
Verifiable Internet Elections with Everlasting
Privacy and Minimal Trust

Philipp Locher1,2 and Rolf Haenni1

1 Bern University of Applied Sciences, CH-2501 Biel, Switzerland
{philipp.locher,rolf.haenni}@bfh.ch

2 University of Fribourg, CH-1700 Fribourg, Switzerland
philipp.locher@unifr.ch

Abstract. This paper presents a new cryptographic Internet voting
protocol based on a set membership proof and a proof of knowledge of
the representation of a committed value. When casting a vote, the voter
provides a zero-knowledge proof of knowledge of the representation of
one of the registered voter credentials. In this way, votes are anonymized
without the need of trusted authorities. The absence of such authorities
reduces the trust assumptions to a minimum and makes our protocol
remarkably simple. Since computational intractability assumptions are
only necessary to prevent the creation of invalid votes during the voting
period, but not to protect the secrecy of the vote, the protocol even offers
a solution to the everlasting privacy problem.

1 Introduction

Two types of trust assumptions are commonly found in cryptographic voting
protocols. First, it is usually assumed that a threshold number of non-colluding
trusted authorities exists, for instance for mixing the list of encrypted votes or
for decrypting them in a distributed manner. In an ideal setting, each trusted
authority is completely independent from all the others, both in terms of the
people engaged in providing the expected service and in terms of the available
computer and software infrastructure. In practice, recruiting such a group of
trusted authorities and equipping them with independent hard- and software is a
very difficult problem.

The second type of assumptions in cryptographic voting protocols limits the
adversary’s computational capabilities, for example with respect to computing
discrete logarithms or factoring large numbers. Such computational intractability
assumptions are very common in many cryptographic applications, but they
are very problematical in the context of electronic elections. It means that the
secrecy of the votes of an election today may be at risk in the future, when more
powerful computers and better methods of cryptanalysis are available. Choosing
very conservative security parameters may postpone the privacy breach, but does
not prevent it.

s
o
u
r
c
e
:

h
t
t
p
s
:
/
/
d
o
i
.
o
r
g
/
1
0
.
2
4
4
5
1
/
a
r
b
o
r
.
7
6
2
0

|

d
o
w
n
l
o
a
d
e
d
:

2
4
.
4
.
2
0
2
4

1.1 Contribution

The contribution of this paper is a new cryptographic voting protocol for remote
electronic elections, which guarantees the secrecy of the vote without relying on
trusted authorities or on computational intractability assumptions. It offers there-
fore everlasting privacy in an information-theoretical sense. Trusted authorities
are only needed for fairness, and computational intractability assumptions are
only necessary to prevent the creation of invalid votes during the voting period.

From a technical point of view, our protocol differs strongly from mainstream
approaches such as those based on homomorphic tallying, mix-nets, or blind
signatures. The core of the protocol is a combination of a set membership proof [3]
and a proof of known representation of a committed value [2]. When casting a
vote, the voter provides a zero-knowledge proof of knowledge of the representation
of one of the registered public voter credentials. Informally, the protocol consists
of the following four consecutive steps (some details about preventing double
voting or providing fairness are left out):

– Registration: Each voter creates a pair of private and public voter creden-
tials and sends the public voter credentials over an authentic channel to the
election administration.

– Election Preparation: The election administration publishes the list of
public voter credentials—one for every registered voter—on the public bulletin
board.

– Vote Casting: The voter creates an electronic ballot and sends it over an
anonymous channel to the public bulletin board. The ballot consists of the
vote, a commitment to the voter’s public credential, and the above-mentioned
composition of zero-knowledge proofs.

– Public Tallying: At the end of the election period, anyone can derive the
final election result from the data published on the public bulletin board.
The correctness of the result follows from verifying the zero-knowledge proofs
included in the ballots.

The proofs included in every ballot are computationally sound and perfectly
zero-knowledge. This implies with very high probability that every vote with
a valid proof stems from an eligible voter, but nothing more than that. Every
single voter remains completely anonymous within the set of registered voters,
independently of the computational capabilities of a future adversary. In this way,
our protocol achieves everlasting privacy without the help of trusted authorities.
As a consequence, the protocol requires almost no central infrastructure and
no complicated process coordination. Except during registration, interactions
are limited to writing data to and reading data from the public bulletin board.
The main computational efforts are spent by the voters themselves during vote
casting and by anyone computing and verifying the final election result.

1.2 Related Work

The position that only the strongest notion of privacy is sufficient for electronic
voting has first been proclaimed by Chaum [10]. He argued that ballot secrecy

must be unconditionally secure, meaning that the partial tally of a group of
voters can only be determined by a coalition of all other voters. In its strict sense,
this definition includes an adversary with unlimited computational power. Two
protocols by Kiayias and Yung [16] and Groth [15] achieve a weaker form of
so-called perfect ballot secrecy under the Decisional Diffie-Hellman assumption.
They are intended for use in the context of boardroom voting with a small number
of participants. Both protocols are self-tallying, meaning that the election result
can be computed without the aid of a trusted authority.

In a series of papers [18–20], Moran and Naor proposed several protocols
with everlasting privacy (but not unconditional privacy according to Chaum’s
definition). They are intended for use in the traditional setting, in which ballots
are cast in a private polling booth. In all three protocols, everlasting privacy is
only achieved with the aid of a single or a group of trusted authorities, which
could potentially cause voter privacy to be breached. Another protocol [21] for
the traditional setting achieves everlasting privacy by combining concepts from
Punchscan and Prêt à Voter.

In a more recent series of papers [6,11,12], everlasting privacy with the aid of
trusted authorities has been brought into the context of remote elections. While
the information published on the public bulletin board does not reveal anything
about somebody’s vote, the trusted server could potentially break the encrypted
votes transmitted over the private channel between voter and server.

Another important line of related work are the protocols based on blind signa-
tures [14]. They are also based on submitting votes over an anonymous channel,
but they achieve everlasting privacy under much stronger trust assumptions.
Their main problem is ballot-stuffing by malicious signing authorities, which
cannot be detected. More generally speaking, protocols based on blind signatures
do not support the verification of the electorate. Other disadvantages are the facts
that voters need to interact with the authorities during vote casting and that the
authorities learn who actually voted. To overcome some of the drawbacks of blind
signatures, Canard and Traoré introduced a system based on list signatures [9].

1.3 Paper Overview

In the following section, we introduce the cryptographic building blocks of our
protocol. In particular, we describe possible instances of a set membership proof
and a proof of known representation of a committed value. In Section 3, we
provide a detailed description of our protocol and a discussion of the underlying
adversary model and the resulting system properties. In Section 4, we analyse
the running times of the vote casting and tallying procedures and present the
results from corresponding performance tests. Finally, we summarize the findings
of this paper in Section 5.

2 Cryptographic Preliminaries

Let Gp be a multiplicative cyclic group of prime order p, for which the discrete
logarithm assumption is believed to hold. Furthermore, let Gq ⊂ Z∗p, be a large

prime-order subgroup of the group of integers modulo p, where γ = (p − 1)/q
denotes the corresponding co-factor. Finally, suppose that independent generators
g0, g1 ∈ Gp and h0, ... , hN ∈ Gq are publicly known. Independence with respect
to generators of a cyclic group means that their relative discrete logarithms are
unknown.3

In our protocol, we use two instances of the perfectly hiding Pedersen commit-
ment scheme, one over Gp and one over Gq. We distinguish them by comp(u, r) =
gr0g

u
1 as a commitment to u with randomization r and comq(v, s) = hs0h

v
1 as a

commitment to v with randomization s, where u, r ∈ Zp and v, s ∈ Zq. In the
case of Gq, we write comq(v1, ... , vN , s) = hs0h

v1
1 · · ·h

vN
N for a commitment to N

values v1, ... , vN ∈ Zq. Recall that Pedersen commitments are perfectly hiding,
computationally binding, and additively homomorphic.

The main cryptographic tools in our protocol are non-interactive zero-know-
ledge proofs of knowledge. The voter uses them to demonstrate knowledge of
some secret values involved in a mathematical statement, but without revealing
any information about the secret values. One of the most fundamental type of
zero-knowledge proofs of knowledge is a preimage proof for a one-way group
homomorphism φ : X → Y , denoted by NIZKP [(a) : b = φ(a)], where a ∈ X is
the secret preimage of a public value b = φ(a) ∈ Y . Examples of such preimage
proofs result from the above additively homomorphic Pedersen commitment
schemes, for example NIZKP [(u, r) : c = comp(u, r)] for proving knowledge of an
opening u, r ∈ Zp for a publicly known commitment c ∈ Gp.

The most common construction of a non-interactive preimage proof is the
Σ-protocol in combination with the Fiat-Shamir heuristic [13]. The transcript of
such a non-interactive proof consists of one or multiple commitments and one or
multiple responses to a challenge computed by a publicly known hash function.
Some auxiliary information can be linked to the transcript by using it as an
additional input to the hash function. In Section 3, we will write πi = NIZKPx[·]
for the transcripts of the non-interactive proofs used in the voting protocol, where
x represents some auxiliary information linked to the proof.

2.1 Set Membership Proof

Let U = {u1 ... , uM} be a finite set of values ui ∈ Zp and c = comp(u, r) a
commitment to an element u ∈ U . Both U and c are publicly known. With a
set membership proof, denoted by NIZKP [(u, r) : c = comp(u, r) ∧ u ∈ U], the
prover demonstrates knowledge of corresponding values u ∈ U and r ∈ Zp, but
without revealing any information about them. Such a proof can be constructed
by a standard OR combination of individual preimage proofs for each u ∈ U ,
but this proof has a size linear to M and is therefore not efficient. The first set
membership proof with a sub-linear size has been given by Camenisch et al. [7].

As suggested by Brands et al. [5], a general way of constructing a set member-

ship proof is to compute the polynomial P (X) =
∏M
i=1(X−ui) and to demonstrate

3 To ensure that generators are independent, they need to be generated in some publicly
reproducible way, for example by deriving them from a common reference string.

that P (u) = 0. This proof, denoted by NIZKP [(u, r) : c = comp(u, r)∧P (u) = 0],
is a particular case of a polynomial evaluation proof NIZKP [(u, r, v, s) : c =
comp(u, r)∧ d = comp(v, s)∧P (u) = v] for v = s = 0. In a recent publication [3],
Bayer and Groth proposed a polynomial evaluation proof with a logarithmic size,
which is the current state-of-the-art. We use a non-interactive version of this
proof in our voting protocol, instantiated to the special case of v = s = 0. A
summary of the proof generation and verification is given in Figure 1.

A complete proof transcript consists of 4blogMc + 2 elements of Gp and
3blogMc+ 3 elements of Zp. The proof generation requires 8blogMc+ 4 expo-
nentiations in Gp and not more than 2MblogMc multiplications in Zp. Similarly,
6blogMc + 6 exponentiations in Gp and 3M multiplications in Zp are needed
for the verification.4 In terms of exponentiations only, the computational costs
for generating and verifying a proof are both logarithmic with M , but for very
large values M , the cost of the (quasi-)linear number of multiplications becomes
dominant.

2.2 Proof of Known Representation of a Committed Value

In a cyclic group such as Gq with generators h1, ... , hN , a tuple (v1, ... , vN) of
values vi ∈ Zq is called DL-representation (or simply representation) of u ∈ Gq
with respect to (h1, ... , hN), if u = hv11 · · ·h

vN
N [4]. Note that the general definition

of DL-representation does not require the values h1, ... , hN to be generators, nor
do they need to be independent or distinct. On the other hand, every opening of
a Pedersen commitment is clearly a DL-representation of the commitment with
respect to the given independent generators.

Let c = comp(u, r) be a commitment to a single value u ∈ Gq ⊂ Zp and
d = comq(v1, ... , vN , s) a commitment to multiple values v1, ... , vN ∈ Zq. Both c
and d are publicly known. Following Au et al. [2], a proof of known representation
of a commmited value (or simply representation proof), denoted by

NIZKP [(u, r, v1, ... , vN , s) : c = comp(u, r) ∧ d = comq(v1, ... , vN , s)

∧ u = hv11 · · ·h
vN
N],

demonstrates that the tuple of committed values in d is a DL-representation of the
committed value in c. Note that this is a generalization of proof of knowledge of
double discrete logarithms, NIZKP{(v) : c = g(h

v)}, by Camenisch and Stadler [8].
A summary of the proof generation and verification is given in Figure 2, where a
security parameter K determines the soundness of the proof.

A complete proof transcript consists of K + 1 elements of Gp, K elements of
Gq, K + 2 elements of Zp, and K(N + 1) elements of Zq. Note that elements

4 The number of exponentiations given in [3, Table 2] is incorrect for the verification.
The correct result of 6blogMc exponentiations is obtained by counting cxj in Step 2
and cxj+1 in Step 3 as one exponentiation only. This remark together with the correct
result can be found in [3, Page 11], i.e., only the table entry is incorrect. Furthermore,
we cannot reproduce the result of 2M multiplications for the verification reported
in [3, Table 2]. According to our analysis, at least 3M multiplications are needed.

Public Input: c = comp(u, r) ∈ Gp, P (X) =
∑M
i=0 aiX

i ∈ Zp[X]
Secret Input: u, r ∈ Zp
Generation:

1. For j = 1, ... ,m, pick rj ∈R Zp and compute cj = comp(u
2j

, rj).
2. For j = 0, ... ,m, pick āj , r̄j ∈R Zp and compute c̄j = comp(āj , r̄j).
3. Compute new polynomial

P̃ (X) =

m∑
j=0

ãjX
j =

M∑
i=0

ai

m∏
j=0

(u2j

X + āj)
i[j]X1−i[j] ∈ Zp[X]

of degree m. For j = 0, ... ,m, pick r̃j ∈R Zp and compute c̃j =
comp(ãj , r̃j).

4. For j = 0, ... ,m − 1, compute âj = u2j

āj , pick r̂j ∈R Zp, and compute
ĉj = comp(âj , r̂j).

5. Compute x = h(c, a0, ... , aM , c1, ... , cm, c̄0, ... , c̄m, c̃0, ... , c̃m, ĉ0, ... , ĉm−1).

6. For j = 0, ... ,m, compute ā′j = āj + xu2j

.
7. For j = 0, ... ,m, compute r̄′j = r̄j + xrj .
8. For j = 0, ... ,m− 1, compute r̂′j = r̂j + xrj+1 − bjrj .
9. Compute r̃′ =

∑m
j=0 r̃jx

j .
Transcript:

(c1, ... , cm, c̄0, ... , c̄m, c̃0, ... , c̃m, ĉ0, ... , ĉm−1, ā
′
0, ... , ā

′
m, r̄

′
0, ... , r̄

′
m, r̂

′
0, ... , r̂

′
m−1, r̃

′)
Verification:

1. Compute x = h(c, a0, ... , aM , c1, ... , cm, c̄0, ... , c̄m, c̃0, ... , c̃m, ĉ0, ... , ĉm−1).
2. For j = 0, ... ,m, check cxj c̄j = comp(ā

′
j , r̄
′
j).

3. For j = 0, ... ,m− 1, check cxj+1ĉj = c
ā′j
j · comp(0, r̂

′
j).

4. Check

m∏
j=0

c̃ x
j

j = comp

(
M∑
i=0

ai

m∏
j=0

ā′j
i[j]x1−i[j], r̃′

)
.

Fig. 1: Non-interactive version of the polynomial evaluation proof NIZKP [(u, r) : c =
comp(u, r) ∧ P (u) = 0] according to Bayer and Groth [3], using a slightly adjusted
formal notation. We use m = blogMc = |M | − 1 to denote the bit length of M minus 1
and a publicly known hash function h(·) with values in Zp to compute the challenge
x. The j-th bit of the binary representation of an index i ∈ {0, ... ,M} is denoted by
i[j] ∈ {0, 1}, for j = {0, ... ,m}. For reasons of convenience, let c0 = c and r0 = r.

of Gq can be counted as elements of Zp, thus resulting in 2K + 2 elements of
Zp.5 The proof generation requires 2K + 2 exponentiations in Gp and K(N + 1)
exponentiations in Gq. Similarly, the verification requires 2K + 1 exponentiations
in Gp and K(N + 1) exponentiations in Gq.

5 The bandwidth requirements given in [2, Table 4] are clearly incorrect. It seems that
the K elements of Gq have been counted falsely as elements of Gp.

Public Input: c = comp(u, r) ∈ Gp, d = comq(v1, ... , vN , s) ∈ Gq
Secret Input: u, r ∈ Zp, v1, ... , vN , s ∈ Zq
Generation:

1. Pick ū, r̄ ∈R Zp and compute c̄ = comp(ū, r̄).
2. For j = 1, ... ,K,

(a) pick v̄1,j , ... , v̄N,j ∈R Zq and compute ūj = h
v̄1,j
1 · · ·hv̄N,j

N ,
(b) pick r̄j ∈R Zp and compute c̄j = comp(ūj , r̄j),
(c) pick s̄j ∈R Zq and compute d̄j = comq(v̄1,j , ... , v̄N,j , s̄j).

3. Compute x = h(c, d, c̄, c̄1, ... , c̄k, d̄1, ... , d̄k).
4. Compute ū′ = ū− xu and r̄′ = r̄ − xr.
5. For j = 1, ... ,K,

(a) for i = 1, ... , N , compute v̄′i,j = v̄i,j − x[j]vi,
(b) compute r̄′j = r̄j − x[j] · comq(v̄

′
1,j , ... , v̄

′
N,j , r),

(c) compute s̄′j = s̄j − x[j]s.
Transcript:

(c̄, c̄1, ... , c̄k, d̄1, ... , d̄k, ū
′, r̄′, v̄′1,1, ... , v̄

′
N,K , r̄

′
1, ... , r̄

′
k, s̄
′
1, ... , s̄

′
k)

Verification:
1. Compute x = h(c, d, c̄, c̄1, ... , c̄k, d̄1, ... , d̄k).
2. Check c̄ = cx · comp(ū

′, r̄′).
3. For j = 1, ... ,K,

(a) check d̄j = dx[j] · comq(v̄
′
1,j , ... , v̄

′
N,j , s̄

′
j),

(b) compute ū′j = h
v̄′1,j
1 · · ·hv̄

′
N,j

N , and check

c̄j =

{
comp(ū

′
j , r̄
′
j), if x[j] = 0,

cū
′
j · comp(0, r̄

′
j), if x[j] = 1.

Fig. 2: Non-interactive version of the representation proof NIZKP [(u, r, v1 ... , vN , s) :
c = comp(u, r) ∧ d = comq(v1, ... , vN , s) ∧ u = hv11 · · ·h

vN
N] according to Au et al. [2],

using a slightly adjusted formal notation. We use a publicly known hash function h(·)
with values in Zp to compute the challenge x. The j-th bit of the binary representation
of x is denoted by x[j] ∈ {0, 1} and K < log p is the security parameter.

3 Internet Elections with Everlasting Privacy

In this section, we present our new protocol for internet elections with everlasting
privacy. We start with a discussion of the adversary model and the underlying trust
assumptions. In Sections 3.2 and 3.3, which constitutes the main contribution of
this paper, we provide a detailed formal description of the protocol and analyse
its security properties. A compact summary of the protocol is given in Figure 3.
We round off this section with a discussion of two important side aspects and
corresponding protocol extensions.

3.1 Adversary Model and Trust Assumptions

We consider two types of adversaries with different capabilities and goals. An
adversary of the first type acts at the present time, before or while an election

takes place, whereas an adversary of the second type acts at any point in the
future. Accordingly, we call them present adversaries and future adversaries.

The goal of present adversaries is to break the integrity or secrecy of the votes
during an election, for example by submitting votes in the name of someone else
or by linking votes to voters. We assume present adversaries to be polynomially
bounded and thus incapable of solving mathematical problems such as computing
discrete logarithms in large prime order groups or breaking cryptographic primi-
tives such as contemporary hash functions. This implies that present adversaries
cannot efficiently find valid openings of Pedersen commitments or valid proof
transcripts for zero-knowledge proofs of knowledge without knowing the secret
inputs. We also assume that the present adversary cannot control the machines
used for vote casting.6

For a future adversary, the only goal is breaking the secrecy of the votes
of an election that took place at the present time. To avoid the problem of
estimating the available computational resources far in the future, we simply
assume the strongest possible adversary, one with unlimited resources in terms
of computational power and time. Although contemporary cryptography will be
completely useless in the presence of such an adversary, the secrets hidden in
perfectly hiding commitments or in perfect zero-knowledge proofs of knowledge
will never be revealed, even if they were generated today.

From the point of view of the necessary communication infrastructure, the
protocol requires an authentic channel between voter and election administration
during the registration process. In the basic protocol version of Section 3.2,
voters need to re-register in every new election, but we will show later how
to circumvent this limitation. Furthermore, the protocol requires a broadcast
channel with memory, for example in the form of a robust append-only public
bulletin board collecting the entire election data. Finally, for sending their votes
to the bulletin board, voters need access to an anonymous channel. We assume
that no adversary is capable of intercepting and recording the whole traffic over
this channel during an election and storing the data for future vote privacy
attacks [1].

3.2 Protocol Description

The first step of the protocol is the voter registration before an election. To
register, voter V picks a private credential (α, β) ∈R Z2

q at random and computes

the public credential u = hα1h
β
2 ∈ Gq. Note that the private credential is a

representation of the public credential with respect to (h1, h2). Finally, the voter
sends u over an authentic channel to the election administration.7

6 We are aware that requiring a secure platform is a strong assumption. We do not
explicitly address this problem in this paper, but our protocol allows voters at least
to detect a compromised platform as long as they can read the bulletin board in a
secure way.

7 To ensure that u has been computed from fresh values (α, β), the voter could be
asked to prove knowledge of (α, β) by computing NIZKP [(α, β) : u = hα1 h

β
2]. As this

is not an essential step for our protocol, we omit it in our presentation.

After the registration phase, the election administration defines the list
U = ((V1, u1), ... , (VM , uM)) based on the electoral roll. Each pair (Vi, ui) ∈ U
links a public credential to the corresponding voter. Next, the coefficients A =
(a0, ... , aM) of the polynomial P (X) =

∏M
i=1(X − ui) ∈ Zp[X] are computed to

allow voters creating the set membership proof during the vote casting phase.
As the computation of those coefficients is quite expensive (12M

2 multiplications
in Zp), it is performed by the election administration, possibly already during
the registration phase in an incremental way. Note that the coefficients can be
re-computed and verified by anyone, and voters can efficiently verify the inclusion
of their public credential u by checking P (u) = 0. Finally, an independent election

generator ĥ ∈ Gq is defined in some publicly reproducible way and (U,A, ĥ) is
posted to the public bulletin board.

During the election, voters create their vote e by selecting their preferred
election options. We do not further specify these options and their encoding, since
our protocol does not impose any restrictions. Similarly, we do not discuss vote
encryption, as this is a side aspect of the protocol and only affects fairness (see

Section 3.4). To cast the vote, the voter computes the election credential û = ĥβ ∈
Gq, a commitment c = comp(u, r) to the public credential, and a commitment
d = comq(α, β, s) to the private credential, where r ∈R Zp and s ∈R Zq. Next,
the voter generates three non-interactive zero-knowledge proofs. The first proof
is a set membership proof π1 = NIZKPe[(u, r) : c = comp(u, r) ∧ P (u) = 0]
proving that c is indeed a commitment to one of the public credentials in U . To
prevent that a voter can take just any credential from U , the voter generates
π2 = NIZKPe[(u, r, α, β, s) : c = comp(u, r) ∧ d = comq(α, β, s) ∧ u = hα1h

β
2] to

prove knowledge of the representation of the committed value in c. Finally, the
voter shows by a third proof π3 = NIZKPe[(α, β, s) : d = comq(α, β, s) ∧ û = ĥβ]
that β used to build d and û is the same. All three proofs are linked to e. The
ballot B = (c, d, e, û, π1, π2, π3) consisting of the two commitments, the vote, the
election credential, and the three proofs is posted over an anonymous channel to
the bulletin board.

The final result of the election can be derived by anyone. For this, the list B
of submitted ballots is retrieved from the bulletin board and the proofs included
in each ballot B ∈ B are verified. Then duplicate votes are determined based
on identical values û and conflicts are resolved according to some policy. As
we will see in Section 4.3, verifying the proofs can be an expensive task for a
large electorate. To accelerate the publication of the final result, the election
administration may verify the proofs and mark invalid ballots as soon as they
appear on the bulletin board. The correctness of the result can then still be
checked by anyone.

3.3 Protocol Discussion

The correctness of the protocol is based on the fact that the public credential u
can be seen as a perfectly hiding commitment to β and the election credential û
as a perfectly binding commitment to β. For a present adversary not in possession

Registration (Voter):
1. Pick private credential α, β ∈R Zq.
2. Compute public credential u = hα1 h

β
2 ∈ Gq.

3. Send u over an authentic channel to the election administration.
Election Preparation (Election Administration):

1. Define U = ((V1, u1), ... , (VM , uM)) based on the electoral roll.
2. Compute coefficients A = (a0, ... , aM) of P (X) =

∏M
i=1(X − ui) ∈ Zp[X].

3. Define election generator ĥ ∈ Gq.
4. Post (U,A, ĥ) to the bulletin board.

Vote Casting (Voter):
1. Select vote e.
2. Compute election credential û = ĥβ .
3. Pick r ∈R Zp and s ∈R Zq and compute commitments c = comp(u, r) and

d = comq(α, β, s).
4. Compute the following non-interactive proofs:

π1 = NIZKPe[(u, r) : c = comp(u, r) ∧ P (u) = 0],

π2 = NIZKPe[(u, r, α, β, s) : c = comp(u, r) ∧ d = comq(α, β, s)

∧ u = hα1 h
β
2],

π3 = NIZKPe[(α, β, s) : d = comq(α, β, s) ∧ û = ĥβ].

5. Post ballot B = (c, d, e, û, π1, π2, π3) to the bulletin board over an anony-
mous channel.

Public Tallying:
1. Retrieve the set B of all ballots from the bulletin board.
2. For each B ∈ B, verify π1, π2, π3.
3. Detect duplicate votes based on identical values û and resolve conflicts.
4. Compute final election result.

Fig. 3: Detailed protocol description.

of a private credential, there are two principle ways of creating a ballot that
will be accepted in the final tally. First, the adversary may try to find (α′, β′)

such that u = hα
′

1 h
β′

2 for some u ∈ U , which is equivalent to solve the discrete
logarithm problem. Second, the adversary may try to fake a proof transcript
without knowing such a pair (α′, β′), but this is prevented by the computational
soundness of the proofs. If the present adversary is an eligible voter in possession
of a valid private credential, then trying to submit more than one ballot based
on the same private credential will result in identical election credentials û = ĥβ .
Without using the private credential, the voter is not more powerful than any
other present adversary.

Everlasting Privacy. A ballot posted over an anonymous channel to the
bulletin board contains no information for identifying the voter. Clearly, the

future adversary will be able to determine β from û contained in the ballot, but
knowing β, a suitable value α′ can be found for every credential u′ ∈ U such that
u′ = hα

′

1 h
β
2 . Therefore, the adversary is unable to link û to u from knowing β.

Additionally, the proofs π1, π2, and π3 are perfectly zero-knowledge and therefore
of no help. This implies that even the future adversary is unable to break the
privacy of the vote. In other words, our protocol offers everlasting privacy.

Trust and Infrastructure Assumptions. Our protocol is based on two fun-
damental assumptions with regard to the available communication infrastructure.
For silently casting a vote, voters require an anonymous channel, and for storing
all their ballots, a robust public bulletin board must be available. Corresponding
trust assumptions towards the developers and administrators of these systems
are inevitable. However, no further trust assumptions are necessary in the basic
version of our protocol. The election administration is the only authority involved,
but the task of registering voters and publishing their public credentials can
be verified by the voters themselves. The absence of further trusted authorities
makes the overall election process extremely simple and allows an implementation
of our protocol with almost no central infrastructure.

3.4 Extensions

In the basic version of the protocol as presented in Section 3.2, we have ignored
some important aspects of real election systems. The following discussion of two
of these aspects rounds off the description of our protocol.

Achieving Fairness. The protocol as presented is not fair. Fairness means
that the published election data does not allow anyone to derive partial results
during the election period. If fairness is a requirement, which is not always
the case (especially in smaller elections with a very short election period), the
protocol can be extended as follows. Instead of submitting the vote e in plaintext,
the voter computes an encryption E = encpk(e, t) using a randomized encryp-
tion scheme such as ElGamal or Paillier and generates a non-interative proof
π4 = NIZKP [(e, t) : E = encpk(e, t)] of knowing the plaintext vote. The public
encryption key pk is generated beforehand by a group of trusted authorities in a
distributed manner. When the election period is over, the authorities post their
shares of the corresponding private key to the bulletin board. The encrypted
votes can then be decrypted by anyone.

Multiple Elections. If the protocol as presented so far is used for multiple
elections, but without requiring voters to renew their credentials, then a future ad-
versary will be able to link the votes from the same voter by uncovering the same
value β from different election credentials. This does not create a direct link to the
voter’s identity, but it allows creating a kind of voter profile which will eventually
leak information. To overcome this problem, the protocol must be modified to

ensure that a single β is used for only one election. This can be achieved by extend-
ing the private and public credentials to (α, β1, ... , βL) and u = hα1h

β1

2 ... hβL

L+1,
respectively, where L is the maximal number of elections the credentials can
be used for. The corresponding commitment to the extended private credential,
d = comq(α, β1, ... , βL, s), implies that π2 needs to be extended to a representation

proof of size N = L+1. Finally, the modified election credential û = ĥβl and an ex-
tended proof π3 = NIZKPe[(α, β1, ... , βL, s) : d = comq(α, β1 ... , βL, s)∧ û = ĥβl]
are computed for l = (ε mod L) + 1, where ε = 1, 2, ... is the election number
published beforehand by the elections administration.

4 Performance and Implementation

Given the complexity of both the set membership proof and the representation
proof, we need to look closely at the computational resources required by our
voting protocol. As we will see in this section, the performance is the most
critical aspect of our protocol compared to others. We will first analyse the ballot
size and estimate the total amount of election data that results from different
electorate sizes. Then we discuss the cost of computation for creating a ballot
and for verifying the entire election at the end of the election period.

4.1 Ballot Size

The size of a ballot in our protocol is mainly determined by the sizes of π1 and
π2. In Section 2, we have given respective numbers. Recall that π1 depends on M
only, whereas π2 depends on K and L. In Table 1, we recapitulate the number
of group elements for Gp, Zp, Gq, and Zq and sum them up. Since Zp and Gq
share the same modulo p, their elements are counted together. The table does not
include corresponding numbers for the vote e and the proof of known plaintext
in case of an encrypted vote.

Ballot Component Elements of Gp Elements of Zp,Gq Elements of Zq
c, d, û 1 2 –
π1 4blogMc+ 2 3blogMc+ 3 –
π2 K + 1 2K + 2 K(L+ 2)
π3 – 2 4

Entire Ballot 4blogMc+K + 4 3blogMc+ 2K + 9 KL+ 2K + 4

Table 1: Ballot size as a function of M , K, and L (without encrypted vote and proof of
known plaintext of the encrypted vote). Elements of Zp and Gq are counted together.

To calculate the actual size of a ballot and estimate the total size of the
election data, some of the system parameters need to be fixed. We consider
the basic protocol version for a single election by setting L = 1. For a security
parameter K = 80, we choose corresponding bit lengths |q| = 160 and |p| = 1024.
In the light of today’s recommendations for cryptographic parameters, these
numbers may seem too small for offering appropriate security, but in the case of

our protocol, the cryptography only needs to withstand vote integrity attacks by
present adversaries during the election period. In other words, the cryptographic
parameters can be chosen for an exceptionally short cryptoperiod.

Table 1 lists the results obtained for different electorates. The table shows
that the size of a single ballot is certainly not a problem for voters to create
and submit a ballot, even if M gets very large. On the other hand, if each
voter submits a ballot, then the total size of the elections data sums up to more
than 50 GB of data for one million voters. Given today’s storage and network
capacities, this amount of data should still be manageable by an ordinary server
and communication infrastructure.

M = |U | Elements of Gp Elements of Zp,Gq Elements of Zq Single Ballot M Ballots

10 96 178 244 39.0 KB 0.4 MB
100 108 187 244 41.6 KB 4.1 MB

1’000 120 196 244 44.3 KB 43.2 MB
10’000 136 208 244 47.8 KB 466.5 MB

100’000 148 217 244 50.4 KB 4.8 GB
1’000’000 164 229 244 53.9 KB 51.4 GB

Table 2: Ballot size for different numbers of voters and parameters K = 80, L = 1,
|p| = 1024, and |q| = 160.

4.2 Cost of Computation: Ballot Generation

Let us now have a look at the cost of computation for generating a ballot.
Corresponding computational resources need to be available to the voter for
casting a vote. Again, generating the proofs π1 and π2 are the two critical tasks
in this process. Recall from Section 2 that generating π1 requires a logarithmic
number of exponentiations in Gp, but also a linearithmic number of multiplications
in Zp. Since multiplications will become more expensive than exponentiations
when M gets very large, they can not be neglected. Table 3 contains the number
of critical operations in Gp, Gq, and Zp, and sums them up for the whole ballot.
Again, we exclude the cost for encrypting the vote and generating a proof of
known plaintext.

Ballot Component
Exponentiations

in Gp
Exponentiations

in Gq
Multiplications

in Zp
c, d, û 2 4 –
π1 8blogMc+ 4 – 2MblogMc
π2 2K + 2 K(L+ 2) –
π3 – 4 –

Entire Ballot 8blogMc+ 2K + 8 KL+ 2K + 8 2MblogMc

Table 3: Number of exponentiations and multiplications required to generate a single
ballot (without encrypted vote and proof of known plaintext of the encrypted vote).

To estimate actual computation times for generating a ballot, we select the
same parameters as in the previous subsection. Furthermore, we assume that the
voter’s computer is capable of calculating 350 exponentiations per second in Gp,
2’000 exponentiations per second in Gq, and 200’000 multiplications per second
in Zp. We derive these numbers from performance tests in Java on a MacBook
Pro with a 2.7 GHz Intel Core i7 processor (16GB RAM, OS X Yosemite 10.10.2,
JRE 8, standard BigInteger class, single-threaded). The results of our analysis
are shown in Table 4. The estimated cost of computation for generating a single
ballot turns out to be perfectly acceptable for a medium-sized or even a large
electorate. Only when M gets very large (e.g. more than 100’000 voters), the
ballot generation gets delayed inappropriately. This is roughly the threshold when
the multiplications start to dominate the exponentiations.

M = |U | Exponentiations
in Gp

Exponentiations
in Gq

Multiplications
in Zp

Estimated Time
(Single Ballot)

10 192 248 60 0.7 sec.
100 216 248 1’200 0.7 sec.

1’000 240 248 18’000 0.9 sec.
10’000 272 248 260’000 2.2 sec.

100’000 296 248 3’200’000 17.0 sec.
1’000’000 328 248 40’000’000 3.4 min.

Table 4: Cost of ballot generation for different numbers of voters and parameters K = 80,
L = 1, |p| = 1024, and |q| = 160. The time estimates are based on 350 exponentiations
per second in Gp, 2’000 exponentiations per second in Gq, and 200’000 multiplications
per second in Zp.

4.3 Cost of Computation: Verification

The most expensive computational task of our protocol is clearly the public
tallying, which involves the verification of all proofs included in the ballots. The
values shown in Table 5 summarize the number of critical operations in Gp, Gq,
and Zp for verifying a single ballot. For very large values of M , the most expensive
operations are again the 3M multiplications in Zp, which is why they cannot be
neglected. As before, the results shown in the table do not contain additional
operations for verifying the proof of known plaintext in case of an encrypted
vote. Note that proper verification requires checking that the values included in
the proof transcripts are elements of corresponding sets. In case of Gp and Gq
this may require additional exponentiations. We omit them here to be consistent
with the results given in [2, 3].

To conclude our performance analysis, we adopt the system parameters and
the assumptions with regard to the available computation power from the previous
subsection. The resulting values for different electorate sizes are shown in Table 6.
By multiplying the time estimates for verifying a single ballot by the total number
of votes, we obtain time estimates for the full verification process.

Ballot Component
Exponentiations

in Gp
Exponentiations

in Gq
Multiplications

in Zp
π1 6blogMc+ 6 – 2M
π2 2K + 1 K(L+ 2) –
π3 – 6 –

Total 6blogMc+ 2K + 7 KL+ k + 6 2M

Table 5: Number of exponentiations and multiplications required to verify a single ballot
(without proof of known plaintext of the encrypted vote).

M = |U |
Exponentia-

tions in
Gp

Exponentia-
tions in

Gq

Multiplica-
tions in

Zp

Estimated
Time (Single

Ballot)

Estimated
Time (M
Ballots)

10 185 166 30 0.6 sec. 6.1 sec.
100 203 166 300 0.7 sec. 1.1 min.

1’000 221 166 3’000 0.7 sec. 12.2 min.
10’000 245 166 30’000 0.9 sec. 2.6 hours

100’000 263 166 300’000 2.3 sec. 64.8 hours
1’000’000 287 166 3’000’000 15.9 sec. 4417.5 hours

Table 6: Cost of ballot verification for different numbers of voters and parameters
K = 80, L = 1, |p| = 1024, and |q| = 160. The time estimates are based on 350
exponentiations per second in Gp, 2’000 exponentiations per second in Gq, and 200’000
multiplications per second in Zp.

From the given results, we conclude again that our protocol works reasonably
well for a medium-sized or even a large electorate. Note that the verification of
the ballots can already start during the vote casting phase, and since it can be
executed in parallel, there is a huge potential for distributing the total amount of
work to arbitrarily many and possibly more powerful machines. While this is in
principle a solution for reducing the 4’400 hours of computation for an election
with one million ballots to a more reasonable value, it restricts somewhat the
idea of a public tallying process.

4.4 Implementation and Optimizations

In course of developing the protocol presented in this paper, we implemented
both the set membership and the representation proof in UniCrypt [17]. This
is an open-source Java library developed for the purpose of simplifying the
implementation of cryptographic voting protocols.8 The library consist of a
mathematical and a cryptographic layer. The two implemented proofs extend the
proofsystem package, which is a central component of the cryptographic layer. The
same package also contains classes for generating all sorts of preimage or equality

8 UniCrypt is publicly available on GitHub under a dual AGPLv3/commercial licence,
see https://github.com/bfh-evg/unicrypt.

proofs, which we need for computing π3. Other packages in the cryptographic
layer provide implementations of Pedersen commitments and various encryption
schemes. The library provides therefore the full functionality for a straightforward
implementation of our protocol.

In order to check the accuracy of the calculated time estimates of the previ-
ous subsections, we used UniCrypt to generate and verify ballots for different
electorate sizes and measured the times of computation. The results of these
measurements are shown in Table 7. We used the same machine for the tests as in
the previous subsection, a MacBook Pro with a 2.7 GHz Intel Core i7 processor,
and the current UniCrypt version from the project’s development branch on April
1, 2015. In general, the measured running times are quite consistent with the time
estimates from the previous section, for example 18.2 instead of 17.0 seconds for
generating a ballot with 100’000 voters. This difference can be explained by the
overhead for other less expensive operations and for Java’s memory and object
management. Note that for 1’000’000 voters, the actual running times are even
slightly better than the estimates (3.3 instead of 3.4 minutes). An explanation
for this is the fact, that 2MblogMc is an upper approximation for the number
of multiplications in Zp.

M = |U | Ballot Generation Ballot Verification

10 1.3 sec. 0.9 sec.
100 1.4 sec. 1.0 sec.

1’000 1.6 sec. 1.1 sec.
10’000 3.0 sec. 1.3 sec.

100’000 18.2 sec. 2.9 sec.
1’000’000 3.3 min. 18.8 sec.

Table 7: Actual running times for generating and verifying a single ballot using the
UniCrypt library.

To conclude the discussion about our implementation and the results of the
performance analysis, we need to stress that the prototype implementation has
not been optimized in any way. To speed up the ballot generation, we may pre-
compute the proofs in a background process of the vote preparation software, and
we may distribute the computations to all available cores of the given machine,
or to the machine’s graphics processing unit. In the final verification of all ballots,
the potential of executing tasks in parallel—possibly on many different machines—
is even higher. Furthermore, techniques like multi-exponentiation and fixed-base
exponentiation may bring considerable performance improvements, especially for
small elections, where the exponentiations predominate the multiplications. For
very large elections, we should consider replacing the set membership proof as
described in this paper by an approach by Brands et al. [5], which requires 8

√
M

exponentiations but only 2M + 8
√
M multiplications for generating a proof.

5 Conclusion

In this paper, we have introduced a new approach for a cryptographic voting
protocol. Its underlying mechanism is very different compared to mainstream
approaches based on mixing and homomorphic tallying. In our protocol, the
distinction between valid and invalid ballots is strictly based on perfectly hiding
commitments and perfect zero-knowledge proofs of knowledge. This prevents
computationally bounded adversaries from submitting illegitimate votes during
the election. At the same time, even a computationally unbounded adversary in
the future will never be able to link votes to voters. Our protocol offers therefore a
solution to the everlasting privacy problem. Compared to other protocols offering
everlasting privacy, we do not require any trusted authorities. This makes our
protocol particularly attractive for straightforward implementation in a practical
system. The relatively high computational costs for generating and verifying the
ballots is a clear disadvantage of our approach, but we have demonstrated that
with today’s technology, this is only a drawback for very large electorates.

Acknowledgments. We thank the anonymous reviewers for their thorough re-
views and appreciate their comments and suggestions. This research has been sup-
ported by the Swiss National Science Foundation (project No. 200021L 140650).

References

1. Arapinis, M., Cortier, V., Kremer, S., Ryan, M.: Practical everlasting privacy. In:
Basin, D., Mitchell, J. (eds.) POST’13, 2nd Conference on Principles of Security
and Trust. pp. 21–40. LNCS 7796, Rome, Italy (2013)

2. Au, M.H., Susilo, W., Mu, Y.: Proof-of-knowledge of representation of committed
value and its applications. In: Steinfeld, R., Hawkes, P. (eds.) ACISP’10, 15th
Australasian Conference on Information Security and Privacy. pp. 352–369. LNCS
6168, Sydney, Australia (2010)

3. Bayer, S., Groth, J.: Zero-knowledge argument for polynomial evaluation with appli-
cation to blacklists. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT’13, 32nd
Annual International Conference on the Theory and Applications of Cryptographic
Techniques. pp. 646–663. LNCS 7881, Athens, Greece (2013)

4. Brands, S.: Rethinking Public Key Infrastructures and Digital Certificates: Building
in Privacy. MIT Press (2000)

5. Brands, S., Demuynck, L., De Decker, B.: A practical system for globally revoking
the unlinkable pseudonyms of unknown users. In: Pieprzyk, J., Ghodosi, H., Dawson,
E. (eds.) ACISP’07, 12th Australasian Conference on Information Security and
Privacy. pp. 400–415. LNCS 4586, Townsville, Australia (2007)

6. Buchmann, J., Demirel, D., van de Graaf, J.: Towards a publicly-verifiable mix-net
providing everlasting privacy. In: Sadeghi, A.R. (ed.) FC’13, 17th International
Conference on Financial Cryptography. pp. 197–204. LNCS 7859, Okinawa, Japan
(2013)

7. Camenisch, J., Chaabouni, R., Shelat, A.: Efficient protocols for set membership and
range proofs. In: Pieprzyk, J. (ed.) ASIACRYPT’08, 14th International Conference
on the Theory and Application of Cryptology and Information Security. pp. 234–252.
LNCS 5350, Melbourne, Australia (2008)

8. Camenisch, J., Stadler, M.: Efficient group signature schemes for large groups.
In: Kaliski Jr., B.S. (ed.) CRYPTO’97, 17th Annual International Cryptology
Conference on Advances in Cryptology. pp. 410–424. LNCS 1294, Santa Barbara,
USA (1997)

9. Canard, S., Traoré, J.: List signature schemes and application to electronic voting.
In: Augot, D., Charpin, P., Kabatianski, G. (eds.) WCC’03, 3rd International
Workshop on Coding and Cryptography. pp. 81–90. Versailles, France (2003)

10. Chaum, D.: The dining cryptographers problem: Unconditional sender and recipient
untraceability. Journal of Cryptology 1(1), 65–75 (1988)

11. Demirel, D., Henning, M., van de Graaf, J., Ryan, P.Y.A., Buchmann: Prêt à
Voter providing everlasting privacy. In: Heather, J., Schneider, S., Teague, V. (eds.)
VoteID’13, 4th International Conference on E-Voting and Identity. pp. 156–175.
LNCS 7985, Guildford, U.K. (2013)

12. Demirel, D., van de Graaf, J., Araújo, R.: Improving Helios with everlasting privacy
towards the public. In: Halderman, J.A., Pereira, O. (eds.) EVT/WOTE’12, Elec-
tronic Voting Technology Workshop/Workshop on Trustworthy Elections. Bellevue,
USA (2012)

13. Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO’86, 6th Annual International
Cryptology Conference on Advances in Cryptology. pp. 186–194. Santa Barbara,
USA (1986)

14. Fujioka, A., Okamoto, T., Ohta, K.: A practical secret voting scheme for large
scale elections. In: Seberry, J., Zheng, Y. (eds.) ASIACRYPT’92, Workshop on
the Theory and Application of Cryptographic Techniques. pp. 244–251. LNCS 718,
Gold Coast, Australia (1992)

15. Groth, J.: Efficient maximal privacy in boardroom voting and anonymous broadcast.
In: Juels, A. (ed.) FC’04, 8th International Conference on Financial Cryptography.
pp. 90–104. LNCS 3110, Key West, USA (2004)

16. Kiayias, A., Yung, M.: Self-tallying elections and perfect ballot secrecy. In: Naccache,
D., Paillier, P. (eds.) PKC’02, 5th International Workshop on Theory and Practice
in Public Key Cryptography. pp. 141–158. LNCS 2274, Paris, France (2002)

17. Locher, P., Haenni, R.: A lightweight implementation of a shuffle proof for electronic
voting systems. In: Plödereder, E., Grunske, L., Schneider, E., Ull, D. (eds.) IN-
FORMATIK 2014, 44. Jahrestagung der Gesellschaft für Informatik. pp. 1391–1400.
No. P-232 in Lecture Notes in Informatics, Stuttgart, Germany (2014)

18. Moran, T., Naor, M.: Receipt-free universally-verifiable voting with everlasting
privacy. In: Dwork, C. (ed.) CRYPTO’06, 26th Annual International Cryptology
Conference on Advances in Cryptology. pp. 373–392. LNCS 4117, Santa Barbara,
USA (2006)

19. Moran, T., Naor, M.: Split-ballot voting: Everlasting privacy with distributed trust.
In: Ning, P., de Capitani di Vimercati, S., Syverson, P. (eds.) CCS’07, 14th ACM
Conference on Computer and Communications Security. pp. 246–255. Alexandria,
USA (2007)

20. Moran, T., Naor, M.: Split-ballot voting: Everlasting privacy with distributed trust.
ACM Transactions on Information and System Security 13(2), 16:1–16:43 (2010)

21. van de Graaf, J.: Voting with unconditional privacy by merging Prêt à Voter and
PunchScan. IEEE Transactions on Information Forensics and Security 4(4), 674–684
(2009)

