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Preface

This volume contains the papers presented at the 20th International Conference on
Implementation and Application of Automata (CIAA 2015), which was organized by
the Department of Computing Science at Umeå University, Sweden, and took place at
Umeå Folkets hus during August 18–21, 2015.

The CIAA conference series is the major international venue for the dissemination
of new results in the implementation, application, and theory of automata. The previous
19 conferences were held in various locations all around the globe: Blois (2011),
Giessen (2014), Halifax (2013), Kingston (2004), London Ontario (WIA 1997, WIA
1996, and 2000), Nice (2005), Porto (2012), Potsdam (WIA 1999), Prague (2007),
Pretoria (2001), Rouen (WIA 1998), San Francisco (2008), Santa Barbara (2003),
Sydney (2009), Taipei (2006), Tours (2002), and Winnipeg (2010).

The topics of this volume include cover automata, counter automata, decision
algorithms on automata, descriptional complexity, expressive power of automata,
homing sequences, jumping finite automata, multidimensional languages, parsing and
pattern matching, quantum automata, realtime pushdown automata, random generation
of automata, regular expressions, security issues, sensors in automata, transducers,
transformation of automata, and weighted automata.

In total, 49 papers were submitted by authors in 20 different countries: Brazil,
Canada, Czech Republic, Finland, France, Germany, Hungary, India, Israel, Italy,
Japan, South Korea, Norway, Poland, Portugal, Russia, South Africa, Sweden, the UK,
and the USA. Each of these papers was reviewed by at least three reviewers and
thoroughly discussed by the Program Committee, which resulted in the selection of 22
papers for presentation at the conference and publication in this volume. Four invited
talks were given by Benedikt Bollig, Christof Löding, Andreas Maletti, and Bruce
Watson. In addition to these contributions, the volume contains two short papers about
tool demonstrations that were given at the conference.

I am very thankful to all invited speakers, authors of submitted papers, system
demonstrators, Program Committee members, and external reviewers for their valuable
contributions and help. Without them, CIAA 2015 could not have been realized. The
entire process from the original submissions to collecting the final versions of papers
was greatly simplified by the use of the EasyChair conference management system.

I would furthermore like to thank the editorial staff at Springer, and in particular
Alfred Hofmann and Anna Kramer, for their guidance and help during the process of
publishing this volume, and Camilla Andersson at the conference site Umeå Folkets
hus for her help with all the practical preparations.

CIAA 2015 was financially supported by (a) the Department of Computing Science
at Umeå University, (b) the conference fund of Umeå Municipality, the County
Council of Västerbotten and Umeå University, (c) the Faculty of Science and Tech-
nology at Umeå University, and (d) the Swedish Research Council, who provided
generous funding for invited speakers.



Last but by no means least, I wish to thank the local Organizing Committee con-
sisting of the members of the research group Foundations of Language Processing,
namely, Suna Bensch, Henrik and Johanna Björklund, Loek Cleophas, Petter Ericson,
Yonas Woldemariam, and Niklas Zechner for their help.

We are now looking forward to CIAA 2016 at Yonsei University, Seoul, in South
Korea.

August 2015 Frank Drewes
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Automata and Logics for Concurrent Systems:
Five Models in Five Pages

Benedikt Bollig

LSV, ENS Cachan, CNRS & Inria
bollig@lsv.ens-cachan.fr

Abstract. We survey various automata models of concurrent systems and their
connection with monadic second-order logic: finite automata, class memory
automata, nested-word automata, asynchronous automata, and message-passing
automata.



Resource Automatic Structures for Verification
of Boundedness Properties

Extended Abstract

Christof Löding

RWTH Aachen, Germany
loeding@cs.rwth-aachen.de

Automatic structures are (possibly infinite) structures that can be represented by means
of finite automata [1, 10]. The elements of the domain of the structure are encoded as
words and form a regular language. The relations of the structure are recognized by
synchronous automata with several input tapes (the number of the tapes corresponding
to the arity of the relation). A typical example of such a structure is ðN;þ;\Þ, the
natural numbers with addition and order. The natural numbers are encoded by words
corresponding to their binary representation (or any other base). The order and the
addition (as ternary relation) can then be accepted by synchronous automata with the
corresponding number of input tapes.

Another class of examples are configuration graphs of pushdown automata with
reachability relation. The vertices of a pushdown graph are naturally encoded as words (a
control state followed by a stack content). The set of reachable configurations (from the
initial configuration) forms a regular language [4], and more generally, the reachability
relation is automatic, that is, there is a finite two-tape automaton that accepts those pairs
of configurations such that the second one is reachable from the first one [7].1

Automatic structures are interesting in verification because their first-order theory
(FO) is decidable: the atomic formulas are already given by automata, and the closure
properties of finite automata can be used for an inductive translation of composed
formulas.

In [13] we have introduced the notion of resource automatic structures. In this
model of resource structures, a relation is not a set of tuples but a function that assigns
to each tuple a natural number or 1, where the value 1 corresponds to the classical
case of not being in the relation. A value n for a tuple can be seen as a cost for being in
the relation.

As an illustration, we extend the above example of pushdown graphs with reach-
ability relation: Assume that the transitions of the pushdown system are annotated with
operations on resources. For each type of resource, a transition can either consume one
unit of this resource, completely replenish the resource at once, or not use the resource
at all. Then we can associate the cost of a finite path through the pushdown graph to be
the maximal number of units consumed from a resource without being replenished in

1The result in [7] is for the more general case of ground term rewriting systems, which include
pushdown automata as special case.



between. This corresponds to the size of the reservoir required for the resource to
execute the path. We naturally obtain a resource relation that assigns to each pair of
configurations the cost of a cheapest path between these two configurations (and 1 if
there is no path between the configurations).

In [13] it is shown that this resource reachability relation for pushdown automata can
be defined by an automaton model called B-automata. The transitions of these automata
are annotated by actions on counters that either increment the counter, reset the counter
to value 0, or leave the counter unchanged. In this way, a cost is assigned to each input
word that is accepted by the automaton as follows. The cost of a run is the maximal
value that one of the counters assumes during the run. The cost of the input word is the
minimal cost of an accepting run for this input word (and1 if the word is not accepted).

The class of resource automatic structures [13] is defined to be the class of resource
structures that can be encoded by B-automata, thus pushdown graphs with the resource
reachability relation are resource automatic structures.

As logic over these structures, we consider FOþRR, first-order logic with resource
relations, which is standard FO logic without negation. Similar to the resource rela-
tions, a formula of FOþRR has a value (instead of being true or false). Intuitively, this
value corresponds to the cost for making this formula true: the value of the atomic
formulas is given by the resource relations, disjunction and conjunction are translated
to min and max, and existential and universal quantifiers are translated to inf and sup.

The intention of this logic is to be able to formalize and solve boundedness
properties for resource structures. Taking again the example of pushdown graphs with
resource reachability, a typical question would be the bounded reachability problem:
given two regular sets A, B of configurations, does there exist a bound K such that from
each configuration in A there is a path to a configuration in B with cost at most K. The
corresponding formula is

8x 2 A9y 2 B : x !� y

where !� is the resource reachability relation. According to the semantics of FOþRR,
the value of the formula is not 1 if, and only if, the above bounded reachability
property holds.

Similar to the translation of classical FO formulas over automatic structures into
finite automata, FOþRR formulas can be translated into B-automata preserving
boundedness [13] (using the closure of B-automata under the operations max, min, inf,
sup). Thus, for deciding whether the value of a formula is finite, it suffices to check the
boundedness property on B-automata.

Boundedness properties for finite automata have been studied in the context of the
star-height problem for regular expressions [8, 11]. Given a regular language and a
number h, the question of whether there exists a regular expression of star-height at
most h for this language, can be reduced to a boundedness question of B-automata. The
boundedness (or limitedness) problem for B-automata is the question whether there is a
bound on the cost of the accepted words. It is shown to be decidable in [11], where the
automata are called distance-desert automata. The name of B-automata originates from
a model introduced in [3] for describing boundedness properties of infinite words.
Based on the decidability results for B-automata, one obtains the decidability of the
boundedness problem for FOþRR formulas over resource automatic structures.

Resource Automatic Structures for Verification of Boundedness Properties XV



In [14] the class of resource automatic structures is studied in more detail. It is
shown that there is a complete resource automatic structure (each other resource
automatic structure can be obtained from this complete structure by interpretations in
FOþRR logic). Furthermore, connections between FOþRR over resource automatic
structures and cost monadic second-order logic (cost MSO) [5] and cost FO [12] over
words are established that generalize the standard setting over words without costs.

The model of B-automata and the corresponding decidability results can be
extended to finite trees [6], which leads to the class of resource tree automatic struc-
tures. In recent work [9], it is shown that an extension of FOþRR with an operator for
testing boundedness of formulas, can be used to capture weak cost MSO [5] and weak
MSO+U [2], obtaining alternative proofs for the decidability of these logics.
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Finite-State Technology
in Natural Language Processing

Extended Abstract

Andreas Maletti

Institute for Natural Language Processing, Universität Stuttgart
Pfaffenwaldring 5b, 70569 Stuttgart, Germany
maletti@ims.uni-stuttgart.de

Finite-state technology is at the core of many standard approaches in natural language
processing [11, 15]. However, the terminology and the notations differ significantly
between theoretical computer science (TCS) [8] and natural language processing
(NLP) [13]. In this lecture, inspired by [11, 13], we plan to illustrate the close ties
between formal language theory as discussed in TCS and its use in mainstream
applications of NLP. In addition, we will try to match the different terminologies in
three example tasks. Overall, this lecture shall serve as an introduction to (i) these tasks
and (ii) the use of finite-state technology in NLP and shall encourage closer collabo-
ration between TCS and NLP.

We will start with the task of part-of-speech tagging [11, Chapter 5], in which given
a natural language sentence the task is to derive the word category (the part-of-speech,
e.g. noun, verb, adjective, etc.) for each occurring word in the sentence. The part-of-
speech information is essential for several downstream applications like co-reference
resolution [11, Chapter 21] (i.e., detecting which entities in a text refer to the same
entities), automatic keyword detection [11, Chapter 22] (i.e., finding relevant terms for
a document), and sentiment analysis [18] (i.e., the process of determining whether a
text speaks favorably or negatively about a subject). Along the historical development
of systems for this task [9] we will discuss the main performance breakthrough (in the
mid 80s) that led to the systems that are currently state-of-the-art for this task. This
breakthrough was achieved with the help of statistical finite-state systems commonly
called hidden Markov models [11, Chapter 6], which roughly equate to probabilistic
finite-state transducers [17]. We will outline the connection and also demonstrate how
various well-known algorithms like the forward and backward algorithms relate to TCS
concepts.

Second, we will discuss the task of parsing [11, Chapter 13], in which a sentence is
given and its syntactic structure is to be determined. The syntactic structure is beneficial
in several applications including syntax-based machine translation [14] or natural
language understanding [11, Chapter 18]. In parsing, a major performance break-
through was obtained in 2005 by adding finite-state information to probabilistic
context-free grammars [16]. The currently state-of-the-art models (for English) are

Supported by the German Research Foundation (DFG) grant MA/ 4959 / 1-1.



probabilistic context-free grammars with latent variables, which are known as prob-
abilistic finite-state tree automata [10] in TCS. We will review the standard process [7]
(expectation maximization), which determines the hidden finite-state information in the
hope that similar processes might be helpful also in the TCS community. In addition,
we will recall a spectral learning approach [6], which builds on the minimization of
nondeterministic field-weighted tree automata [3]. Similarly, advanced evaluation
mechanisms like coarse-to-fine parsing [19] that have been developed in NLP should
be considered in TCS.

Finally, we will cover an end-user application in NLP. The goal of machine
translation [14] is the provision of high-quality and automatic translations of input
sentences from one language into another language. The main formalisms used in NLP
in this area are probabilistic synchronous grammars [5], which originate from the
seminal syntax-based translation schemes of [1]. These grammars correspond to certain
subclasses of probabilistic finite-state transducers [17] or probabilistic tree transducers
[10]. So far, only local versions (grammars without latent variables) are used in
state-of-the-art systems, so the effective inclusion of finite-state information remains an
open problem in this task. However, the requirements of syntax-based machine
translation already spurred a lot of research in TCS because the models traditionally
studied had significant shortcomings [12]. In the other direction, advanced models like
multi bottom-up tree transducers [2] have made reasonable impact in syntax-based
machine translation [4].
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Hardware Implementations
of Finite Automata and Regular Expressions

Extended Abstract

Bruce W. Watson

FASTAR Group, Department of Information Science
Stellenbosch University, South Africa

bruce@fastar.org

Abstract. This extended abstract sketches some of the most recent advances in
hardware implementations (and surrounding issues) of finite automata and
regular expressions. The traditional application areas for automata and regular
expressions are compilers, text editors, text programming languages (for
example Sed, AWK, but more recently Python, and Perl), and text processing in
general purpose languages (such as Java, C++ and C#). In all these cases, while
the regular expression implementation should be efficient, it rarely forms the
performance bottleneck in resulting programs and applications. Even more
exotic application areas such as computational biology are not particularly
taxing on the regular expression implementation — provided some care is taken
while crafting the regular expressions [5].
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