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Abstract. NoSQL (Not Only SQL) systems are becoming popular due to known 
advantages such as horizontal scalability and elasticity. In this paper, we study 
the implementation of data warehouses with document-oriented NoSQL sys-
tems. We propose mapping rules that transform the multidimensional data mod-
el to logical document-oriented models. We consider three different logical 
models and we use them to instantiate data warehouses. We focus on data load-
ing, model-to-model conversion and OLAP cuboid computation.  

1 Introduction 

NoSQL solutions have proven some clear advantages with respect to relational data-
base management systems (RDBMS) [14]. Nowadays, the research attention has 
moved towards the use of these systems for storing “big” data and analyzing it. This 
work joins our previous work on the use of NoSQL solutions for data warehousing [3] 
and it joins substantial ongoing works [6][9][15]. In this paper, we focus on one class 
of NoSQL stores, namely document-oriented systems [7].  

Document-oriented systems are one of the most famous families of NoSQL systems. 
Data is stored in collections, which contain documents. Each document is composed 
of  key-value pairs. The value can be composed of nested sub-documents. Document-
oriented stores enable more flexibility in schema design: they allow the storage of 
complex structured data and heterogeneous data in one collection. Although, docu-
ment-oriented databases are declared to be “schema less” (no schema needed), most 
uses convey to some data model.  

When it comes to data warehouses, previous work has shown that it can be instantiat-
ed with different logical models [10]. We recall that data warehousing relies mostly 
on the multidimensional data model. The latter is a conceptual model1, and we need to 
map it in document-oriented logical models. Mapping the multidimensional model to 
relational databases is quite straightforward, but until now there is no work (except of 

                                                                 

1
  The conceptual level consists in describing the data in a generic way regardless the infor-

mation technologies whereas the logical level consists in using a specific technique for im-

plementing the conceptual level. 



our previous [3]) that considers the direct mapping from the multidimensiona
ceptual model to NoSQL logical models (
complex data structures than relational model i.e. we do not only have to describe 
data and the relations using atomic attributes. They have a fle
nested elements). In this context, more than one logical model are candidates for 
mapping the multidimensional model. As well, the evolving needs might demand for 
switching from one model to another. This is the scope of our work: NoSQL logical 
models and their use for data warehousing.

Figure 1: Translations of a conceptual multidimensional model into logical models.
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The paper is organized as follows. The following section studies the state of the art. In 
section 3, we formalize the multidimensional data model and OLAP cuboids. Then, 
we focus on formalisms and definitions of document-oriented models. In section 4, 
we show experiments. The last section is about conclusions and future works. 

2 State of the art 

Considerable research has focused on the translation of data warehousing concepts to 
relational R-OLAP logical level [2][5]. Multidimensional databases are mostly im-
plemented using RDBMS technologies. Mapping rules are used to convert structures 
of the conceptual level (facts, dimensions and hierarchies) into a logical model based 
on relations. Moreover, many researchers [1] have focused on the implementation of 
optimization methods based on pre-computed aggregates (also called materialized 
views, or OLAP cuboids). However, R-OLAP implementations suffer from scaling-
up to very large data volumes (i.e. “Big Data”). Research is currently under way for 
new solutions such as using NoSQL systems [14]. Our approach aims at revisiting 
these processes for automatically implementing multidimensional conceptual models 
directly into NoSQL models. 

Other studies investigate the process of transforming relational databases into a 
NoSQL logical model (bottom part of Figure 1). In [12], an algorithm is introduced 
for mapping a relational schema to a NoSQL schema in MongoDB [7], a document-
oriented NoSQL database. However, either these approaches not consider the concep-
tual model of data warehouses because they are limited to the logical level, i.e. trans-
forming a relational model into a documents-oriented model. In [11] Mior proposes 
an approach to optimize schema in NoSQL. 

There is currently no approach for automatically and directly transforming a data 
warehouse multidimensional conceptual model into a NoSQL logical model. It is 
possible to transform multidimensional conceptual models into a logical relational 
model, and then to transform this relational model into a logical NoSQL model. How-
ever, this transformation using the relational model as a pivot model has not been 
formalized as both transformations were studied independently of each other. The 
work presented here is a continuation of our previous work where we study and for-
malize the implementation of data warehouses with NoSQL systems [3]. Our previous 
work considers two NoSQL models (one column-oriented and one document orient-
ed). This article focuses only on document-oriented systems; we analyze three data 
models (with respect to 1); we consider all cross-model mappings; we improve the 
formalization and we provide new experiments. 



3 MULTIDIMENSIONAL CONCEPTUAL MODEL AND OLAP CUBE 

3.1  Conceptual Multidimensional Model 

To ensure robust translation rules we first define the multidimensional model used at 
the conceptual level [8][12]. 

A multidimensional schema, namely E, is defined by (FE, DE, StarE) where 

� FE = {F1,…, Fn} is a finite set of facts, 
� DE = {D1,…, Dm} is a finite set of dimensions, 
� StarE: FE → 2DE is a function that associates facts of FE to sets of dimensions 

along which it can be analyzed; (
ED2  is the power set of DE). 

A dimension, denoted Di∈DE (abusively noted as D), is defined by (ND, AD, HD) 
where 

� ND is the name of the dimension,  
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D =  is a set of hierarchies.  

A hierarchy of the dimension D, denoted Hi∈HD, is defined by (NHi, ParamHi, 
WeakHi) where 
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Hi  is an ordered set of vi+2 attributes which 

are called parameters of the relevant graduation scale of the hierarchy, 

∀k∈[1..vi], 
Hi
kp ∈AD ,  

� WeakHi: ParamHi → 
HiD paramA −2   is a function associating with each parameter 

possibly one or more weak attributes. 
 

A fact, F∈FE, is defined by (NF, MF) where 

� NF is the name of the fact, 
�  )}m(f),...,m(f{M F

vv
F
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F =  is a set of measures, each associated with an ag-

gregation function fi. 
 

3.2 The OLAP cuboid  

 
The pre-aggregate view or OLAP cuboid corresponds to a subset of aggregated 
measures on a subset of analysis dimensions. OLAP cuboids are often pre-computed 
to turn frequent analysis of data more efficient. Typically, we pre-compute aggregate 



functions on given interest measures grouping on some analysis dimensions. The 
OLAP cube O=(FO ,DO) derived from E is formally composed of  
 
� FO = (NFo, MFo)    a fact derived from F∈FE with NFo = NF a subset of measures. 
� DO = Star(FO) ⊆ DE a subset of dimensions. 

 
If we generate OLAP cuboids on all combination of dimension attributes, we have an 
OLAP cube lattice.  
 
Illustration: Let’s consider an excerpt of the star schema benchmark [12]. It consists 
in a monitoring of a sales system. Orders are placed by customers and the lines of the 
orders are analyzed. A line consists in a part (a product) bought from a supplier and 
sold to a customer at a specific date. The conceptual schema of this case study is pre-
sented in Fig. 2. . 

─ The fact FLineOrder is defined by (LineOrder, {SUM(Quantity), SUM(Discount), 
SUM(Revenue), SUM(Tax)}) and it is analyzed according to four dimensions, each 
consisting of several hierarchical levels (called detail levels or parameters):  

─ The Customer dimension (DCustomer) with parameters Customer (along with the 
weak attribute Name), City, Region and Nation, 

─ The Part dimension (DPart) with parameters Partkey (with weak attributes Size and 
Prod_Name), Category, Brand and Type; organized using two hierarchies HBrand 
and HCateg, 

─ The Date dimension (DDate) with parameters Date, Month (with a weak attribute, 
MonthName) and Year, 

─ The Supplier dimension (DSupplier) with parameters Supplier (with weak attributes 
Name), City, Region and Nation. 

From this schema, called ESSB, we can define cuboids, for instance: 

─ (FLineOrder, {DCustomer, DDate, DSupplier }), 
─ (FLineOrder, {DCustomer, DDate }). 



Fig. 2. Graphical
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- P: all paths in the tree of the document

p=C[key]{k1.k2…kn

at the leaf node a
The following example illustrates the above formalism. Consider 
Figure 3 describing a document 

Figure 

4.2  Document-oriented models for data warehousing 
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n.a} where k1, k2, … kn K are keys within the same path ending 
A∈ 		  (simple attribute); C[id]  is a document. 
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Figure 3: Tree-like representation of documents 
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MLD0: For a given fact, all related dimensions attributes and all measures are com-
bined in one document at depth 0 (no sub-documents). We call this the flat model 
noted MLD0.  

MLD1: For a given fact, all dimension attributes are nested under the respective at-
tribute name and all measures are nested in a subdocument with key “measures”. This 
model is inspired from [3]. Note that there are different ways to nest data, this is just 
one of them. 

MLD2: For a given fact and its dimensions, we store data in dedicated collections one 
per dimension and one for the fact. Each collection is kept simple: no sub-documents. 
The fact documents will have references to the dimension documents. We call this 
model MLD2 or shattered. This model has known advantages such as less memory 
usage and data integrity, but it can slow down interrogation.  

4.3 Mapping from the conceptual model  

The formalism that we have defined earlier allows us to define a mapping from the 
conceptual multidimensional model to each of the logical models defined above. Let 
O=(FO, DO) be a cuboid for a multidimensional model for the fact FO (MO  is a set of 
measures) with dimensions in D.  NF and ND stand for fact and dimension names. 

Table 1 Mapping rules from the conceptual model to the logical models 

Conceptual 

Logical 

MLD0 MLD1 MLD2 

∀D∈DO, ∀a∈AD a→ C[id]{a}  a→ C[id]{N D :a} a→ CD[id]{a}  

idD → CF[id ’]{a} (*) 

 ∀m∈MF m→ C[id]{m}  m→ C[id]{N F :m} m→ CF[id ’]m 

(*) the two identifiers CF[id ’]  and CD[id]    are different from each other because the 

document collections are not same  C
D
 et C

F
. The dimensions identifiers idDwill play 

the foreign key role. 

The above mappings are detailed below:  



Let C be a generic collection, CD a collection for the dimension D and CF a collection 
for a fact FO. The Table 1 shows how we can map any measure m of FO and any di-
mension of DO into any of the models: MLD0, MLD1, MLD2. 

Conceptual Model to MLD0: To instantiate this model from the conceptual model, 
these rules are applied:  

� Each cuboid O (FO and its dimensions DO) is translated in a collection C.  
� Each measure m ∈ MF  is translated into a simple attribute (i.e. C[id]{m} )  
� For all dimension D ∈ DO, each attribute a ∈ AD of the dimension D is convert-

ed into a simple attribute of C (i.e. C[id]{a} )  
 

Conceptual Model to MLD1: To instantiate this model from the conceptual model, 
these rules are applied:  

� Each cuboid O (FO and its dimensions DO) is translated in a collection C.  
� The attributes of the fact FO will be nested in a dedicated nested document 

C[id]{N F}. Each measure m ∈ MF   is translated into a simple attribute 
C[id]{N F:m}. 

� For any dimension D ∈ DO, its attributes will be nested in a dedicated nested 
document C[id]{N D}. Every attribute a ∈ AD of the dimension D will be 
mapped into a simple attribute C[id]{N D:a}. 

Conceptual Model to MLD2: To instantiate this model from the conceptual model, 
these rules are applied:  

� Each  cuboid O (FO and its dimensions DO), the fact FO is translated in a collec-
tion CF and each dimension D ∈ DO into a collection CD.  

� Each measure m ∈ MF  is translated within CF as a simple attribute (i.e. 
CF[id]{m})  

� For all dimension D ∈ DO, each attribute a ∈ AD of the dimension D is mapped 
into CD as a simple attribute (i.e  CD[id]{a} ), and if a=idD

  the  document CF is 
completed by a simple attribute CF[id]{a}  (the value reference of the linked di-
mension). 

5 Experiments 

Our experimental goal is to validate the instantiation of data warehouses with the 
three approaches mentioned earlier. Then, we consider converting data from one 
model to the other. In the end, we generate OLAP cuboids and we compare the effort 
needed by model. We rely on the SSB+ benchmark that is popular for generating data 
for decision support systems. As data store, we rely on MongoDB one of the most 
popular document-oriented system. The details of the experimental setup are as 
follows. 



5.1 Protocol 

Data: We generate data using the SSB+ [4]  benchmark. The benchmark models a 
simple product retail reality. It contains one fact table “LineOrder” and 4 dimensions 
“Customer”, “Supplier”, “Part” and “Date”. This corresponds to a star-schema. The 
dimensions are hierearchic e.g. “Date” has the hierarchy of attributes [d_date, 
d_month, d_year]. We have extended it to generate raw data specific to our models in 
JSON file format. This is convenient for our experimental purposes. JSON is the best 
file format for Mongo data loading. We use different scale factors namely sf=1, 
sf=10, sf=25 and sf=100 in our experiments. The scale factor sf=1 generates approxi-
mately 107 lines for the LineOrder fact, for sf=10 we have approximately 108 lines and 
so on. In the MLD2model we will have (sf x 107) lines for LineOrder and quite less 
for the dimensions.  

Data loading: Data is loaded into MongoDB using native instructions. These are 
supposed to load data faster when loading from files. The current version of 
MongoDB would not load data with our logical model from CSV file, thus we had to 
use JSON files. 

Lattice computation: To compute the pre-aggregate lattice, we use the aggregation 
pipeline suggested as the most performing alternative by Mongo itself. Four levels of 
pre-aggregates are computed on top of the benchmark generated data. Precisely, at 
each level we aggregate data respectively on: the combination of 4 dimensions all 
combinations of 3 dimensions, all combinations of 2 dimensions, all combinations of 
1 dimension, 0 dimensions (all data). At each aggregation level, we apply aggregation 
functions: max, min, sum and count on all dimensions.  

Hardware. The experiments are done on a cluster composed of 3 PCs (4 core-i5, 
8GB RAM, 2TB disks, 1Gb/s network), each being a worker node and one node acts 
also as dispatcher. 

5.2 Results  

In  Table 2, we summarize data loading times by model and scale factor. We can ob-
serve at scale factor SF1, we have 107 lines on each line order collections for a 4.2 GB 
disk memory usage for MLD2 (15GB for MLD0 and MLD1). At scale factors SF10 
and SF100 we have respectively 108 lines and 109 lines and 42GB (150GB MLD0 and 
MLD1) and 420GB (1.5TB MLD0 and MLD1) for of disk memory usage. We ob-
serve that memory usage is lower in the MLD2 model. This is explained by the ab-
sence of redundancy in the dimensions. The collections “Customers”, “Supplier”, 
“Part” and “Date” have respectively 50000 records, 3333 records, 3333333 records 
and 2556 records. 
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model. Using a simple formalism, we describe the mapping from the multidimension-
al conceptual data model to the logical level. 

Our experimental work illustrates the instantiation of data warehouses with each of 
the three approaches. Each model has its weaknesses and strengths. The shattered 
model (MLD2) uses less disk memory, but it is quite inefficient when it comes to 
answering queries with joins. The simple models MLD0 and MLD1 do not show 
significant performance differences. Passing from one model to another is shown to 
be easy and comparable in time to “data loading from scratch”. One conversion is 
significantly non-performing; it corresponds to the mapping from multiple collections 
(MLD2) to one collection. Interesting results are also met in the computation of the 
OLAP lattice with document-oriented models. The computation times are reasonable 
enough.  

For future work, we will consider logical models in column-oriented models and 
graph-oriented models. After exploring data warehouse instantiation across different 
NoSQL systems, we need to generalize across logical model. We need a simple for-
malism to express model differences and we need to compare models within each 
paradigm and across paradigms (document versus column). 
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