in the r-step sequence, and pγq`j “ pXij , a ymj bXij`1
q P ∆

(or, symmetrically pγq`j “ pXij , aXij`1 b zmj q P ∆), for some a, b P A Y tεu,
zmj , ymj P Ξ Y tεu, be the productions introducing these nonterminals, for all
0 ď j ă p.
If ymj P Ξ, let γj be the subword of γ corresponding to the derivation

ymj
γj
ùñ wmj , for some wmj P A˚. Notice that no Xi` has ymj for ancestor,

and that ymj
γj
ùñ wmj must be a depth-first derivation because X

γ
ùñ w is.

Otherwise, if ymj “ ε, let γj “ ε. Let γ7 “ pγq`0 ¨γ0 ¨ pγq`1 ¨γ1 ¨ ¨ ¨ pγq`p´1
¨γp´1.

Observe that, since each ymj
γj
ùñ wmj is a depth-first derivation, we have

X
xby
ij`1

y
xby
mj

γj
ùñ X

xby
ij`1

wαmj (or with Xij`1 and ymj swapped) is a depth-first

step sequence because ymj and Xij`1 have the same rank b. Clearly, γ7

corresponds to a valid step sequence of G which, moreover, is depth first,
since whenever pγq`j fires, Xij is the only nonterminal left (and whose rank

is therefore maximal). It follows from pivq that because X
γ7

ùñG uXip v holds

and X,Xip P Ξy1..d then X
γ7

ùñG7 uXip v holds (notice the use of G7 instead of

G). Moreover, the definition of γ7 shows that X
γ7

ùñG7 uXip v is a depth-first
step sequence and u, v P A˚.

31

Since X
γ
ùñG w is a k-index derivation, each step sequence ymj

γj
ùñ wmj are

of index at most k. Therefore the index of each step sequence Xij`1ymj
γj
ùñ

Xij`1wmj (or in reverse order) is at most k ` 1. Also, when each pγq`j fires,
Xij is the only nonterminal left and so the index of the step is at most 2.

Therefore we find that X
γ7

ùùùñ
pk`1q

uXip v, and finally that X
γ7

ùùùùñ
dfpk`1q

uXip v in

G7.
2. Assume that y, z P Ξ

}1..d (the cases y “ ε or z “ ε are similar). Since γ of

length n induces a k-index depth first derivation, we have that y z
pγq`p`1...pγqn
ùùùùùùùùùñ

dfpkq

uy uz P A˚ can be split into two derivations of G as follows: y
γy

ùùùñ
dfpkyq

uy and

z
γz

ùùùñ
dfpkzq

uz such that maxpkz, kyq ď k and minpkz, kyq ď k´ 1 (see Lem. 7 for

a proof). Assume ky ď k ´ 1, the other case being symmetric. Since the only
production in pγq`p ¨ ¨ ¨ pγqn whose left hand side is a nonterminal from Ξ

y1..d

is pγq`p “ pXip , a y b zq, which, moreover, occurs only in the first position, we
have that γy P Γ

dfpk´1q
y pGip,aybzq and γz P Γ

dfpkq
z pGip,aybzq, by the definition

of Gip,aybz.
3. It suffices to notice that γ7 ¨ pγq`p ¨ ¨ ¨ pγqn results from reordering the produc-

tions of γ and that reordering the productions of γ result into a step sequence
producing the same word w “ ai11 . . . aidd since LXpGq Ď rb where rb is a strict
d-letter bounded expression. That the resulting derivation has index k and is
depth-first follow easily from p1q and p2q.

4. Given that ∆7 Ď ∆ we find that X ùñ˚
G7
uXip v implies X ùñ˚

G uXip v, hence
Qpu, vq holds by piiq and X,Xip P Ξy1..d. By the definition of Qpu, vq, we have:

tu1 P pΞ YAq˚ | u ùñ˚ u1u Ď pta1u YΞ
}1..dq

˚ and
tv1 P pΞ YAq˚ | v ùñ˚ v1u Ď ptadu YΞ

}1..dq
˚

Since G is reduced, tu1 P A˚ | u ùñ˚ u1u ‰ H and tv1 P A˚ | v ùñ˚ v1u ‰ H.
But because Xip P Ξy1..d, it must be the case that tu1 P A˚ | u ùñ˚ u1u Ď a˚1
and tv1 P A˚ | v ùñ˚ v1u Ď a˚d , otherwise we would contradict the fact that

LXpGq Ď rb.

5. Since X
γ7

ùñG uXip v
pXip ,a y b zq
ùùùùùùùñG u a y b z v and G is reduced, we have that

tu1 P A˚ | u ùñ˚
G u1u ¨ a ¨ LypGq ¨ b ¨ LzpGq ¨ tv

1 P A˚ | v ùñ˚
G v1u Ď LXpGq Ď rb,

and thus LypGq ¨ LzpGq Ď rb. We consider only the case y, z P Ξ
}1..d—the cases

y “ ε or z “ ε use similar arguments, and are left as an easy exercise. Hence,
our proof falls into 4 cases:
(a) LypGi,a y b zq X pa1 ¨ A˚q “ H and LzpGi,a y b zq X pa1 ¨ A˚q “ H. Thus

LypGi,a y b zq ¨ LzpGi,a y b zq Ď a˚2 . . . a
˚
d . Then fact (v) for ` “ 2 and r “ d

concludes this case.
(b) LypGi,a y b zq X pA˚ ¨ adq “ H and LzpGi,a y b zq X pA˚ ¨ adq “ H. Thus

LypGi,a y b zq ¨ LzpGi,a y b zq Ď a˚1 . . . a
˚
d´1. Then fact (v) for ` “ 1 and

r “ d´ 1 concludes this case.

32

(c) LypGi,a y b zq X pA˚ ¨ adq “ H and LzpGi,a y b zq X pa1 ¨A˚q “ H. Thus we
have LypGi,a y b zq Ď a˚1 . . . a

˚
d´1 and LzpGi,a y b zq Ď a˚2 . . . a

˚
d . By the fact

(v) (with ` “ 1, r “ d) there exists q, 1 ď q ď d such that LypGi,a y b zq Ď
a˚1 . . . a

˚
q and LzpGi,a y b zq Ď a˚q . . . a

˚
d . Next we show 1 ă q ă d holds. In

fact, assume the inclusions hold for q “ 1. Then they also hold for q “ 2
since LzpGi,a y b zq Ď a˚2 . . . a

˚
d . A similar reasoning holds when q “ d since

LypGi,a y b zq Ď a˚1 . . . a
˚
d´1.

(d) LypGi,a y b zqXpa1 ¨A˚q “ H and LzpGi,a y b zqXpA˚ ¨adq “ H. We first ob-
serve that it cannot be the case that LypGi,a y b zq contains some word where
ad occurs and LzpGi,a y b zq contains some word where a1 occurs for other-
wise concatenating those two words shows LypGi,a y b zq ¨ LzpGi,a y b zq Ę
a˚1 . . . a

˚
d . This leaves us with three cases: (a) If LypGi,a y b zqXpA˚¨adq ‰ H

we find that LzpGi,a y b zq Ď a˚d , hence that LypGi,a y b zq Ď a˚2 . . . a
˚
d since

LypGi,a y b zq X pa1 ¨ A˚q “ H. (b) If LzpGi,a y b zq X pa1 ¨ A˚q ‰ H we
find that LypGi,a y b zq Ď a˚1 , hence that LzpGi,a y b zq Ď a˚1 . . . a

˚
d´1 since

LzpGi,a y b zq X pA˚ ¨ adq “ H. (c) Then LypGi,a y b zq X pA˚ ¨ adq “ H

and LzpGi,a y b zq X pa1 ¨ A˚q “ H. Hence LypGi,a y b zq ¨ LzpGi,a y b zq Ď
a˚2 . . . a

˚
d´1 and by the fact (v) for ` “ 2 and r “ d´1 there exists 1 ă q ă d

such that LypGi,a y b zq Ď a˚2 . . . a
˚
q and LzpGi,a y b zq Ď a˚q . . . a

˚
d´1. [\

B.4 Proof of Theorem 3

Proof (of Theorem 3). We prove the theorem by induction on d ą 0. If d “ 1, 2, we
obtain Γ

rb from Lemma 2, and time needed to compute Γ
rb, using Algorithm 1, is

|G|
Opkq

. Moreover, we have L
pkq
X pGq “ L̂XpΓrbXΓ

dfpkq

X , Gq Ď L̂XpΓrbXΓ
dfpk`1q

X , Gq.
For the induction step, assume d ě 3. W.l.o.g. we assume that G is reduced

for X, and that a˚1 . . . a
˚
d is the minimal bounded expression such that LXpGq Ď

a˚1 . . . a
˚
d . Consider the partition Ξ

y1..d YΞ}1..d “ Ξ and Ξ
y1..d XΞ}1..d “ H, defined

in the previous. Since G is reduced for X, then X P Ξ
y1..d. Define

∆pivot “ tpXi, a y b zq P ∆ | Xi P Ξ
y1..d and a, b P AY tεu, y, z P Ξ

}1..d Y tεuu .

By Lemma 2, for each Xi P Ξ, such that LX,XipGq Ď a˚1a
˚
d , there exists

a bounded expression ΓX,Xi1,d such that L
pk`1q
X,Xi

“ L̂X,XipΓ
X,Xi
1,d X Γ dfpk`1q

X,Xi
, Gq.

Moreover, by the induction hypothesis, for each `,m, r such that 1 ď ` ď m ď

r ď d, m ´ ` ă d ´ 1 and r ´ m ă d ´ 1, and for each Y,Z P Ξ such that
LY pGq Ď a˚` . . . a

˚
m and LZpGq Ď a˚m . . . a

˚
r , there exist two sets SY`...m,SZm...r of

bounded expressions over ∆i,aybz such that L
pkq
Y pGq Ď L̂Y p

Ť

SY`...mXΓ
dfpk`1q

Y , Gq

and L
pkq
Z pGq Ď L̂Zp

Ť

SZm...r X Γ dfpk`1q

Z , Gq. We extend this notation to ε, and
assume that Sεi...j “ tεu. We define:

IH “ tp`,m, rq | 1 ď ` ď m ď r ď d, m´ ` ă d´ 1^ r ´m ă d´ 1u

S
rb “ tΓ

X,Xi
1,d ¨ pXi, a y b zq

˚ ¨ Γ 1 ¨ Γ 2 | pXi, a y b zq P ∆pivot^

LX,XipGq Ď a˚1a
˚
d ^ Γ

1 P Sy`...m ^ Γ
2 P Szm...r ^ p`,m, rq P IHu

33

First, let us prove that L
pkq
X pGq Ď L̂Xp

Ť

S
rb X Γ dfpk`1q

X , Gq. Let w P L
pkq
X pGq

be a word, and X
γ

ùùñ
dfpkq

w be a k-index depth first derivation of w in G. Since

w P L
pkq
X pGq, such a derivation is guaranteed to exist. By Lemma 3, there

exists pXi, a y b zq P ∆pivot, and γ7 P p∆7q˚, γy, γz P p∆i,aybzq
˚, such that γ7 ¨

pXi, a y b zq ¨ γy ¨ γz is a permutation of γ, and:

– X
γ7

ùùùùñ
dfpk`1q

uXi v is a step sequence of G7 with u, v P A˚;

– y
γy

ùùùñ
dfpkyq

uy and z
γz

ùùùñ
dfpkzq

uz are derivations of Gi,aybz (hence uy uz P A˚),

maxpky, kzq ď k and minpky, kzq ď k ´ 1;

– X
γ7¨pXi,aybzq¨γy ¨γz

ùùùùùùùùùùñ
dfpk`1q

w is a derivation of G7 if y
γy

ùùùùñ
dfpk´1q

uy is a derivation of

Gi,aybz;

– X
γ7¨pXi,aybzq¨γz ¨γy

ùùùùùùùùùùñ
dfpk`1q

w is a derivation of G7 if z
γz

ùùùùñ
dfpk´1q

uz is a derivation of

Gi,aybz;
– LX,XipG

7q Ď a˚1a
˚
d ;

– LypGi,aybzq Ď a˚` . . . a
˚
m if y P Ξ

}1..d; LzpGi,aybzq Ď a˚m . . . a
˚
r if z P Ξ

}1..d, with
1 ď ` ď m ď r ď d, such that m´ ` ă d´ 1 and r ´m ă d´ 1.

Let us consider the case where y, z P Ξ (the other cases of y “ ε or z “ ε being
similar, are left to the reader). We also assume ky ď k ´ 1 the other case being
symmetric.

Therefore, by the induction hypothesis there exist bounded expressions Γ 1 P

Sy`...m and Γ 2 P Szm...r such that y
γ1

ùùùùùñ
dfpky`1q

uy and z
γ2

ùùùùùñ
dfpkz`1q

uz, for some control

words γ1 P Γ 1 and γ2 P Γ 2. If LX,XipG
7q Ď a˚1a

˚
d , by Lemma 2, there exists a

control word γ7 P ΓX,Xi1,d such that X
γ7

ùùùùñ
dfpk`1q

uXi v is a pk ` 1q-index depth first

step sequence in G7. It follows that:

X
γ7

ùùùùñ
dfpk`1q

uXi v
pXi,aybzq

ùùùùùñ u a y b z v
γ1

ùùùùùñ
dfpky`2q

u auy b z v
γ2

ùùùùùñ
dfpkz`1q

u auy b uz v “ w .

Observe that u a y b z v
γ1

ùùùùùñ
dfpky`2q

u auy b z v because a, b, u, v P A˚, z P Ξ and

y
γ1

ùùùùùñ
dfpky`1q

uy. Since ky ď k ´ 1 and kz ď k, we find that ky ` 2 ď k ` 1

and kz ` 1 ď k ` 1, respectively. Hence the overall index of the foregoing
derivation with control word pγ7 pXi, aybzq γ

1 γ2q is at most k ` 1. Since it is
also a depth-first derivation, we finally find that w P L̂Xp

Ť

S
rb X Γ

dfpk`1q

X , Gq, i.e.

L
pkq
X pGq Ď L̂Xp

Ť

S
rb X Γ

dfpk`1q

X , Gq.
In the following, we address the time complexity of the construction of

S
rb, and of each bounded expression Γ P S

rb. We refer to Algorithm 2 in the
following. Notice first that both the minimizeExpression and partition-
Nonterminals functions take time Op|G|q, because emptiness of the inter-
section between a context-free grammar and a finite automaton of constant
size is linear in the size of the grammar [5, Section 5]. Moreover, the inclu-

34

sion check on (line 12) is possible also in time Op|G|q (see Remark2). By
Lemma 2, a call to ConstantBoundedControlSetpG,b, kq will take time

|G|
Opkq

. Lemma 3 shows that the sizes of the bounded expression considered at
lines 16 and 19, in a recursive call, sum up to the size of the bounded expres-
sion for the current call. Thus the total number of recursive calls is at most d.
We thus let T pdq denote the time needed for the top-level call of the function
LetterBoundedControlSetpG,X, a˚1 . . . a

˚
d , kq to complete. Since the loop

on (lines 11–21) will be taken at most ||∆|| ď |G| times, we obtain:

T pdq “ |G|
Opkq

` |G|pOp|G|q ` 2T pd´1qq

where 2T pd´1q is the time needed for the two recursive calls at lines 16 and 19

to complete. Because T p0q “ Op|G|q ` |G|Opkq, we find that T pdq “ |G|
Opkq`d

.
Finally, the time needed to build each bounded expression Γ P S

rb can be evalu-
ated by observing that each such expression is uniquely determined by a sequence
σ P ∆˚ of productions of G that are successively chosen at line 11. Let us consider
now a slightly modified version of Algorithm 2 that is guided by a sequence σ P ∆˚

received in input — the function LetterBoundedControlSetpG,X, a˚s . . . a
˚
t , k, σq

receives an extra parameter and returns also the suffix of σ that remains after
processing the first production on σ, i.e. the recursive calls at lines 16 and 19 have
returned. Since the sum of sizes of the bounded expressions for these recursive
calls is at most t´ s, by Lemma 3, we obtain that, in total, Algorithm 2 initiates
at most d calls to LetterBoundedControlSet. We recall also that the prefix

of each call (before making recursive calls) takes time Op|G|q ` |G|Opkq. Since

LXpGq Ď rb, assuming that rb is minimal, we have |rb| ď |G|. Hence, the time
needed to compute a bounded expression Γ P S

rb is bounded by:

d ¨ pOp|G|q ` |G|Opkqq ď |G| ¨ pOp|G|q ` |G|Opkqq “ |G|Opkq .

[\

B.5 Proof of Lemma 4

Proof (of Lemma 4). Given k ą 0, consider the following grammar:

G “ xtXi | 0 ď i ď ku, tau, tXi Ñ Xi´1Xi´1 | 1 ď i ď ku Y tX0 Ñ auy .

Notice that LXkpGq “ ta
2ku Ď a˚ and |G| “ Opkq. Moreover, every depth-first

derivation of G has index k ` 1.
For each i P t1, . . . , nu, let pi be the production Xi Ñ Xi´1Xi´1 of Gn, and

let p0 be X0 Ñ a. It is easy to see that, because the derivation is depth-first, the

control word γ generating a2k from Xk is unique. Now suppose that there exists
Γ “ w˚1 . . . w

˚
d such that γ “ wi11 . . . widd , for some i1, . . . , id ě 0. Next we show

that, for all j “ 1, . . . , d we must have ij ď 2.
We first make this crucial observation, since the derivation tree is binary and

its traversal is depth-first, we have that for every pi, every three consecutive

35

occurrences `1 ă `2 ă `3 of pi—pγq`1 “ pγq`2 “ pγq`3 “ pi—implies that there
exists a position ` between `1 and `3 such that pγq` “ pi`1. Otherwise that would
imply that the derivation tree has a node Xi`1 with three Xi children; or that
the tree was not traversed in depth-first.

Take an arbitrary wj in Γ and let g be the greatest index of a production
occurring in wj . The number ij of repetitions of wj cannot be greater than two
for otherwise pg contradicts the previous fact. So this concludes that no ij can
be larger than 2.

Now, since the only string of LXkpGq has length 2k and that no rule produces
more than one terminal then necessarily |γ| ě 2k. So we show that |Γ | has to be
at least 2k´1. By contradiction, suppose |Γ | ď p2k´1 ´ 1q, then since in order to
capture γ no word of Γ can occur more than twice, the longest control word that
Γ can capture is 2 ¨ p2k´1 ´ 1q “ 2k ´ 2 which is shorter than 2k “ |γ|, hence a
contradiction. [\

B.6 Proof of Theorem 2

Proof (of Theorem 2). The Np-hard lower bound is by reduction from the Positive
Integer Linear Programming (PILP) problem, which is known to be Np-complete
[26, Corollary 18.1a]. Consider the following instance of PILP, with variables
k1, . . . , km ranging over positive integers:

$

&

%

a11 ¨ k1 ` . . .` am1 ¨ km ` c1 ď 0
¨ ¨ ¨

a1n ¨ k1 ` . . .` amn ¨ km ` cn ď 0

and denote ai “ xai1, . . . , ainy P Zn, for all i “ 1, . . . ,m, and c “ xc1, . . . , cny P
Zn. Let x “ tx1, . . . , xnu be a set of integer variables. Consider the program
PPILP “ xG,X0, rr.ssy, where G “ xΞ,Σ,∆y:
– Ξ “ tX0, . . . , Xm`1u,
– Σ “ tτi | i “ 0, . . . ,m` 1u Y tλi | i “ 0, . . . ,mu,
– ∆ “ tXi Ñ τiXi`1 | i “ 0, . . . ,muYtXi Ñ λiXi | i “ 1, . . . ,muYtXm`1 Ñ τm`1u,
– the semantics of the words w P LX0pGq is defined by the following relations:

ρτ0 ” x1 “ 0
ρτi ” x1 “ x for all i “ 1, . . . ,m´ 1
ρλi ” x1 “ x` ai for all i “ 1, . . . ,m
ρτm ” x1 “ x` c
ρτm`1

” x ď 0

Let rbPILP “ τ˚0 λ
˚
1 τ
˚
1 . . . λ

˚
mτ

˚
mτ

˚
m`1 be a bounded expression. It is immediate to

check that the PILP problem has a solution if and only if REACHfopPPILP, rbPILPq

holds. This settles the Np-hard lower bound for the class of fo-reachability
problems.

We show next that the class of fo-reachability problems REACHfopP,bq is
included in Nexptime. Let P “ xG, I, rr.ssy be a given program, where G “

36

xΞ,Σ,∆y is its underlying grammar, and b “ w˚1 . . . w
˚
d a bounded expression.

By Lemma 5, there exists a grammar GX “ xΞX, Σ,∆Xy such that:

ď

1ďsďxďd

L
rq
psq
1 Iq

pxq
1 s
pGXq “ LIpGq X b .

Moreover, we have that |GX| “ Op|b|3 ¨ |G|q. Let Ps,x “ xGX, rqpsq1 Iq
pxq
1 s, rr.ssy be

a program, for each 1 ď s ď x ď d. Since the alphabets of G and GX coincide,
the mapping of symbols to octagonal relations is the same for G and GX, hence:

ď

1ďsďxďd

rrPs,xss “ rrPssb .

Then rrP ssb ‰ H if and only if rrPs,xss ‰ H, for some 1 ď s ď x ď d. We have

reduced the original problem REACHfopP,bq to Op|b|2q reachability problems,

of size Op|b|3 ¨ |G|q each. In the following we fix 1 ď s ď x ď d, focus w.l.o.g on

the problem REACHfopPs,x,bq and we denote by X “ rq
psq
1 Iq

pxq
1 s in the rest of

this proof.
Let A “ ta1, . . . , adu be an alphabet disjoint from Σ and rb “ a˚1 . . . a

˚
d be

a strict letter-bounded expression, such that b “ hprbq, where h : A Ñ Σ˚ is
the homomorphism hpaiq “ wi, for all i “ 1, . . . , d. By Lemma 6 there exists a
grammar G’ “ xΞX,A, ∆’y such that, for every k ą 0:

1. L
pkq
X pG’q “ h´1pL

pkq
X pGXqq X rb,

2. for each Γ Ď p∆’q
˚
, such that L

pkq
X pG’q Ď L̂XpΓ,G

’q, we have L
pkq
X pGXq Ď

L̂Xpι
´1pΓ q, GXq.

Moreover, we have |G’| “ Op|b|3 ¨ |G|q. Since L
pkq
X pG’q Ď rb, by Theorem 3,

there exists a set S
rb of bounded expressions over ∆’ such that:

L
pkq
X pG’q Ď L̂X

´

ď

S
rb X Γ

dfpk`1q

X pG’q, G’
¯

.

Hence, by Lemma 6, we obtain:

L
pkq
X pGXq Ď L̂X

´

ι´1
´

ď

S
rb

¯

X Γ dfpk`1q

X pGXq, GX
¯

.

We used the fact that ι´1pΓ dfpk`1q

X pG’qq “ Γ dfpk`1q

X pGXq. Because LXpG
Xq Ď b,

there exists K “ Op|GX|q such that LXpG
Xq “ L

pKq
X pGXq as Theorem 1 shows.

Hence K “ Op|b|3 ¨ |G|q as well. We obtain the following:

LXpG
Xq Ď L

pKq
X pGXq Ď L̂X

´

ι´1
´

ď

S
rb

¯

X Γ dfpK`1q

X pGXq, GX
¯

Ď LXpG
Xq

thus, LXpG
Xq “ L̂X

`

ι´1
`
Ť

S
rb

˘

X Γ dfpK`1q

X pGXq, GX
˘

. Assume that S
rb “ tΓ1, . . . , Γmu,

for some m ą 0, and denote ι´1pΓiq by rΓi. We have that, for each derivation

X
γ

ùùùùñ
dfpk`1q

w of GX, rrwss “ H iff rrγss “ H [11, Lemma 2]. As a result, rrPs,xss ‰ H

37

iff there exists i “ 1, . . . ,m and γ P rΓi X Γ dfpk`1q

X pGXq, such that rrγss ‰ H. By
Theorem 3, each set Γi can be constructed in time:

|G’|
OpKq

“ p|b|
3
¨ |G|qOpKq “ p|b|

3
¨ |G|qOp|b|

3
¨|G|q “ 2Op|b|

3
¨|G|¨plog |b|`log |G|qq .

We have used the facts |G’| “ Op|b|3 ¨ |G|q and K “ Op|b|3 ¨ |G|q.
By Lemma 1, there exists a finite automaton AdfpK`1q

GX that recognizes the
language Γ dfpK`1q

X pGXq. Equivalently, we consider a grammar GdfpK`1q, such that
LXx0ypGdfpK`1qq “ Γ dfpK`1q

X pGXq, where Xx0y is the ranked nonterminal corre-
sponding to the initial state of AdfpK`1q

GX in Lemma 1. Let Q “ xGdfpK`1q, Xx0y, rr.ssy
be the program associated with GdfpK`1q. If P was assumed to be an octagonal
program, then so is Q.

The problem REACHfopPs,x,bq is thus equivalent to the finite set of problems

REACHfopQ, rΓiq, for i “ 1, . . . ,m. The size of GdfpK`1q is

|GdfpK`1q| “ |GX|
OpKq

“ p|b|
3
¨ |G|qOpKq “ 2Op|b|

3
¨|G|¨plog |b|`log |G|qq .

Hence the size of the input to each problem REACHfopQ, rΓiq is 2Op|b|
3
¨|G|¨plog |b|`log |G|qq.

Since Q is a procedure-less octagonal program, and each such problem can be
solved in Nptime [7, Theorem 10], this provides a Nexptime decision procedure
for the problem REACHfopPs,x,bq.

We are left with proving that the REACHfopP,bq problem is in Np, when

rrP ss “ rrP ss
pkq

, for a constant k ą 0. To this end, we define a grammar Gk “
xΞ ˆ

0, 0̄, . . . , k, k̄
(

, Σ,∆ky such that LXpGq
pkq “ LpX,kqpGkq [22, Definition

3.1]. Using the fact that, for each production pZ,wq P ∆, there are at most two
nonterminals in w, we establish that |Gk| ď 3k|G| ` kpk ` 1q, hence |Gk| “
Opk2 ¨ |G|q.

The corresponding program is Pk “ xGk, pI, kq, rr.ssy. By applying the reduction

above, we obtain a set of problems REACHfopQk, rΓiq, each of which of size

p|b|
3
¨ |Gk|q

Opkq “ p|b|
3
¨ pk2 ¨ |G|qqOpkq. Since k is constant, we can solve this

problem in Nptime, using an Np procedure [7, Theorem 10]. Since the Np-hard
lower bound was proved above, the problem is Np-complete. [\

38

	Interprocedural Reachability for Flat Integer Programs

