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Abstract. Test case prioritization (TCP) is aimed at finding an ideal
ordering for executing the available test cases to reveal faults earlier.
To solve this problem greedy algorithms and meta-heuristics have been
widely investigated, but in most cases there is no statistically significant
difference between them in terms of effectiveness. The fitness function
used to guide meta-heuristics condenses the cumulative coverage scores
achieved by a test case ordering using the Area Under Curve (AUC) met-
ric. In this paper we notice that the AUC metric represents a simplified
version of the hypervolume metric used in many objective optimization
and we propose HGA, a Hypervolume-based Genetic Algorithm, to solve
the TCP problem when using multiple test criteria. The results shows
that HGA is more cost-effective than the additional greedy algorithm on
large systems and on average requires 36% of the execution time required
by the additional greedy algorithm.
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1 Introduction

Regression testing is aimed at verifying that software changes do not affect the
unchanged parts compromising their behaviours. Many approaches have been
proposed in literature for reducing the effort of regression testing [22],[29], which
remains a particular expensive maintenance activity. One of these approaches is
test case prioritization (TCP) [25],[11]. TCP is aimed at finding an ordering for
executing the available test cases, with the goal of executing those test cases that
are more likely to reveal faults earlier [12]. Most of the proposed techniques for
TCP are based on a coverage criterion [29], such as branch coverage [25], used
as a surrogate to prioritize test case with the idea that test cases having higher
code coverage also have a higher probability to reveal faults. Once a coverage
criterion is chosen, search algorithms can be applied for finding the ordering
maximizing the selected criterion.

Greedy Algorithms have been widely investigated in literature for test case
prioritization, such as simple greedy algorithms [29], additional greedy algo-
rithms [25], 2-optimal greedy algorithms [22], or hybrid greedy algorithms [15].



Other than greedy algorithms, meta-heuristics have been applied as alternative
search algorithms to test case prioritization. To allow the application of meta-
heuristics, proper fitness functions have been developed [22], such as the Average
Percentage Block Coverage (APBC), or the Average Percentage Statement Cov-
erage (APSC). Each fitness function condenses the cumulative coverage scores
achieved by a test case ordering using the Area Under Curve (AUC) metric. As
such, multiple points are condensed in a single scalar value that can be used
as a fitness function of meta-heuristics such as single-objective genetic algo-
rithms. Later work on search-based TCP also employed multi-objective genetic
algorithms considering different AUC-based metrics as different objectives to
optimize [21],[20]. Previous work shows that in most cases there is no statis-
tically significant difference between genetic algorithms and additional greedy
approaches in terms of effectiveness, i.e., in terms of the capability of the gener-
ated orderings to reveal regression faults earlier [22].

In this paper we notice that the AUC metrics used in the related literature
for TCP represents a simplified version of the hypervolume metric [2], which is a
widely know metric in many-objective optimization. Indeed, in many-objective
optimization the problem of condensing multiple criteria has already been inves-
tigated by using the more general concept of hypervolume under manifold [2],
which represents a generalization for the higher dimensional objective space of
the AUC-based metrics used in previous TCP studies. Indeed, we show that
the hypervolume metric allows to condense not only a single cumulative code
coverage (as done by previous AUC metrics used in TCP literature) but also
multiple testing criteria, such as the test case execution cost or further cover-
age criteria, in only one scalar value. Therefore, in this paper we propose HGA,
a Hypervolume-based Genetic Algorithm to solve the TCP problem when us-
ing multiple criteria. To show the applicability of the proposed algorithm, we
conducted an empirical study involving six real world open-source programs.
The results achieved shows that HGA is more cost-effective than the additional
greedy algorithm on large systems and on average requires 36% of the execution
time required by the additional greedy algorithm. As a further contribution, we
also show that for TCP the computation of the hypervolume metric is poly-
nomial with respect to the number of the testing criteria, while in general for
traditional optimization problems it is exponential.

2 Background and Related Work

Test Case Prioritization (TCP) has been widely investigated in literature. The
most investigated direction regards the choice of a proper testing criterion to use
for generating a test case ordering aimed at maximizing the real fault detection
rate. Since the fault capability can not be known to the tester in advance until
the test cases are executed according to the chosen ordering, researchers have
proposed to use surrogate metrics which are in some way correlated with the
fault detection rate [29]. Code coverage is one of the most widely used priori-
tization criterion, such as branch coverage [25], statement coverage [11], block



coverage [8], and function or method coverage [13]. Other prioritization criteria
were also used instead of structural coverage, such as interaction [3], clustering-
based [5], and requirement coverage [27].

In all the aforementioned works, once a prioritization criterion is chosen, a
greedy algorithm is used to order the test cases according to the chosen criterion.
Two main greedy strategies can be applied [15], [32]: the total strategy selects
test cases according to the number of code elements they cover, whereas the
additional strategy iteratively selects a next test case that yields the maximal
coverage of code elements not yet covered by previously selected test cases.
Recently, Hao et al. [15] and Zhang et al. [32] proposed a hybrid approach that
combines total and additional coverage criteria showing that their combination
can be more effective than the individual components. Greedy algorithms have
also been used to combine multiple testing criteria such as code coverage and
cost. For example, Elbaum et al. [10] and Malishevsky et al. [23] considered
code coverage and execution cost, where the additional greedy algorithm was
customized to condense the two objectives in only one function (coverage per
unit cost) to maximize. Three-objective greedy algorithms have been also used to
combine statement coverage, history faults coverage and execution cost [29],[24].

Other than greedy algorithms, meta-heuristics have been investigated as al-
ternative search algorithms to test case prioritization. Li et al. [22] compared
additional greedy algorithm, 2-optimal greedy, hill climbing and genetic algo-
rithms for code coverage based TCP. To allow the application of meta-heuristics
they developed proper fitness functions: APBC (Average Percentage Block Cov-
erage), APDC (Average Percentage Decision Coverage) or APSC (Average Per-
centage Statement Coverage). Each of these metrics condenses the cumulative
coverage scores (e.g., branch coverage) achieved when considering the test cases
in the given order sequentially [22] using the Area Under Curve (AUC) met-
ric. This area is delimited by the cumulative points whose y-coordinates are
the cumulative coverage scores (e.g., statement coverage) achieved when vary-
ing the number of executed test cases (x-coordinates) according to a specified
ordering [22]. Since this metric allows to condense multiple cumulative points in
only one scalar value, single-objective genetic algorithms can be applied to find
an ordering maximizing the AUC. According to the empirical results in [22], in
most cases the difference between the effectiveness of permutation-based genetic
algorithms and additional greedy approaches is not significant.

Later works highlighted that given the multi-objective nature of the TCP
problem, permutation-based genetic algorithms should consider more than one
testing criterion. For example, in a further paper Li et al. [21] proposed a two-
objective permutation-based genetic algorithm to optimize APSC and execution
cost required to reach the maximum statement coverage (cumulative cost). They
use a multi-objective genetic algorithm, namely NSGA-II, to find a set of Pareto
optimal test case orderings representing optimal compromises between the two
corresponding AUC-based criteria. Similarly, Islam et al. [20] used NSGA-II to
find Pareto optimal test case orderings representing trade-offs between three
different AUC-based criteria: (i) cumulative code coverage, (ii) cumulative re-



quirement coverage, and (iii) cumulative execution cost. Both these two multi-
objective approaches to test case prioritization [21], [20] have important draw-
backs. Firstly, they can provide hundreds of orderings representing trade-offs be-
tween AUC metrics and not between the selected testing criteria. Furthermore,
no guidelines are given to guide the decision maker in selecting the ordering to
use. Another important limitation of these classical multi-objective approaches
is that they lose their effectiveness as the problem dimensionality increases, as
demonstrated by previous work in numerical optimization [18]. Therefore, other
non classical many-objective solvers must be investigated in order to deal with
multiple (many) testing criteria. Finally, in [22], [21], [20] there is no empirical
evidence of the effectiveness of NSGA-II with respect to simple heuristics, such
as greedy algorithms, in terms of cost-effectiveness.

In this paper we notice that the most natural way to deal with the multi-
objective TCP problem is represented by the hypervolume-based solvers since
the AUC metrics used in the related literature for TCP represent a specific
simplified version of the hypervolume metric [2]. Indeed, in many-objective op-
timization the hypervolume metrics is widely used to condense points from a
higher dimensional objective space in only one scalar value. Instead of using the
Area Under Curve to condense multiple points, the hypervolume metric uses
the more general concept of hypervolume under manifold for this aim [2]. For
these reasons, in this paper we propose to use an hypervolume metric to solve
the multi-objective TCP problem. Moreover, we determine that because of the
monotonicity properties of the coverage criteria, the computation of the hyper-
volume for TCP requires polynomial time versus the exponential time required
for traditional many-objective problems.

3 Hypervolume Indicator for TCP

In many-objective optimization there is a growing trend to solve many-objective
problems using quality scalar indicators to condense multiple objectives into a
single objective [2]. Therefore, instead of optimizing the objective functions di-
rectly, indicator-based algorithms are aimed at finding a set of solutions that
maximizes the underlying quality indicator [2]. One of the most popular indi-
cators is the hypervolume, which measures the quality of a set of solutions as
the total size of the objective space that is dominated by one (or more) of such
solutions (combinatorial union [2]). For two-objective problems, the hypervol-
ume corresponds to the area under curve, i.e., the proportion of the area that is
dominated by a given set of candidate solutions.

To illustrate intuitively the proposed hypervolume metric, let us consider
for simplicity only two testing criteria: (i) maximizing the statement coverage
and (ii) minimizing the execution cost of a test suite. When considering the
test cases in a specific order, the cumulative coverage and the cumulative exe-
cution cost reached by each test case draw a set of points within the objective
space. For example, consider the test suite T = {t1, t2, . . . , tn} with the fol-
lowing statement coverage Cov = {covS(t1), covS(t2), . . . , covS(tn)} and execu-
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(b) Three testing criteria

Fig. 1. Cumulative points in two- and three-objective test case prioritization. The gray
area (or volume) denotes the portion of objective space dominated by the cumulative
points P (τ).

tion cost Cost = {cost(t1), cost(t2), . . . , cost(tn)}. As depicted in Figure 1-(a),
if we consider the ordering τ = 〈t1, t2, . . . , tn〉 we can measure the cumula-
tive scores as follows: the first test case t1 covers a specific set of code state-
ments covS(t1) with cost equal to cost(t1) (first cumulative point p1); the sec-
ond test case in the ordering t2 reaches a new cumulative statement coverage
covS(t1, t2) = covS(t1) ∪ covS(t2) with cost(t1, t2) = cost(t1) + cost(t2) (second
cumulative point p2); and so on. Thus, each test case prioritization corresponds
to a set of points in the two-objective space denoted by the two testing criteria,
i.e., statement coverage and execution cost in our example (see Figure 1-(a)).
These points are of weakly monotonically increasing since both cumulative cover-
age and cumulative cost increase when adding a new test case from the ordering,
i.e., covS(t1) 6 covS(t1, t2) and cost(t1) 6 cost(t1, t2).

Given this set of points we can measure how quickly the given ordering τ
optimizes the two objectives by measuring the proportion of the area dominated
by the corresponding cumulative points P (τ), denoted by the gray area in Fig-
ure 1-(a). The dominated area is represented by all points in the objective space
that are worse than the cumulative points according to the concept of dominance
in the multi-objective paradigm:

Definition 1 We say that a point X dominates another point Y (also written
X >p Y ) if and only if the values of the objective functions satisfy:

cost(X) 6 cost(Y ) and covS(X) > covS(Y )
or

cost(X) < cost(Y ) and covS(X) > covS(Y )
(1)

Two different orderings correspond to two different cumulative points and then
two different dominated areas. Therefore, we can compare the corresponding



fraction of dominated areas to decide whether one candidate test case order-
ing is better or not than another one (fitness function): larger dominated ar-
eas imply faster statement coverage rate. In this two-objective space the dom-
inated area can easily be computed as the sum of the rectangles of width
[cost(pi+1)− cost(pi)] and height covS(pi) as reported in Figure 1-(a). Similarly,
if we consider a third testing criteria (such as branch coverage covB(pi)) each
candidate prioritization corresponds to a set of points in a three-dimensional
space and, in this case, the dominated proportion of the objective space is rep-
resented by a volume instead of an area, as depicted in Figure 1-(b). Since even
in this three-objective space the cumulative points are always weakly monotoni-
cally increasing, the dominated volume can be computed as the sum of the par-
allelepipeds of width [cost(pi+1)− cost(pi)], height covS(pi) and depth covB(pi).
For more than three testing criteria the objective space dominated by a set of
cumulative points is called a hypervolume and represents a generalization of the
area for a higher dimensional space.

Without loss of generality, let T = {t1, t2, t3, . . . , tn} be a test suite of size
n and F = {cost, f1, . . . , fm} a set of testing criteria used to prioritize the
test case in T , where cost denotes the execution cost of each test case while
f1, . . . , fm are the remainingm testing criteria to maximize. Given a permutation
τ of test case in T we can compute the corresponding set of cumulative points
P (τ) = {p1, . . . , pn} obtained by cumulating the scores cost, f1, . . . , fm achieved
by each test case in the order τ .

Definition 2 The hypervolume dominated by a permutation P (τ) of test cases
can be computed as follows:

IH(τ) =

(n−1)∑
i=1

[cost(pi+1)− cost(pi)]× f1(pi)× · · · × fm(pi) (2)

where [cost(pi) − cost(pi+1)] × f1(pi) × · · · × fm(pi) measure the hypervolume
dominated by a generic cumulative point pi but non-dominated by the next point
pi+1 in the ordering τ . Since in test case prioritization the maximum values of all
the testing criteria are known (e.g., the maximum execution cost or the maximum
statement coverage are already known), we can express the hypervolume as a
fraction of the whole objective space as follows:

Definition 3 The fraction of the hypervolume dominated by a permutation P (τ)
of test cases is:

IHP (τ) =

(n−1)∑
i=1

[cost(pi+1)− cost(pi)]× f1(pi)× · · · × fm(pi)

cost(pn)× fmax
1 × . . . fmax

m

(3)

where cost(pn) is the execution cost of the whole test suite T . Such a metric
ranges in the interval [0; 1]. It is equal to +1 in the ideal case where the test case
ordering allows to reach the maximum test criteria scores independently from



the execution cost value cost(pi). A higher IHP (τ) mirrors a higher ability of
the prioritization τ in maximizing the testing criteria with lower cost. In this
paper we consider the IHP (τ) metric as suitable fitness function to guide search
algorithms, such as genetic algorithm, in finding the optimal ordering τ in multi-
objective test case prioritization. As such, we propose a new genetic algorithm
named HGA (Hypervolume-based Genetic Algorithm).

Since in TCP a candidate test case ordering corresponds to a set of mono-
tonically increasing cumulative scores (as described in the previous section) we
can use the Equation 3 for computing the dominated hypervolume instead of the
more expensive algorithm used in traditional many-objective optimization [2].
Specifically, the IHP (τ) metric sums up the slices of dominated hypervolume
delimited by two subsequent cumulative points. Thus, let m be the number of
the testing criteria and let n be the number of cumulative points (corresponding
to the size of the test suite), the IHP (τ) requires to sum the n hypervolume
slices, each one computed as the multiplication of m test criteria scores. Thus,
the overall computational time is O(n × m). Conversely, in traditional many-
objective optimization the points delimiting the non-dominated hypervolume
are non-monotonically increasing and thus, the computation of hypervolume
metric requires a more complex algorithm which is exponential with respect to
the number of objectives m [2], or testing criteria for TCP.

The IHP (τ) metric proposed in this paper can be viewed as a generalization
of the cumulative scores used in previous work on search-based test case prioriti-
zation. For example, the APSC metric measures the average cumulative fraction
of statements coverage as the Area Under Curve delimited by the test case or-
dering with respect to the cumulative statement coverage scores [22]. Under the
light of the proposed hypervolume metric, APSC can be viewed as a simplified
version of IHP (τ) where all test cases have execution cost equal to one and only
the statement coverage is considered as testing criterion. A similar consideration
can be performed for all the other cumulative fitness functions used in previous
work on search-based test case prioritization [22], [21], [20].

4 Empirical Evaluation

The goal of this study is to evaluate the Hypevolume-based GA, with the pur-
pose of solving the test case prioritization problem. The quality focus of the
study is represented in terms of three —possibly conflicting— testing criteria
which are pursued when performing test case prioritization, namely execution
cost (to minimize), statement coverage (to maximize), and past fault coverage
(to maximize). The context of our study consists of six open-source and in-
dustrial programs available from the Software-artifact Infrastructure Repository
(SIR) [19]: four GNU open-source programs bash, flex, grep, and sed; and
two programs of the Siemens suite, namely printtokens, and printtokens2.
Their main characteristics are summarized in Table 1. We selected these pro-
grams since they have been used in previous work on regression testing [22], [30]
[7] [31] [4], hence, allowing us—wherever possible—to compare results. For two



Table 1. Programs used in the study.

Program LOC # of Test Cases Description
bash 59,846 1,200 Shell language interpreter
flex 10,459 567 Fast lexical analyser
grep 10,068 808 Regular expression utility
printtokens 726 4,130 Lexical analyzer
printtokens2 520 4,115 Lexical analyzer
sed 14,427 360 Non-interactive text editor

programs extracted from the Siemens suite, SIR provides a large number of test
suites but with a limited number of test cases. Therefore, in the context of our
study we considered all the available test cases.

The empirical evaluation is steered by the following research questions:

RQ1 : What is the cost-effectiveness of HGA, compared to cost-aware additional
greedy algorithms? This research question aims at evaluating to what extent
faults (effectiveness) can be detected earlier (lower execution cost) using the
test cases ordering obtained by HGA, in comparison with a baseline tech-
nique namely two- and three-objective additional greedy algorithms. This
reflects the software engineer’s needs to obtain the maximum advantage from
testing even if it is prematurely stopped at some point.

RQ2 : What is the efficiency of HGA, compared to cost-aware additional greedy
algorithms? With this second research question we are interested in com-
paring the running time (efficiency) required by HGA to find an optimal
ordering, in comparison with two- and three-objective additional greedy al-
gorithms.

Testing Criteria. To answer our research questions we consider three ob-
jectives widely used in previous test case prioritization work [22], [17]:

– Statement coverage criterion. We measure statement coverage achieved by
each test case using the gcov tool part of the GNU C compiler (gcc).

– Execution cost criterion. In this paper we approximate the execution cost by
counting the number of executed instructions in the code, instead of measur-
ing the actual execution time, similarly as done in previous work [29],[24].
To this aim we use the gcov tool to measure the execution frequency of each
source code instruction.

– Past fault coverage criterion. As for the past fault coverage criterion, we
consider the versions of the programs with seeded faults available in the
SIR repository [19]. SIR also specifies whether or not each test case is able
to reveal these faults. Such information can be used to assign a past fault
coverage value to each test case subset, computed as the number of known
past faults that this subset is able to reveal in the previous version.

Problem formulation. Using the three test case prioritization criteria de-
scribed above, we examine two and three-objective formulations of TCP prob-
lem. The two-objective TCP problem is aimed at finding an optimal ordering of
test cases which (i) minimizes the execution cost and (ii) maximizes the state-
ment coverage. In this case the IHP (τ) metric corresponds to the area under



curve delimited by the two criteria. For the three-objective TCP problem we
consider the past faults coverage as third criteria to be maximized. Thus, in
this second case the IHP (τ) metric corresponds to the volume under manifolds
delimited by the three criteria. We note that it is possible to formulate other
criteria by just providing a clear mapping between tests and criterion-based re-
quirements. The formulations are used to illustrate how the Hypervolume-based
metric introduced in this paper can be applied to any number and kind of testing
criteria to be satisfied, where further criteria just represent additional axes to
be considered when computing the fitness function IHP (τ).

Evaluated Algorithms. For the two-objective formulation of the test case
prioritization problem, we compare HGA instantiated with two criteria and the
additional greedy algorithm used by Yoo and Harman [30] and by Rothermel et
al. [25], which considers at the same time coverage and cost by maximizing the
coverage per unit of time of the selected test cases (cost cognizant additional
greedy). Note that, after reaching the maximum coverage with the additional
greedy, there are possible remaining un-prioritized test cases that cannot add
additional coverage. These remaining test cases could be ordered using any algo-
rithm; in this work we re-apply additional greedy algorithm as done in previous
work [22]. Similarly, for what concerns the three-objective formulation of the test
case prioritization problem, we compare HGA instantiated for three criteria with
the additional greedy algorithm used by Yoo and Harman [30], which conflates
code coverage, execution cost and past coverage in one objective function to be
minimized. Also in this case the additional greedy is re-applied multiple times in
order to have a complete test cases ordering.

Implementation All the algorithms have been implemented using JMetal
[9], a Java-based framework for multi-objective optimization with metaheuristics.
In details, we use the Parallel Genetic Algorithm which evaluates the individuals
in parallel using multiple threads, thus reducing the execution time. We use a
population of 100 individuals that are initially randomly generated within the
solution space. At each generation, offsprings are generated by combining pairs of
fittest individuals with probability pc = 0.90 by using the PMX-Crossover, which
swaps the permutation elements at a given crossover point. As mutation operator
we use the SWAP-Mutation, which randomly swaps two chosen permutation
elements within each offspring. The fittest individuals are selected using the
tournament selection with tournament size equal to 10. The algorithm ends
when reaching 250 generations. To account for the inherent randomness nature
of GAs [1], we performed 20 independents runs for each program under study
and for each TCP problem.

Evaluation Metrics. To address RQ1 we use the cost-cognizant average
fault detection percentage metric (APFDc) proposed by Elbaum et al. [10]. This
metric measures the effectiveness of a given test cases ordering by summing up
the costs of the first test cases that are able to reveal the faults [10]. The higher
the AFDPc value, the lower the average cost needed to detect the same number
of faults. Since we performed 20 independent runs, we reports the mean and
the standard deviation of the APFDc scores achieved for each program under



Table 2. Test case prioritization problem: AFDPc achieved by HGA and additional
greedy in two and three objective formulations. The best result for each program is
highlighted in bold face.

Program
2-Objective 3-Objective

Add. Greedy
HGA

Add. Greedy
HGA

Mean St. Dev. Mean St. Dev.
bash 0.658 0.705 0.046 0.658 0.743 0.053
flex 0.604 0.677 0.116 0.507 0.578 0.100
grep 0.793 0.815 0.023 0.793 0.816 0.039
printtokens 0.588 0.287 0.091 0.496 0.203 0.052
printtokens2 0.733 0.462 0.326 0.312 0.275 0.253
sed 0.787 0.831 0.081 0.688 0.744 0.103

study and for each TCP problem. We statistically analyze the obtained results,
to check whether the differences between the APFDc scores produced by the
compared algorithms over different independent runs are statistically significant
or not. To this aim we use the Welch’s t test [6] with a p-value threshold of 0.05
for both the TCP problems. Welch’s t-test is generally used to test two groups
with unequal variance, e.g., in our case the variance of the APFDc produced by
the additional greedy and HGA is different3. Significant p-values indicate that
the corresponding null hypothesis can be rejected in favour of the alternative
ones. Other than testing the null hypothesis, we use the Vargha-Delaney (Â12)
statistical test [28] to measure the effect size, i.e., the magnitude of the difference
between the APFDc achieved with different algorithms. To address RQ2 we
compare the average running time required by each algorithm for each software
program used in the empirical study. The execution time was measured using a
machine with Intel Core i7 processor running at 2.40GHz with 12GB RAM.

5 Empirical Results

Table 2 reports the AFDPc values for the two-objective and three-objective test
case prioritization problem obtained by (i) the additional greedy algorithm, and
(ii) HGA. Specifically, the table reports mean size and standard deviation over
20 independent runs of the algorithms. In both problem formulations, HGA is
more cost-effective than the additional greedy algorithm for 4 out of 6 programs
since the mean AFDPc is higher. In particular, for the two-objective formula-
tion there is an improvement in terms of AFDPc ranging between 5% and 11%,
while in the three-objective formulation the improvement ranges between 3%
and 12%. This has practical implications from the tester’s perspective since the
test cases orderings obtained by HGA detect more faults at the same (or lower)
execution cost. Conversely, the additional greedy algorithm has better perfor-
mance on printtokens and printtokens2 for both two- and three-objective
TCP problems. Indeed, for these programs we can observe that the AFDPc val-
ues obtained by the additional greedy are substantially higher than the mean

3 Since the additional greedy is a deterministic algorithm, the variance over 20 inde-
pendent runs is zero. Conversely, because of the random inheritance of GAs, HGA
does not reach a zero variance.



Table 3. Welch’s t-test p-values of the hypothesis HGA > Additional Greedy for the
two and three objective test case prioritization problem. p−values that are statistically
significant (i.e., p − value < 0.05) are reported in bold face. Â12 > 0.5 means HGA
is better than Additional Greedy; Â12 < 0.5 means Additional Greedy is better than
HGA, and Â12 = 0.5 means they are equal.

Program 2-Objective 3-Objective

p-value Â12 Magnitude p-value Â12 Magnitude
bash < 0.01 0.88 Large < 0.01 0.95 Large
flex < 0.01 0.70 Medium < 0.01 0.75 Large
grep < 0.01 0.85 Large < 0.01 0.85 Large
printtokens 1 0.10 Large 1 0.10 Large
printtokens2 1 0.30 Large 0.73 0.40 Small
sed 0.01 0.85 Large 0.01 0.80 Large

AFDPc values achieved by HGA (+27% for two-objective problem and +3.27%
for the three-objective one on printtokens2). For these two programs we can
also observe that HGA has a higher variability when compared with the other
programs as demonstrated by the higher standard deviations: for example the
standard deviation for printtokens is larger than 25% for both two- and three-
objective TCP while for bash it is less than 6%. This high variability can be due
to the fact that printtokens and printtokens2 are two very small programs
with less than 1,000 lines of code while their test suites are very large because
they contain more than 4,000 test cases. Hence, for these programs reaching the
maximum statement coverage and past faults coverage requires the execution of
only 30 test cases on average, i.e., less than 1% of the whole test suites. For the
two considered coverage criteria the majority of test cases are equivalent (i.e.,
they have the same code and past fault coverage) but only few of them are really
able to detect new faults. By manually analyzing the orderings obtained by HGA
we found that for these two small programs the test cases that are able to detect
new faults are not always selected as first test cases in the obtained ordering.
Thus, HGA might select other test cases that are equivalent in terms of code
(or past fault) coverage but that have different fault detection capabilities. For
the additional greedy algorithm this is not the case since it always generates the
same test case ordering. This analysis highlights that the poor performance of
HGA for printtokens and printtokens2 can be due to the used testing criteria
more than the algorithm itself.

To provide statistical support to our preliminary analysis, Table 3 reports
the results of the Welch’s t-test and the Vargha-Delaney (Â12) statistic, ob-
tained by comparing (across the 20 GA runs) the AFDPc value yielded by the
algorithms under investigation. As expected, HGA is statistically better than
the additional greedy in 4 cases out of 6 for both two- or three-objective TCP
problems. For these cases the effect size (Â12) is always large with the only
exception of flex where for the two-objective TCP problem the effect size is
medium. For printtokens we can observe that HGA is statistically worse than
the additional greedy algorithm for both two- and three-objective TCP problems
and the magnitude of the difference is also large according to the Â12 statistic.
For printtokens2 there is no statistically significant difference between HGA



Table 4. Average Execution Time for Algorithms

Program
2-Objective 3-Objective

Add. Greedy HGA Add. Greedy HGA
bash 2h 21min 57s 3min 1s 2h 46min 40s 11min 13s
flex 2min 19s 43s 2min 46s 51s
grep 9min 41s 2min 19s 11min 21s 2min
printtokens 2min 47s 2s 3min 19s 11s
printtokens2 3min 11s 1s 6min 51s 5s
sed 25s 12s 30s 16s

and the greedy algorithm for the three-objective TCP problem while for the
two-objective problem there is a statistically significant difference in favour of
the additional greedy.

To answer our RQ2, Table 4 reports the mean execution time required by
each algorithm for each software program used in the empirical study. For both
two- and tree-objective formulation, we can note that HGA requires less execu-
tion time for its convergence with respect to the additional greedy algorithm.
Specifically, HGA on average takes 36% of the execution time required by the
additional greedy for the same software system. This is an important improve-
ment if we also consider that HGA is not only much faster than the additional
greedy algorithm, but it also provides orderings that are able to reveal more
faults (RQ1).

It is important to highlight that the running times of the additional greedy al-
gorithms reported in this paper are substantially higher than the running times
reported in previous studies for test case selection using the same additional
greedy algorithms and for the same software systems [31], [24]. For example
in [31] the average running time of the two-objective additional greedy algo-
rithm for grep is 20 seconds against 11 minutes and 21 seconds reported in this
paper. This huge difference concerns the different stop conditions used to end
the additional greedy algorithm in test case selection and test case prioritization
problems. In the test case selection problem the additional greedy ends when
the maximum code coverage is reached, thus, as reported by Harrold et al. [16]
the execution time of O (| T | ·max | Ti |), where | T | represents the size of the
original test suite, while max | Ti | denotes the cardinality of the largest group of
test cases which is able to reach the maximum coverage. For TCP the additional
greedy algorithm does not end when the maximum coverage is reached but it
is re-applied until all test cases are selected in order to obtain a complete test
case ordering. Thus, for TCP the running time of the (re-started) additional
greedy algorithm is O (|T | × |T |) motivating the higher execution time reported
in this paper. These findings are particularly interesting since in previous works
on multi-objective test case selection [31], [24] the additional greedy algorithm
turned out to be faster than genetic algorithms with the only exception of large
programs [24]. For multi-objective TCP problems we highlight that genetic al-
gorithms, and HGA in particular, are always faster than the additional greedy
algorithm independently of the size of the program and the test suites. We also
note that despite the lower running time, HGA is more cost-effective than the
additional greedy algorithm (RQ1).



6 Threats to Validity

This section discusses the threats to the validity of our empirical evaluation,
classifying them into construct, internal, and external validity.

Construct Validity In this study, they are mainly related to the choice
of the metrics used to evaluate the characteristics of the different test case pri-
oritization algorithms. In order to evaluate the optimality of the experimented
algorithms (HGA, and additional greedy) we used the APFDc [10], a well-know
metric used in previous work on multi-objective test case prioritization [14], [13].
Another construct validity threat involves the correctness of the measures used as
test criteria: statement coverage, faults coverage and execution cost. To mitigate
such a threat, the code coverage information was collected using two open-source
profiler/compiler tools (GNU gcc and gcov). The execution cost was measured
by counting the number of source code blocks expected to be executed by the
test cases, while the original fault coverage information was extracted from the
SIR repository [19].

Internal Validity To address the random nature of the GAs themselves
[1], we ran HGA 20 times for each subject program (as done in previous work
[22] [30] [7]), and considered the mean APFDc scores. The tuning of the GA’s
parameters is another factor that can affect the internal validity of this work. In
this study we used the same genetic operators and the same parameters used in
previous work on test case prioritization [22] [20].

External Validity We considered 6 programs from the SIR, that were also
used in most previous work on regression testing [26] [4] [22] [7] [31]. However,
in order to corroborate our findings, replications on a wider range of programs
and optimization techniques are desirable. Also, there may be optimization al-
gorithms or formulations of the test case prioritization problem not considered
in this study that could produce better results. In this paper we compared HGA
with the additional greedy algorithm in order to evaluate the benefits of the
proposed algorithms over the most used. Moreover, in order to make the results
more generalizable, we evaluated all the algorithms with respect to solving two
different formulations of the test case prioritization problem with two and three
objectives to be optimized.

7 Conclusion and Future Work

This paper proposes a hypervolume-based genetic algorithm (HGA) to solve
multi-criteria test case prioritization. Specifically, we use the concept of hyper-
volume [2], which is widely investigated in many-objective optimization, to gen-
eralize the traditional Area Under Curve (AUC) metrics used in previous work
on test case prioritization [20], [21], [22]. Indeed, the proposed hypervolume met-
ric condenses multiple testing criteria through the proportion of the objective
space, while AUC based metrics can manage only one cumulative code coverage
criterion per time [22].

To show the applicability of HGA we instantiated the TCP problem using
three different testing criteria. The empirical study conducted on six real-world



open source programs demonstrated that the proposed algorithm is not only
much faster than greedy algorithms, but is also able to generate test case order-
ings allowing to reveal more regression faults at the same level of execution cost
for large software programs. This denotes an important finding since previous
search-based approaches based on AUC metrics did not statistically outperform
greedy algorithms in terms of effectiveness [22].

Given the promising results obtained in this paper, we plan to apply the
hypervolume metric when considering up to three testing criteria in order to in-
vestigate its scalability with respect to greedy algorithms for higher dimensional
TCP problems. We also plan to replicate the study, considering more and dif-
ferent software systems and different coverage criteria to corroborate the results
reported in this paper. Then, we plan to incorporate diversity measures proposed
in previous studies on multi-objective test case selection [7],[24] to improve the
performances of HGA for software systems with highly redundant test suites,
where greedy algorithms are particularly competitive. Finally, we plan to apply
the proposed meta-heuristic also for other test case optimitization problems.
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