Skip to main content

How to Detect Communities in Large Networks

  • Conference paper
  • First Online:
  • 1777 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9225))

Abstract

Community detection is a very popular research topic in network science nowadays. Various categories of community detection algorithms have been proposed, such as graph partitioning, hierarchical clustering, partitional clustering. Due to the high computational complexity of those algorithms, it is impossible to apply those algorithms to large networks. In order to solve the problem, Blondel introduced a new greedy approach named lovian to apply to large networks. But the remained problem lies in that the community detection result is not unstable due to the random choice of seed nodes. In this paper, we present a new modularity optimization method, LPR, for community detection, which chooses the node in order of the PageRank value rather than randomly. The experiments are executed by using medium-sized networks and large networks respectively for community detection. Comparing with lovian algorithm, the LPR method achieves better performance and higher computational efficiency, indicating the order of choosing seed nodes greatly influences the efficiency of community detection. In addition, we can get the importance values of nodes which not only is part of our algorithm, but also can be used to detect the community kernel in the network independently.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. J. Stat. Mech. Theor. Exp. 2008, 10008 (2008). http://iopscience.iop.org/11742-15468/12008/10010/P10008

    Article  Google Scholar 

  2. Boguñá, M., Pastor-Satorras, R., Díaz-Guilera, A., Arenas, A.: Models of social networks based on social distance attachment. Phys. Rev. E 70, 056122 (2004). http://journals.aps.org/pre/abstract/056110.051103/PhysRevE.056170.056122

    Article  Google Scholar 

  3. Chen, J., Yuan, B.: Detecting functional modules in the yeast protein–protein interaction network. Bioinformatics 22, 2283–2290 (2006). http://bioinformatics.oxfordjournals.org/content/2222/2218/2283.short

    Article  Google Scholar 

  4. Clauset, A., Newman, M.E.J., Moore, C.: Finding community structure in very large networks. Phys. Rev. E 70, 066111 (2004). http://journals.aps.org/pre/abstract/066110.061103/PhysRevE.066170.066111

    Article  Google Scholar 

  5. Flake, G.W., Lawrence, S., Giles, C.L., Coetzee, F.M.: Self-organization and identification of web communities. Computer 35, 66–70 (2002). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=989932

    Article  Google Scholar 

  6. Freeman, L.: The Development Of Social Network Analysis: A Study in the Sociology of Science. Empirical Press, Vancouver (2004). http://www.researchgate.net/profile/Linton_Freeman/publication/239228599_The_Development_of_Social_Network_Analysis/links/54415c650cf2e6f0c0f616a8.pdf

    Google Scholar 

  7. Girvan, M., Newman, M.E.J.: Community structure in social and biological networks. Proc. Nat. Acad. Sci. 99(12), 7821–7826 (2002). http://www.pnas.org/content/7899/7812/7821.short

    Article  MathSciNet  MATH  Google Scholar 

  8. Gleiser, P.M., Danon, L.: Community structure in jazz. Advances in complex systems 6(4), 565–573 (2003). http://www.worldscientific.com/doi/abs/510.1142/S0219525903001067

    Article  Google Scholar 

  9. Guimera, R., Amaral, L.A.N.: Functional cartography of complex metabolic networks. Nature 433, 895–900 (2005). http://www.nature.com/articles/nature03288

    Article  Google Scholar 

  10. Haveliwala, T.: Efficient computation of PageRank (1999)

    Google Scholar 

  11. Knuth, D.E.: The Stanford GraphBase: a platform for combinatorial computing. Addison-Wesley, Reading (1993). http://tex.loria.fr/sgb/abstract.pdf

    Google Scholar 

  12. Krawczyk, M.J.: Differential equations as a tool for community identification. Phys. Rev. E 77, 065701 (2008). http://journals.aps.org/pre/abstract/065710.061103/PhysRevE.065777.065701

    Article  Google Scholar 

  13. Leskovec, J., Kleinberg, J., Faloutsos, C.: Graph evolution: densification and shrinking diameters. ACM Trans. Knowl. Disc. Data (TKDD) 1(1), 2 (2007). http://dl.acm.org/citation.cfm?id=1217301

    Article  Google Scholar 

  14. Leskovec, J., Lang, K.J., Dasgupta, A., Mahoney, M.W.: Community structure in large networks: natural cluster sizes and the absence of large well-defined clusters. Internet Math. 6(1), 29–123 (2009). http://www.tandfonline.com/doi/abs/110.1080/15427951.15422009.10129177

    Article  MathSciNet  MATH  Google Scholar 

  15. Leskovec, J., McAuley, J.J.: Learning to discover social circles in ego networks. Advances in neural information processing systems 25, 539–547 (2012). http://papers.nips.cc/paper/4532-learning-to-discover-social-circles-in-ego-networks

    Google Scholar 

  16. Newman, M.E.J.: The structure of scientific collaboration networks. Proc. Natl. Acad. Sci. 98(2), 404–409 (2001). http://www.pnas.org/content/498/402/404.short

    Article  MathSciNet  MATH  Google Scholar 

  17. Rives, A.W., Galitski, T.: Modular organization of cellular networks. Proc. Nat. Acad. Sci. 100(3), 1128–1133 (2003). http://www.pnas.org/content/1100/1123/1128.short

    Article  Google Scholar 

  18. White, S., Smyth, P.: A Spectral Clustering Approach To Finding Communities in Graph. SDM. SIAM 5, 76–84 (2005). http://epubs.siam.org/doi/abs/10.1137/1131.9781611972757.9781611972725

    Google Scholar 

  19. Williams, R.J., Martinez, N.D.: Simple rules yield complex food webs. Nature 404, 180–183 (2000). http://www.nature.com/articles/35004572

    Article  Google Scholar 

  20. Yang, J., Leskovec, J.: Defining and evaluating network communities based on ground-truth. In: Proceedings of the ACM SIGKDD Workshop on Mining Data Semantics, p. 3. ACM (2012). http://dl.acm.org/citation.cfm?id=2350193

  21. Zachary, W.W.: An information flow model for conflict and fission in small groups. J. Anthropol. Res. 33(4), 452–473 (1977)

    Google Scholar 

Download references

Acknowledgement

This work is partially supported by the National Natural Science Foundation of China (Nos. 11161140319, 91120001, 61271426), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant Nos. XDA06030100, XDA06030500), the National 863 Program (No. 2012AA012503) and the CAS Priority Deployment Project (No. KGZD-EW-103-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasong Jiang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Jiang, Y., Huang, Y., Li, P., Gao, S., Zhang, Y., Yan, Y. (2015). How to Detect Communities in Large Networks. In: Huang, DS., Bevilacqua, V., Premaratne, P. (eds) Intelligent Computing Theories and Methodologies. ICIC 2015. Lecture Notes in Computer Science(), vol 9225. Springer, Cham. https://doi.org/10.1007/978-3-319-22180-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-22180-9_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-22179-3

  • Online ISBN: 978-3-319-22180-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics