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Joint Independent Subspace Analysis:
A Quasi-Newton Algorithm

Dana Lahat and Christian Jutten

GIPSA-Lab, UMR CNRS 5216, Grenoble Campus, BP46,
38402 Saint-Martin-d’Hères, France?

Abstract. In this paper, we present a quasi-Newton (QN) algorithm for
joint independent subspace analysis (JISA). JISA is a recently proposed
generalization of independent vector analysis (IVA). JISA extends clas-
sical blind source separation (BSS) to jointly resolve several BSS prob-
lems by exploiting statistical dependence between latent sources across
mixtures, as well as relaxing the assumption of statistical independence
within each mixture. Algebraically, JISA based on second-order statistics
amounts to coupled block diagonalization of a set of covariance and cross-
covariance matrices, as well as block diagonalization of a single permuted
covariance matrix. The proposed QN algorithm achieves asymptotically
the minimal mean square error (MMSE) in the separation of multidi-
mensional Gaussian components. Numerical experiments demonstrate
convergence and source separation properties of the proposed algorithm.

Keywords: Blind source separation, independent vector analysis, inde-
pendent subspace analysis, joint block diagonalization

1 Introduction

In this paper, we present a new algorithm for joint independent subspace anal-
ysis (JISA) [1]. JISA is a blind source separation (BSS) framework inspired by
two recently-proposed extensions to BSS that until recently have been dealt
with only separately: (1) relaxing the constraint that latent sources within a
set of measurements must be statistically independent, sometimes termed in-
dependent subspace analysis (ISA) [2–4], and (2) solving several classical BSS
problems simultaneously by exploiting statistical dependencies between latent
sources across sets of measurements, a model often known as independent vec-
tor analysis (IVA) [5]. JISA provides a new flexible way to exploit links be-
tween different datasets, and thus has the potential to be useful to data fusion.
The JISA model, and a relative gradient (RG) algorithm that achieves optimal
separation in terms of minimal mean square error (MMSE) in the presence of
noiseless Gaussian data, were first presented in [1]. A gradient algorithm that
performs JISA based on the multivariate Laplace distribution has recently been
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proposed [6]. The main contribution of this paper is a Newton-based algorithm
that achieves optimal separation for Gaussian noise-free data and converges in
a much smaller number of iterations than its RG counterpart [1].

Consider T observations of K vectors x[k](t), modelled as

x[k](t) = A[k]s[k](t) 1 ≤ t ≤ T , 1 ≤ k ≤ K , (1)

where A[k] are M ×M invertible matrices that may be different ∀k, and x[k](t)

and s[k](t) are M×1 vectors. Given the partition s[k](t) = [s
[k]ᵀ
1 (t), . . . , s

[k]ᵀ
N (t)]ᵀ,

where s
[k]
i (t) are mi × 1 vectors, mi ≥ 1,

∑N
i=1mi = M , N ≤ M , ·ᵀ denotes

transpose, and the probability density function (pdf) of each random process

s
[k]
i (t) irreducible in the sense that it cannot be factorized into a product of

non-trivial pdfs, then each mixture (1) represents a single ISA [2–4] problem.
The model that we define as JISA corresponds to linking several such standalone
ISA problems via the assumption that the elements of the ni × 1 vector si(t) =

[s
[1]ᵀ
i (t), . . . , s

[K]ᵀ
i (t)]ᵀ, where ni = Kmi, are statistically dependent, whereas the

pairs (si(t), sj(t)) are statistically independent ∀i 6= j ∈ {1, . . . , N}. JISA can be
regarded as generalizing IVA since in IVA, mi = 1 ∀i (which implies N = M).

In the rest of this paper, we focus on JISA using second-order statistics (SOS).
In this case, further insights can be obtained by rewriting (1) as

x(t) = As(t) (2)

where s(t) = [s[1]ᵀ(t), . . . , s[K]ᵀ(t)]ᵀ and x(t) = [x[1]ᵀ(t), . . . ,x[K]ᵀ(t)]ᵀ are L× 1
vectors, L = KM , A = ⊕K

k=1A
[k] ∈ Bk is a matrix direct sum, k = M1K

the block-pattern of A, and Bb denotes the subspace of all invertible block-
diagonal matrices with block-pattern b. With these notations, s̃(t) = Φs(t),
where s̃(t) = [sᵀ1(t), . . . , sᵀN (t)]ᵀ and Φ is the corresponding L × L permutation
matrix. Assuming sample independence ∀t 6= t′, the model assumptions imply

that S̃ , E{s̃(t)s̃ᵀ(t)} =

[
S11 0 0

0
.
.
. 0

0 SNN

]
= ⊕N

i=1Sii ∈ Bn, where S̃ is an L × L

block-diagonal matrix with block-pattern n = [n1, . . . , nN ]ᵀ and S̃ = ΦSΦᵀ ∈
Bn. The linear model (2) implies that X = ASAᵀ where S = E{s(t)sᵀ(t)} and
X = E{x(t)xᵀ(t)}. In the sequel, we assume that all Sii are invertible and do
not contain values fixed to zero. Typical structures of some of these matrices are
depicted in Fig. 1.

Figure of merit: The above partition of s[k](t) induces a corresponding

partition in the mixing matrices: A[k] = [A
[k]
1 | · · · |A

[k]
N ] with A

[k]
i the ith M×mi

column-block of A[k]. The multiplicative model (1) may now be rewritten as a

sum of N ≤ M multidimensional components: x[k](t) =
∑N

i=1 x
[k]
i (t) where the

ith M×1 component x
[k]
i (t) is defined as x

[k]
i (t) = A

[k]
i s

[k]
i (t). In a blind context,

the component vector x
[k]
i (t) is better defined than the source vector s

[k]
i (t).

Indeed, for any invertible mi ×mi matrix Z
[k]
ii , it is impossible to discriminate

between the representation of a component x
[k]
i (t) by the pair (A

[k]
i , s

[k]
i (t)) and

(A
[k]
i Z

−[k]
ii ,Z

[k]
ii s

[k]
i (t)), where Z

−[k]
ii denotes (Z

[k]
ii )−1. This means that only the



column space of A
[k]
i , span(A

[k]
i ), can be blindly identified. Therefore, JISA is

in fact a (joint) subspace estimation problem. Given m = [m1, . . . ,mN ] and

the set of observations X = {x[k](t)}K ,T
k=1,t=1, the problem that we define as

JISA can thus be stated as estimating A = {A[k]}Kk=1 such that the components

x1(t), . . . ,xN (t), where xi(t) = [x
[1]ᵀ
i (t), . . . ,x

[K]ᵀ
i (t)]ᵀ, are as independent as

possible. In the sequel, we set up a simple statistical model that, via its likelihood
function, yields a quantitative measure of independence. Accordingly, we define
the figure of merit as the mean square error (MSE) in the estimation of xi(t),

M̂SEi =
1

σ2
i

1

T

T∑
t=1

‖x̂i(t)− xi(t)‖2 , (3)

where σ2
i = E{‖xi(t)‖2}. For Gaussian data, estimates of xi(t) obtained from

matrices that are maximum likelihood (ML) estimates of A achieve asymptoti-
cally (i.e., T →∞) the MMSE [7].

Likelihood and contrast function: In the following, we consider a Gaus-
sian model in which si(t) ∼ N (0ni×1,Sii) are mutually independent samples
∀t 6= t′. The log-likelihood for the model just described is [1] log p(X ;A,S) =

−TD(ΦA−1XA−ᵀΦᵀ, S̃)−κ, where A = {A[k]}Kk=1, and X = 1
T

∑T
t=1 x(t)xᵀ(t)

is the empirical counterpart of X. The term κ = T
2 (log det(2πX)+L) is irrelevant

to the maximization of the likelihood since it depends only on the data and not on
the parameters. The scalar D(R1,R2) = 1

2 (tr{R1R
−1
2 }− log det(R1R

−1
2 )−M),

defined for any two M ×M symmetric positive-definite matrices R1 and R2,
is the Kullback-Leibler divergence (KLD) between the distributions N (0,R1)

and N (0,R2) [8]. Given the block-diagonal structure of S̃, its ML estimate

is [1]
̂̃
SML = bdiagn{ΦA−1XA−ᵀΦᵀ}. We can now write maxS log p(X ;A,S) =

− TC(A) + κ, where in the latter we have defined the contrast function

C(A) = D(ΦA−1XA−ᵀΦᵀ,bdiagn{ΦA−1XA−ᵀΦᵀ}) . (4)

It holds that D(R,bdiagb{R}) ≥ 0 with equality if and only if (iff)
R ∈ Bb. Hence, for any positive-definite matrix R, D(R,bdiagb{R}) is
a measure of the block-diagonality of R. Therefore, minimizing1 the con-
trast function (4) amounts to (approximate) block diagonalization of X
by a permuted block-diagonal matrix ΦA−1. The RG of (4), ∇C(A) =
bdiagk{Φᵀ bdiag−1n {ΦA−1XA−ᵀΦᵀ}ΦA−1XA−ᵀ} − I, where bdiag−1m {·}
stands for (bdiagm{·})−1, was derived in [1]. Matrices that satisfy ∇C(A) = 0
are ML estimates of A. This is the basis for the RG algorithm [1].

2 Derivation of the Approximate Hessian

The derivation of the Hessian is based on a relative perturbation of each A[k] by
Â[k] = A[k](IM +E [k])−1Λ[k], where the M ×M matrix E [k] reflects the relative

1 We assume that an optimum exists.



change in A[k], up to a scale ambiguity that is represented by the arbitrary invert-
ible matrix Λ[k] ∈ Bm. It can be shown [7] that the MSE (3) is invariant to Λ[k].
The first-order expansion of the equations that satisfy∇C(A) = 0 can be rewrit-
ten [7], for each pair i 6= j, as e = −H−1g+Ω( 1

T ), where e and g are 2Kmimj×1

vectors, e = [eᵀ
ij eᵀ

ji]
ᵀ, eij = [vecᵀ{E [1]

ij } · · · vecᵀ{E [K]
ij }]ᵀ, g = [gᵀ

ij gᵀ
ji]

ᵀ,

gij = [vecᵀ{[S−1ii Sij ]11} · · · vecᵀ{[S−1ii Sij ]KK}]ᵀ, H =

[
Sjj�S−1

ii IK⊗T mj,mi

IK⊗T mi,mj
Sii�S−1

jj

]
is a 2Kmimj × 2Kmimj matrix that we assume invertible, ⊗ is the Kro-

necker product, and Sjj � S−1ii =

 S
[1,1]
jj ⊗[S

−1
ii ]11 ··· S

[1,K]
jj ⊗[S−1

ii ]11

...
...

S
[K,1]
jj ⊗[S−1

ii ]K1 ··· S
[K,K]
jj ⊗[S−1

ii ]KK

 is a

Kmimj×Kmimj matrix whose (k, l)th block according to the partitionmimj1K

is S
[k,l]
jj ⊗ [S−1ii ]kl. The commutation matrix TP,Q ∈ RPQ×PQ is such that

vec{Mᵀ} = TP,Qvec{M} for any M ∈ RP×Q. Ω(f) stands for zero-mean
stochastic terms whose standard deviation is proportional to f , or to higher
powers thereof.

3 Algorithm

The approximation of the Hessian gives rise to a quasi-Newton (QN) algorithm,
which is given in pseudocode in Algorithm 1. In line 5 of Algorithm 1 we

Algorithm 1 An iterative Newton-based algorithm for JISA

1: function JISA(X, Φ, Ainit, m, threshold, K)
2: A← Ainit, R← X . initialization
3: while ‖∇C‖ > threshold do
4: for i=2:N, j=1:i-1 do . Sweep on (i, j 6= i)

5: g←
[
vecbdmi1K×mj1K{R

−1
ii Rij}

vecbdmj1K×mi1K{R
−1
jj Rji}

]
6: H←

[
Rjj �R−1

ii IK ⊗ T mj ,mi

IK ⊗ T mi,mj Rii �R−1
jj

]
7: Evaluate E [k]

ij ,E
[k]
ji , k=1,. . . ,K

8: Set {E [k]
ij ,E

[k]
ji }

K
k=1 in E = ⊕K

k=1E [k]

9: T← I + E . E [k]
ii = 0

10: R← T−1RT−ᵀ

11: A← AT . For output only
12: end for
13: ∇C ← bdiagk{Φᵀ bdiag−1

n {ΦA−1RA−ᵀΦᵀ}ΦA−1RA−ᵀΦᵀΦ} − I
14: end while
15: return A
16: end function

introduce the operator vecbdα×β{X} ,
[
vecᵀ{X11} . . . vecᵀ{XKK}

]ᵀ
,where



vecbdα×β{X} is a vector that consists only of the (vectorized) entries of the
main-diagonal blocks of matrix X. Matrices Xkk are the blocks on the main di-
agonal of X where the rows of X are partitioned according to α and the columns
by β. The difference from the RG algorithm is in lines 5–8, see [1, Algorithm 2].

4 Numerical Validation

In this section, we explore some numerical properties of the QN algo-
rithm and validate its proper functioning. In all the following numerical ex-
periments, the real positive definite matrices Sii are generated as Sii =

diag−
1
2 {UΛUᵀ}UΛUᵀ diag−

1
2 {UΛUᵀ}, where UΛVᵀ is the singular value de-

composition (SVD) of a Kmi ×Kmi matrix whose independent and identically
distributed (i.i.d.) entries ∼ N (0, 1). The corresponding samples are created by

right-multiplying the transpose of the Cholesky factorization of S̃ii with Kmi×T
i.i.d. ∼ N (0, 1) numbers. A[k] is arbitrary and thus, for simplicity, fixed to I. In

order to allow varying degrees of initialization, A
[k]
init = pΥ + (1− p)I, 0 ≤ p ≤ 1,

where p = 1 implies fully random initialization. The entries of Υ are ∼ N (0, 1)

i.i.d. and drawn anew for each new A
[k]
init. The stopping threshold is set to 10−6,

and T = 104. In order to emphasize the difference between JISA and IVA, at
each Monte Carlo (MC) trial, the algorithm is run twice on the same data, in two
modes: in the first mode, the input parameter m (Algorithm 1 line 1) reflects the
true data properties. In the second mode, the input m is set to 1M×1. The latter
amounts to assuming that each Kmi × Kmi (irreducible, by definition) block

on the diagonal of S̃ can be further reduced into mi smaller blocks of dimension
K × K, i.e., ignoring the true subspace structure of the data. We denote this
approach “mismodeling” [9].

4.1 Sensitivity to Initizalization and Number of Iterations

In order to focus here on the initialization, we avoid finite sample size errors by
using data that can be exactly block-diagonalized. Fig. 1 depicts typical such
data, as well as outputs of QN, in mismodeling and correct model scenarios,
for two types of initialization: mild (p = 0.2, Fig. 1(d)–1(e)), and fully random
(p = 1, Fig. 1(f)–1(i)). A key observation is that JISA is sensitive to initialization:
compare Fig. 1(e) with Fig. 1(g). In the latter, a fully random initialization
results in an inability to recover the block structure. On the other hand, due to
the convexity of the mismodeled algorithm (see [10]), it minimizes properly the
mismodeled contrast function ∀p. However, minimizing the mismodeled contrast
function does not imply separation: there is still need to cluster the blocks,
as shows Fig. 1(h). In Fig. 1(i), we cluster by simple enumeration on all M !
possibilities. This is definitely not a viable approach. Further discussion of this
topic is beyond the scope of this paper.

We now compare the QN and RG algorithms in terms of number of iterations.
Both RG and QN minimize the same contrast function (4) and thus achieve the
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Fig. 1. Typical matrices and output of the QN algorithm, on error-free data (X is input
to the algorithm). A = I, m = [1, 2, 3]ᵀ, K = 4. In (d)–(e), p = 0.2. In (f)–(i), p = 1.
In (e), the blocks are reconstructed properly both for JISA and mismodeling. Fig. (g)
is a typical case where a fully random initialization prohibits the proper reconstruction
of the blocks in JISA. Fig. (h)–(i) reflect the output in a mismodeling scenario before
and after correcting the global permutation, respectively. False colours: in (b,c,e–i) we
depict log 10| · | in order to enhance small numerical features. White=zero.

same MSE, up to numerical precision. In the experiments that follow, only Ainit

varies at each of the 100 MC trials, while A, S and S (the empirical counterpart
of S) remain fixed. In this example, m = [1, 2, 4]ᵀ, K = 4. Fig. 2 validates that
indeed, the QN algorithm improves over RG in terms of number of iterations.
In addition, these results reflect the fact that in mismodeling, the algorithm is
trying to block-diagonalize S̃ into smaller blocks than is actually possible and
thus doing unnecessary work. These results conform with previous ones [1, 11].
In this scenario, we set p = 0.15. This value guaranteed proper convergence to
the correct minimum of the contrast function in all trials. For larger values of p,
the number of iterations in the RG becomes prohibitive. Hence, in this respect,
the advantage of the QN approach over RG is clear.

4.2 Component Separation

The component separation quality of the QN algorithm, quantified by its MSE,
is illustrated in Fig. 3. In the following experiment, we run mutliple trials for
fixed S, A, and Ainit. Only S varies. For each trial we evaluate the normalized
empirical MSE (3). As in the previous experiments, we compare JISA with its
mismodeling counterpart. We set m = [6, 5, 1]ᵀ, K = 5. Here, M = 12 which is
prohibitive for enumeration (recall Fig. 1(h)–1(i)) and thus we use p = 0.2 in
order to have a good chance that the output is automatically clustered properly
into the correct N blocks, before evaluating the MSE (3). In fact, the convexity
of the “mismodeled” variant, mentioned in Sec. 4.1, no longer holds as mi largely
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Fig. 2. Histogram of number of iterations in QN and RG, on the same data. Init with
mild perturbation (p = 0.15): all runs converged properly. Logarithmic X-axis.

diverges from 1. In order to overcome this for the error-analysis validation pur-
pose only, we choose a more strict initialization strategy in which in the first
attempt Ainit is taken from the output of the JISA run, and if the empirical
MSE indicates large errors, new Ainit are generated according to the original
procedure until no permutation issues are detected. Fig. 3 illustrates our results.
Subplot i corresponds to component i. The mean and standard deviation (std)

of M̂SEi are written above the corresponding sublot, together with the theo-
retically predicted MSE for the JISA scenario [7]. The histograms represent 200
MC trials. The averaged MSE and its theoretical prediction for JISA are marked
on the histograms. Fig. 3 shows good fit between the predicted and empirical
values. It also shows improved MSE from using the correct multidimensional
model, including for the component with mi = 1, as expected.
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Fig. 3. Component separation. Histogram of the normalized empirical MSE for correct
and mismodeling scenarios. Subplots correspond to components with dimensions 6, 5
and 1, respectively. K = 5, 200 trials.

Concluding remarks: In this paper, we introduced a new Newton-based
algorithm for JISA that achieves asymptotically optimal performance for Gaus-
sian noise-free data. Many other issues remain to be explored, such as its nu-



merical complexity, dependence of MSE on model parameters, efficient imple-
mentation, and behaviour in the presence of real-life data. We mention that
generalizing [12], JISA can be regarded as a coupled block diagonalization prob-
lem, since X[k,l] = A[k]S[k,l]A[l]ᵀ ∀k, l, where X[k,l] = E{x[k](t)x[l]ᵀ(t)} and
S[k,l] ∈ Bm. Consequently, JISA falls within the framework of structured data
fusion (SDF) [13] and thus can be solved, using a straightforward model-fit ap-
proach and a Euclidean norm, using Tensorlab [14]. Comparison with the QN
algorithm is left for future work.
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