
ar
X

iv
:1

41
2.

36
88

v2
 [

cs
.F

L
]

 1
7

D
ec

 2
01

4

Run-Length Encoded Nondeterministic KMP

and Suffix Automata

Emanuele Giaquinta1

Department of Computer Science and Engineering, Aalto University, Finland
emanuele.giaquinta@aalto.fi

Abstract. We present a novel bit-parallel representation, based on the
run-length encoding, of the nondeterministic KMP and suffix automata
for a string P with at least two distinct symbols. Our method is targeted
to the case of long strings over small alphabets and complements the
method of Cantone et al. (2012), which is effective for long strings over
large alphabets. Our encoding requires O((σ+m)⌈ρ/w⌉) space and allows
one to simulate the automata on a string in time O(⌈ρ/w⌉) per transition,
where σ is the alphabet size, m is the length of P , ρ is the length of the
run-length encoding of P and w is the machine word size in bits. The
input string can be given in either unencoded or run-length encoded
form.

1 Introduction

The string matching problem consists in finding all the occurrences of a string P
of length m in a string T of length n, both over a finite alphabet Σ of size σ. The
matching can be either exact or approximate, according to some metric which
measures the closeness of a match. The finite automata for the language Σ∗P
(prefix automaton) and Suff (P) (suffix automaton), where Suff (P) is the set of
suffixes of P , are the main building blocks of very efficient algorithms for the
exact and approximate string matching problem. Two fundamental algorithms
for the exact problem, based on the deterministic version of these automata,
are the KMP and BDM algorithms, which run in O(n) and O(nm) worst-case
time, respectively, using O(m) space [9,4]. In the average case, the BDM algo-
rithm achieves the optimal O(n logσ(m)/m) time bound. The nondeterministic
version of the prefix and suffix automata can be simulated using an encoding,
known as bit-parallelism, based on bit-vectors and word-level parallelism [1].
The variants of the KMP algorithm based on the nondeterministic prefix au-
tomaton, known as Shift-Or and Shift-And, run in O(n⌈m/w⌉) worst-case
time and use O(σ⌈m/w⌉) space, where w is the machine word size in bits [1,11].
Similarly, the variant of the BDM algorithm based on the nondeterministic suf-
fix automaton, known as BNDM, runs in O(nm⌈m/w⌉) worst-case time and
uses O(σ⌈m/w⌉) space [10]. In the average case, the BNDM algorithm runs in
O(n logσ(m)/w) time, which is suboptimal for patterns whose length is greater
than w. There also exists a variant of Shift-Or which achieves O(n logσ(m)/w)
time in the average case [6]. As for the approximate string matching problem,

http://arxiv.org/abs/1412.3688v2

there are also various algorithms based on the nondeterministic prefix and suffix
automata [11,10,2,7,8].

In general, the bit-parallel algorithms are suboptimal if compared to the their
“deterministic” counterparts in the casem > w, because of the ⌈m/w⌉ additional
term in the time complexity. A way to overcome this problem is to use a filtering
method, namely, searching for the prefix of P of length w and verifying each
occurrence with the naive algorithm. Assuming uniformly random strings, the
average time complexity of Shift-And and BNDM with this method is O(n)
and O(n logσ w/w), respectively. Recently, a few approaches were proposed to
improve the case of long patterns. In 2010 Durian et al. presented three variants
of BNDM tuned for the case of long patterns, two of which are optimal in the
average case [5]. In the same year, Cantone et al. presented a different encoding
of the prefix and suffix automata, based on word-level parallelism and on a
particular factorization on strings [3]. The general approach is to devise, given
a factorization f on strings, a bit-parallel encoding of the automata based on
f such that one transition can be performed in O(⌈|f(P)|/w⌉) time instead
of O(⌈m/w⌉), at the price of more space. The gain is two-fold: i) if |f(P)| <
|P |, then the overhead of the simulation is reduced. In particular, there is no
overhead if |f(P)| ≤ w, which is preferable if |f(P)| < |P |; ii) if we use the
filtering method, we can search for the longest substring P ′ of P such that
|f(P ′)| ≤ w. This yields O(n logσ |P

′|/|P ′|) average time for BNDM, which is
preferable if |P ′| > w. The method of Cantone et al. is effective for long patterns
over large alphabets. Their factorization is such that ⌈m/σ⌉ ≤ |f(P)| ≤ m and
their encoding requires O(σ2⌈|f(P)|/w⌉) space.

In this paper we present a novel encoding of the prefix and suffix automata,
based on this approach, where f(P) is the run-length encoding of P , provided
that P has at least two distinct symbols. The run-length encoding of a string is
a simple encoding where each maximal consecutive sequence of the same symbol
is encoded as a pair consisting of the symbol plus the length of the sequence.
Our encoding requires O((σ + m)⌈ρ/w⌉) space and allows one to simulate the
automata in O(⌈ρ/w⌉) time per transition, where ρ is the length of the run-
length encoding of P . While the present algorithm uses the run-length encoding,
the input string can be given in either unencoded or run-length encoded form.
The run-length encoding is suitable for strings over small alphabets. Therefore,
our method complements the one of Cantone et al., which is effective for large
alphabets.

2 Notions and Basic Definitions

Let Σ be a finite alphabet of symbols and let Σ∗ be the set of strings over Σ.
The empty string ε is a string of length 0. Given a string S, we denote with
|S| the length of S and with S[i] the i-th symbol of S, for 0 ≤ i < |S|. The
concatenation of two strings S and S̄ is denoted by SS̄. Given two strings S and
S̄, S is a substring of S̄ if there are indices 0 ≤ i, j < |S| such that S̄ = S[i]...S[j].
If i = 0 (j = |S| − 1) then S̄ is a prefix (suffix) of S. The set Suff (S) is the set

of all suffixes of S. We denote by S[i..j] the substring S[i]..S[j] of S. For i > j
S[i..j] = ε. We denote by Sk the concatenation of k S’s, for S ∈ Σ∗ and k ≥ 1.
The string Sr is the reverse of the string S, i.e., Sr = S[|S|−1]S[|S|−2] . . .S[0].

Given a string P ∈ Σ∗ of length m, we denote by A(P) = (Q,Σ, δ, q0, F) the
nondeterministic finite automaton (NFA) for the language Σ∗P of all strings in
Σ∗ whose suffix of length m is P , where:

– Q = {q0, q1, . . . , qm} (q0 is the initial state)
– the transition function δ : Q ×Σ −→ P(Q) is defined by:

δ(qi, c) =Def



















{q0, q1} if i = 0 and c = P [0]

{q0} if i = 0 and c 6= P [0]

{qi+1} if 1 ≤ i < m and c = P [i]

∅ otherwise

– F = {qm} (F is the set of final states).

Similarly, we denote by S(P) = (Q,Σ, δ, I, F) the nondeterministic suffix
automaton with ε-transitions for the language Suff (P) of the suffixes of P , where:

– Q = {I, q0, q1, . . . , qm} (I is the initial state)
– the transition function δ : Q × (Σ ∪ {ε}) −→ P(Q) is defined by:

δ(q, c) =Def











{qi+1} if q = qi and c = P [i] (0 ≤ i < m)

Q if q = I and c = ε

∅ otherwise

– F = {qm} (F is the set of final states).

We use the notation qI to indicate the initial state of the automaton, i.e., qI
is q0 for A(P) and I for S(P). The valid configurations δ∗(qI , S) which are reach-
able by the automata A(P) and S(P) on input S ∈ Σ∗ are defined recursively
as follows:

δ∗(qI , S) =Def

{

E(qI) if S = ε,
⋃

q′∈δ∗(qI ,S′) δ(q
′, c) if S = S′c, for some c ∈ Σ and S′ ∈ Σ∗.

where E(qI) denotes the ε-closure of qI . Given a string P , a run of P is a
maximal substring of P containing exactly one distinct symbol. The run-length
encoding (RLE) of a string P , denoted by rle(P), is a sequence of pairs (runs)
〈(c0, l0), (c2, l2,), . . . , (cρ−1, lρ−1)〉 such that ci ∈ Σ, li ≥ 1, ci 6= ci+1 for 0 ≤

i < ρ, and P = cl00 c
l1
1 . . . c

lρ−1

ρ−1 . The starting (ending) position in P and length

of the run (ci, li) are αP (i) =
∑i−1

j=0 lj (βP (i) =
∑i

j=0 lj − 1) and ℓP (i) = li, for
i = 0, . . . , ρ− 1. We also put αP (ρ) = |P |.

Finally, we recall the notation of some bitwise infix operators on computer
words, namely the bitwise and “&”, the bitwise or “|”, the left shift “≪”
operator (which shifts to the left its first argument by a number of bits equal to
its second argument), and the unary bitwise not operator “∼”.

0 1 2 3 4 5 6
c

Σ

t t c c t
0

I

1 2 3 4 5 6
c t t c c t

ε

ε
ε

ε
ε

ε
ε

Fig. 1. (a) The automata A(P) and S(P) for the pattern P = cttcct. The state labels
corresponding to the starting positions of the runs of RLE(P) are underlined.

3 The Shift-And and BNDM algorithms

In this section we briefly describe the Shift-And and BNDM algorithms. Given
a pattern P of length m and a text T of length n, the Shift-And and BNDM

algorithms find all the occurrences of P in T . The Shift-And algorithm works
by simulating the A(P) automaton on T and reporting all the positions j in T
such that the final state of A(P) is active in the corresponding configuration
δ∗(qI , T [0 . . . j]). Instead, the BNDM algorithm works by sliding a window of
length m along T . For a given window ending at position j, the algorithm simu-
lates the automaton S(P r) on (T [j−m+1 . . . j])r. Based on the simulation, the
algorithm computes the length k and k′ of the longest suffix of T [j−m+1 . . . j]
which is a prefix and a proper prefix, respectively, of P (i.e., a suffix of P r). If
k = m then T [j −m+ 1 . . . j] = P and the algorithm reports an occurrence of
P at position j. The window is then shifted by m − k′ positions to the right,
so as to align it with the longest proper prefix of P found. The automata are
simulated using an encoding based on bit-vectors and word-level parallelism.
The algorithms run in O(n⌈m/w⌉) and O(nm⌈m/w⌉) time, respectively, using
O(σ⌈m/w⌉) space, where w is the word size in bits.

4 RLE-based encoding of the Nondeterministic KMP

and suffix automata

Given a string P of length m defined over an alphabet Σ of size σ, let rle(P) =
〈(c0, l0), (c1, l1,), . . . , (cρ−1, lρ−1)〉 be the run-length encoding of P . In the fol-
lowing, we describe how to simulate the A(P) and S(P) automata, using word-
level parallelism, on a string S of length n in O(⌈ρ/w⌉) time per transition and
O((m+σ)⌈ρ/w⌉) space. We recall that the simulation of the automaton A(P) on
a string S detects all the prefixes of S whose suffix of length m is P . Similarly,
the simulation of the automaton S(P) detects all the prefixes of S which are
suffixes of P .

Let I(S) = {αS(i) | 0 ≤ i ≤ |rle(S)|} be the set of starting positions of the
runs of S, for a given string S. Note that 0 ∈ I(S). Given a string S, we denote
with Dj = δ∗(qI , S[0 . . . j− 1]) the configuration of A(P) or S(P) after reading
S[0 . . . j− 1], for any 0 ≤ j ≤ |S|. The main idea of our algorithm is to compute
the configurations Dj corresponding to positions j ∈ I(S) only. We show that,

for any two consecutive positions j, j′ ∈ I(T), 1) we need only the states of the
automaton corresponding to positions in I(P) to compute Dj′ from Dj ; 2) if
the pattern includes at least distinct two symbols (i.e., if ρ ≥ 2), there can be at
most one occurrence of P ending in a position between j and j′ (or equivalently
spanning a proper prefix of a given run of S). Similarly, there can be at most one
prefix of S ending in a position between j and j′ which corresponds to a suffix
of P with at least two distinct symbols. We start with the following Lemma:

Lemma 1. Let j ∈ I(S). Then, for any qi ∈ Dj such that i /∈ I(P), we have
δ(qi, S[j]) = ∅.

Proof. Let qi ∈ Dj with i /∈ I(P). By definition of qi it follows that S[j − 1] =
P [i − 1] and P [i − 1] = P [i], respectively. Moreover, by j ∈ I(S), we have
S[j] 6= S[j− 1]. Suppose that δ(qi, S[j]) 6= ∅, which implies S[j] = P [i]. Then we
have S[j] = P [i] = P [i− 1] = S[j − 1], which yields a contradiction. ⊓⊔

This Lemma states that, for any j ∈ I(S), any state qi ∈ Dj with i /∈ I(P) is
dead, as no transition is possible from it on S[j]. Figure 1 shows the automata
A(P) and S(P) for P = cttcct; the state labels corresponding to indexes in I(P)
are underlined.

We assume that P has at least two distinct symbols. The following Lemma
shows that, under this assumption, there can be at most one configuration D
containing the final state qm with index between αS(i) + 1 and βS(i) + 1 in S,
for any 1 ≤ i ≤ |rle(S)| (note that i ≥ 1 implies that the corresponding prefix
of S in the language has at least two distinct symbols).

Lemma 2. Let i ∈ {1, . . . , |rle(S)| − 1}. If ρ ≥ 2, there exists at most one j′

in the interval [αS(i), βS(i)] such that qm ∈ Dj′+1.

Proof. Let j′ ∈ [j1, j2] such that qm ∈ Dj′+1, where j1 = αS(i) and j2 =
βS(i). This corresponds to i) S[j′ − |P |+ 1 . . . j′] = P for A(P) and to ii) and
S[0 . . . j′] ∈ Suff (P) for S(P). Since ρ ≥ 2 and i ≥ 1, in both cases, for this to
hold we must have S[j′−k] = cρ−1, for k = 0, . . . , lρ−1−1, and S[j′−lρ−1] = cρ−2,
where cρ−2 6= cρ−1. By definition of j1, S[j1] = S[j1 + 1] = . . . = S[j′] and
S[j1 − 1] 6= S[j1]. Hence, the only possibility is j′ = j1 + lρ−1 − 1.

Specifically, the only configuration containing qm, if any, corresponds to index
αS(i) + lρ−1. By definition of Dj and by Lemma 1, we have

DαS(j+1) = δ∗(qI , S[0 . . . βS(j)])
=

⋃

q∈DαS(j)
δ∗(q, S[αS(j) . . . βS(j)])

=
⋃

q∈DαS(j)∩{qi | i∈I(P)} δ
∗(q, S[αS(j)]

ℓS(j))
(1)

for any position αS(j + 1). Moreover, by Lemma 2, there can be at most one
configuration D with index between αS(j) + 1 and βS(j) + 1 containing the
final state qm, for j ≥ 1. For j = 0 it is easy to see that: i) in the case of
the prefix automaton, since ρ ≥ 2, qm /∈ Dj′+1 for j′ ∈ [αS(0), βS(0)]; ii) in
the case of the suffix automaton, if S[0] = P [m − 1] then qm ∈ Dj′+1 for j′ ∈

[0,min(ℓS(0), lρ−1) − 1], and qm /∈ Dj′+1 otherwise. Hence, in the case of the
suffix automaton, it is enough to test if S[0] = P [m−1] to know all the matching
prefixes in the interval of the first run of S. The idea is then to compute the
configurations Dj , restricted to the states with index in I(P), corresponding to
positions j ∈ I(S) only by reading S run-wise. Observe that it is not possible to
detect the single prefix of S in the language, if any, ending at a position between
αS(j − 1) and βS(j − 1) using DαS(j), because qm /∈ DαS(j) if the prefix does
not end at position βS(j − 1), or equivalently if ℓS(j − 1) > lρ−1. To overcome
this problem we modify the automata by adding a self-loop on qm labeled by
P [m − 1]. In this way, if qm belongs to a configuration D with index between
αS(j − 1) + 1 and βS(j − 1) + 1 then qm will be in DαS(j). Observe that, if
qm ∈ DαS(j), then qm /∈ DαS(j+1), since S[αS(j)] 6= S[αS(j + 1)].

Let D̄j = {1 ≤ i ≤ ρ | qαP (i) ∈ DαS(j)} , be the encoding of the configuration
of A(P) after reading S[0 . . . βS(j − 1)], for 0 ≤ j ≤ |rle(S)|. For example:

P = cttcct
S = cttccttcct
D̄1 = {1} D̄2 = {2}
D̄3 = {1, 3} D̄4 = {2, 4}
D̄5 = {1, 3} D̄6 = {4}

i 0 1 2 3 4
αP (i) 0 1 3 5 6

i 0 1 2 3 4 5 6
αS(i) 0 1 3 5 7 9 10

Note that q0 is not represented and that D̄0 is equal to ∅ and {1, . . . , ρ} for A(P)
and S(P), respectively. We now describe how to compute the configurations D̄j ,
starting with the automaton A(P). The following property easily follows from
Equation 1:

Lemma 3. For any 0 ≤ j < |rle(S)| and 1 ≤ i ≤ ρ, qαP (i) ∈ DαS(j+1) if and
only if either

a) qαP (i−1) ∈ DαS(j) ∧ S[αs(j)] = ci−1 ∧ ℓS(j) = li−1, for i = 2, . . . , ρ− 1;
b) qαP (i−1) ∈ DαS(j) ∧ S[αs(j)] = ci−1 ∧ ℓS(j) ≥ li−1, for i ∈ {1, ρ}.

Based on the above Lemma and the fact that there is a self-loop on q0 labeled
by Σ, we have that

D̄j+1 = {i+ 1 | i ∈ D̄j ∪ {0}}
∩ {1 ≤ i ≤ ρ | S[αS(j)] = ci−1}
∩ ({2 ≤ i ≤ ρ− 1 | ℓS(j) = li−1} ∪ {i ∈ {1, ρ} | ℓS(j) ≥ li−1})

(2)

for j ≥ 0. We now show to implement Equation 2 efficiently using word-level
parallelism. Let

B1(c) = {1 ≤ i ≤ ρ | c = ci−1} ,
B2(l) = {1 ≤ i ≤ ρ | l = li−1}

∪ {i ∈ {1, ρ} | l ≥ li−1}

for any c ∈ Σ and 1 ≤ l ≤ |P |+ 1. The set B1(c) includes the indices of all the
runs whose symbol is equal to c. Similarly, The set B2(l) includes the indices
of all the runs whose length is equal to l and, in addition, the index of the first
and/or last run if the corresponding length is smaller than or equal to l. Note
that B2(l) = {1, ρ}, for any l > |P |; thus, we can define B2 up to |P | + 1 and
map any integer greater than |P | onto |P | + 1. For example, for P = cttcct we
have:

B1(c) = {0, 2} B2(1) = {0, 3}
B1(t) = {1, 3} B2(2) = {0, 1, 2, 3}

and B2(l) = {0, 3}, for 3 ≤ l ≤ 7. We represent the configurations D̄ and the
sets B as bit-vectors of ρ bits, denoted with D and B, respectively. Based on
these two definitions, Equation 2 can be rewritten as

D̄j+1 = {i+ 1 | i ∈ D̄j ∪ {0}} ∩B1(S[αS(j)]) ∩B2(min(ℓS(j), |P |+ 1)) ,

which corresponds to the following bitwise operations

Dj+1 = ((Dj ≪ 1) | 0ρ−11) & B1(S[αS(j)]) & B2(min(ℓS(j), |P |+ 1)) .

We now describe the computation of D̄j for the automaton S(P). The sim-
ulation of S(P) is equivalent to the one of A(P), up to state q0 and the first
transition. For j > 1, Lemma 3 holds if index 1 is handled by case a instead
of b, which accounts for the fact that there is no self-loop on q0. We can thus
change Equation 2 and the definition of B2 accordingly. Instead, for j = 1 (i.e.,
the transition on the first run of S), we have

qαP (i) ∈ DαS(1) ⇐⇒ S[0] = ci−1 ∧ (i = ρ ∨ ℓS(0) ≤ li−1) , for i = 1, . . . , ρ ,

and

D̄1 = {1 ≤ i ≤ ρ | S[0] = ci−1} ∩ ({1 ≤ i < ρ | ℓS(0) ≤ li−1} ∪ {ρ}) ,

since, before the first transition, all the states are active because of the ε-
transitions and so state qαP (i) can be activated by any state with index between
αP (i− 1) and αP (i)− 1 by reading a run with symbol equal to ci−1 and length
no larger than li−1, with the exception of qm which can be activated with a run
of any length because of the self-loop. To account for this case we define the set
B3(l) = {1 ≤ i ≤ ρ | l ≤ li−1} ∪ {ρ}, for 1 ≤ l ≤ |P |+ 1. The set B3(l) includes
the indices of all the runs whose length is greater than or equal to l and, in
addition, the index of the last run. Note that B3(l) = {ρ} for l ≥ |P |+ 1, so we
can define B3 up to |P |+ 1 and map any integer greater than |P | onto |P |+ 1,
as done for B2. Then, we have:

D̄1 = B1(S[0]) ∩B3(min(ℓS(0), |P |+ 1)) ,

which corresponds to the following bitwise operations

D1 = B1(S[0]) & B3(min(ℓS(0), |P |+ 1)) .

rl-preprocess(P)
1. ρ← |rle(P)|
2. for c ∈ Σ do B1[c]← 0ρ

3. for i← 1 to |P | + 1 do B2[i]← 0ρ

4. i← 0
5. for (c, l) ∈ rle(P) do

6. H ← 0ρ−11≪ i
7. B1[c]← B1[c] | H
8. if i = 0 or i = ρ − 1 then

9. ℓ = l
10. for j ← l to |P | + 1 do

11. B2[j]← B2[j] | H
12. else B2[l]← B2[l] | H
13. i← i + 1
14. return(B1, B2, ρ, ℓ)

rl-shift-and(P,T)
1. (B1, B2, ρ, ℓ)← rl-preprocess(P)
2. D← 0ρ

3. j ← 0
4. for (c, l) ∈ rle(T) do

5. D← ((D≪ 1) | 0ρ−11) & B1[c]
6. D← D & B2[min(l, |P | + 1)]

7. if D & 10ρ−1 6= 0ρ then

8. Output(j + ℓ)
9. j ← j + l

rl-bndm(P,T)
1. (B1, B2, ρ, ℓ)← rl-preprocess(P r)
2. s← m− 1
3. while s < |T | do
4. D← 1ρ

5. b← s −m + 1
6. while s + 1 < |T | and T [s] = T [s + 1] do
7. s← s + 1
8. j ← 0, k ← 1
9. for (c, l) ∈ rle(T [b . . . s]r) do

10. D← D & B1[c]
11. D← D & B2[min(l, |P | + 1)]

12. if D & 10ρ−1 6= 0ρ then

13. if (j + ℓ ≥ |P |) then

14. Output(s − j − ℓ)
15. else k ← j + ℓ
16. D← D≪ 1
17. j ← j + l
18. s← s + m− k

Fig. 2. The variants of Shift-And and BNDM based on the run-length encoding.

The computation of a single configuration D̄j requires O(⌈ρ/w⌉) time. The total
time complexity of the simulation is thus O(|S|⌈ρ/w⌉), as the total number
of configurations is |rle(S)| ≤ |S|. The bit-vectors B can be preprocessed in
O(m+(σ+m)⌈ρ/w⌉) time and require O((σ+m)⌈ρ/w⌉) space. The string P or
S can be given in either unencoded or run-length encoded form. In the former
case its run-length encoding does not need to be stored. It can be computed on
the fly in O(m) or O(|S|) time, using constant space, during the preprocessing
or searching phase.

5 The variants of Shift-And and BNDM

The variants of the Shift-And and BNDM algorithms based on the encoding
described in the previous section run in O(n⌈ρ/w⌉) and O(nm⌈ρ/w⌉) time, re-
spectively, using O((σ +m)⌈ρ/w⌉) space. The encoding of the suffix automaton
is however not ideal in practice, due to the different first transition. We now
describe a variant of BNDM, based on a modified suffix automaton, where the
first transition of the automaton is equal to the subsequent ones. Let j be the
ending position of a window of length m in T and let j̄ be the minimum position

0

I

1 2 3 4 5 6
c

c
t t c c t

ε

ε

ε

ε
ε

Fig. 3. (a) The automaton SR(P) for the pattern P = cttcct.

such that j̄ ≥ j and T [j̄] 6= T [j̄ + 1]. In other words, j̄ is the ending position
of the run of rle(T) spanning T [j]. Consider the window of length m + j̄ − j
ending at j̄. By Lemma 2, if ρ ≥ 2, there can be at most one occurrence of P
ending at a position between j and j̄. Our idea is to process this larger window
with S(P r), finding the single occurrence of P in it, if any, and the length k′ of
the longest proper prefix of P ending at position j̄. We then shift the window by
m+ j̄− j−k′ positions to the right. If j̄− j < m, the time needed to process this
window is O(m). Otherwise, if j̄−j ≥ m, observe that, since k′ < m, the symbols
of T in the interval [j +1, j̄ −m] are covered by this window only and therefore
the time needed to process this window is O(m), for reading the symbols of T
in the intervals [j−m+1, j] and [j̄−m+1, j̄], plus a term which, summed over
all such windows, is O(n). Hence, the time complexity of the algorithm remains
O(nm⌈ρ/w⌉) in the worst-case.

Suppose that we simulate the automaton S(P r) on (T [j−m+1 . . . j̄])r and
let k′ be the length of the longest suffix of T [j −m+ 1 . . . j̄] which is a proper
prefix of P . Observe that, if k′ does not correspond to the ending position of a
run of rle(P), i.e., if P [k′−1] = P [k′], then the window corresponding to shift k′

does not contain an occurrence of P , because P [k′−1] = T [j̄] and T [j̄] 6= T [j̄+1]
(shifting the window by m+ j̄ − j − k′ corresponds to aligning position k′ with
j̄ + 1). Indeed, it is easy to see that the smallest useful shift corresponds to
the length k′ of the longest suffix of T [j −m+ 1 . . . j̄] which is a proper prefix
of P and such that P [k′ − 1] 6= P [k′]. Hence, we can modify the automaton
S(P) so that it recognizes the subset of Suff (P) {P [i . . . m− 1] | i = 0∨P [i] 6=
P [i−1]}. To accomplish this, it is enough to remove all the ε-transitions entering
a state qi with P [i] = P [i − 1]. Observe that the automaton can recognize the
occurrence of P , if any, ending at a position between j and j̄ only if it ends at
position j̄. To account for this problem, we add a self-loop on q0 labeled by P [0].
We denote the resulting automaton with SR(P). The transition function of the
SR(P) automaton is defined as follows:

δ(q, c) =Def



















{q0, q1} if q = q0 and c = P [0]

{qi+1} if q = qi and c = P [i] (0 ≤ i < m)

{qi | i = 0 ∨ P [i] 6= P [i− 1]} if q = I and c = ε

∅ otherwise

Figure 3 shows the automaton SR(P) for P = cttcct. It is not hard to verify that
Lemma 3 also holds for SR(P) and therefore the simulation of this automaton
is analogous to the one of the A(P) automaton.

The pseudocode of the variants of the Shift-And and BNDM algorithms
based on the run-length encoding is shown in Figure 4.

6 Acknowledgments

We thank Jorma Tarhio for helpful comments.

References

1. R. A. Baeza-Yates and G. H. Gonnet. A new approach to text searching. Commun.

ACM, 35(10):74–82, 1992.
2. R. A. Baeza-Yates and G. Navarro. Faster approximate string matching. Algorith-

mica, 23(2):127–158, 1999.
3. D. Cantone, S. Faro, and E. Giaquinta. A compact representation of nondeter-

ministic (suffix) automata for the bit-parallel approach. Inf. Comput., 213:3–12,
2012.

4. M. Crochemore and W. Rytter. Text Algorithms. Oxford University Press, 1994.
5. B. Durian, H. Peltola, L. Salmela, and J. Tarhio. Bit-parallel search algorithms

for long patterns. In Experimental Algorithms, 9th International Symposium, SEA

2010, Ischia Island, Naples, Italy, May 20-22, 2010. Proceedings, pages 129–140,
2010.

6. K. Fredriksson and S. Grabowski. Average-optimal string matching. J. Discrete

Algorithms, 7(4):579–594, 2009.
7. H. Hyyrö. Improving the bit-parallel NFA of baeza-yates and navarro for approx-

imate string matching. Inf. Process. Lett., 108(5):313–319, 2008.
8. H. Hyyrö and G. Navarro. Bit-parallel witnesses and their applications to approx-

imate string matching. Algorithmica, 41(3):203–231, 2005.
9. D. E. Knuth, J. H. M. Jr., and V. R. Pratt. Fast pattern matching in strings.

SIAM J. Comput., 6(2):323–350, 1977.
10. G. Navarro and M. Raffinot. Fast and flexible string matching by combining bit-

parallelism and suffix automata. ACM Journal of Experimental Algorithmics, 5:4,
2000.

11. S. Wu and U. Manber. Fast text searching allowing errors. Commun. ACM,
35(10):83–91, 1992.

	Run-Length Encoded Nondeterministic KMP and Suffix Automata

