
Implementation of multidimensional databases with
document-oriented NoSQL

M. Chevalier, M. El Malki, A. Kopliku, O. Teste, R. Tournier

Université de Toulouse, IRIT 5505, 118 Route de Narbonne, 31062 Toulouse, France

Abstract. NoSQL (Not Only SQL) systems are becoming popular due to known
advantages such as horizontal scalability and elasticity. In this paper, we study
the implementation of data warehouses with document-oriented NoSQL sys-
tems. We propose mapping rules that transform the multidimensional data mod-
el to logical document-oriented models. We consider three different logical
models and we use them to instantiate data warehouses. We focus on data load-
ing, model-to-model conversion and OLAP cuboid computation.

1 Introduction

NoSQL solutions have proven some clear advantages with respect to relational data-
base management systems (RDBMS) [14]. Nowadays, the research attention has
moved towards the use of these systems for storing “big” data and analyzing it. This
work joins our previous work on the use of NoSQL solutions for data warehousing [3]
and it joins substantial ongoing works [6][9][15]. In this paper, we focus on one class
of NoSQL stores, namely document-oriented systems [7].

Document-oriented systems are one of the most famous families of NoSQL systems.
Data is stored in collections, which contain documents. Each document is composed
of key-value pairs. The value can be composed of nested sub-documents. Document-
oriented stores enable more flexibility in schema design: they allow the storage of
complex structured data and heterogeneous data in one collection. Although, docu-
ment-oriented databases are declared to be “schema less” (no schema needed), most
uses convey to some data model.

When it comes to data warehouses, previous work has shown that it can be instantiat-
ed with different logical models [10]. We recall that data warehousing relies mostly
on the multidimensional data model. The latter is a conceptual model1, and we need to
map it in document-oriented logical models. Mapping the multidimensional model to
relational databases is quite straightforward, but until now there is no work (except of

1
 The conceptual level consists in describing the data in a generic way regardless the infor-

mation technologies whereas the logical level consists in using a specific technique for im-

plementing the conceptual level.

our previous [3]) that considers the direct mapping from the multidimensiona
ceptual model to NoSQL logical models (
complex data structures than relational model i.e. we do not only have to describe
data and the relations using atomic attributes. They have a fle
nested elements). In this context, more than one logical model are candidates for
mapping the multidimensional model. As well, the evolving needs might demand for
switching from one model to another. This is the scope of our work: NoSQL logical
models and their use for data warehousing.

Figure 1: Translations of a conceptual multidimensional model into logical models.

In this paper, we focus on multidimensional data models for data warehousing. We
compare three translations of the conceptual model at logical document
model level. We provide formalism for expressing each of these models. This enables
us to describe clearly the mapping from the conceptual model to the logical model.
Then, we show how we ca
Our studies include the load of data, the conversions model
tation of pre-aggregate OLAP cubes.

Our motivations are multiple. The implementation of OLAP systems with NoSQL
systems is a new alternative [1
such as more scalability. The increasing scientific research in this direction d
for formalization, common
systems.

We can summarize our contribution as follows:

• three mapping rules between the multidimensional conceptual model to the
document-oriented logical model

• the conversions model
structures into other logical structures

• the computation of the OLAP cube in NoSQL technologies.

our previous [3]) that considers the direct mapping from the multidimensiona
tual model to NoSQL logical models (Figure 1). NoSQL models support more

complex data structures than relational model i.e. we do not only have to describe
data and the relations using atomic attributes. They have a flexible data struct
nested elements). In this context, more than one logical model are candidates for
mapping the multidimensional model. As well, the evolving needs might demand for
switching from one model to another. This is the scope of our work: NoSQL logical

odels and their use for data warehousing.

: Translations of a conceptual multidimensional model into logical models.

In this paper, we focus on multidimensional data models for data warehousing. We
translations of the conceptual model at logical document

model level. We provide formalism for expressing each of these models. This enables
us to describe clearly the mapping from the conceptual model to the logical model.
Then, we show how we can instantiate data warehouses in document-oriented stores.
Our studies include the load of data, the conversions model-to-model and the comp

aggregate OLAP cubes.

Our motivations are multiple. The implementation of OLAP systems with NoSQL
tems is a new alternative [14][6]. It is justified by the advantages of such sy

such as more scalability. The increasing scientific research in this direction d
for formalization, common-agreement models and evaluation of different NoSQL

We can summarize our contribution as follows:

three mapping rules between the multidimensional conceptual model to the
oriented logical model;
rsions model-to-model at the logical level for translating

structures into other logical structures;
the computation of the OLAP cube in NoSQL technologies.

our previous [3]) that considers the direct mapping from the multidimensional con-
). NoSQL models support more

complex data structures than relational model i.e. we do not only have to describe
ible data structure (e.g.

nested elements). In this context, more than one logical model are candidates for
mapping the multidimensional model. As well, the evolving needs might demand for
switching from one model to another. This is the scope of our work: NoSQL logical

: Translations of a conceptual multidimensional model into logical models.

In this paper, we focus on multidimensional data models for data warehousing. We
translations of the conceptual model at logical document-oriented

model level. We provide formalism for expressing each of these models. This enables
us to describe clearly the mapping from the conceptual model to the logical model.

oriented stores.
model and the compu-

Our motivations are multiple. The implementation of OLAP systems with NoSQL
]. It is justified by the advantages of such systems

such as more scalability. The increasing scientific research in this direction demands
agreement models and evaluation of different NoSQL

three mapping rules between the multidimensional conceptual model to the

translating logical

The paper is organized as follows. The following section studies the state of the art. In
section 3, we formalize the multidimensional data model and OLAP cuboids. Then,
we focus on formalisms and definitions of document-oriented models. In section 4,
we show experiments. The last section is about conclusions and future works.

2 State of the art

Considerable research has focused on the translation of data warehousing concepts to
relational R-OLAP logical level [2][5]. Multidimensional databases are mostly im-
plemented using RDBMS technologies. Mapping rules are used to convert structures
of the conceptual level (facts, dimensions and hierarchies) into a logical model based
on relations. Moreover, many researchers [1] have focused on the implementation of
optimization methods based on pre-computed aggregates (also called materialized
views, or OLAP cuboids). However, R-OLAP implementations suffer from scaling-
up to very large data volumes (i.e. “Big Data”). Research is currently under way for
new solutions such as using NoSQL systems [14]. Our approach aims at revisiting
these processes for automatically implementing multidimensional conceptual models
directly into NoSQL models.

Other studies investigate the process of transforming relational databases into a
NoSQL logical model (bottom part of Figure 1). In [12], an algorithm is introduced
for mapping a relational schema to a NoSQL schema in MongoDB [7], a document-
oriented NoSQL database. However, either these approaches not consider the concep-
tual model of data warehouses because they are limited to the logical level, i.e. trans-
forming a relational model into a documents-oriented model. In [11] Mior proposes
an approach to optimize schema in NoSQL.

There is currently no approach for automatically and directly transforming a data
warehouse multidimensional conceptual model into a NoSQL logical model. It is
possible to transform multidimensional conceptual models into a logical relational
model, and then to transform this relational model into a logical NoSQL model. How-
ever, this transformation using the relational model as a pivot model has not been
formalized as both transformations were studied independently of each other. The
work presented here is a continuation of our previous work where we study and for-
malize the implementation of data warehouses with NoSQL systems [3]. Our previous
work considers two NoSQL models (one column-oriented and one document orient-
ed). This article focuses only on document-oriented systems; we analyze three data
models (with respect to 1); we consider all cross-model mappings; we improve the
formalization and we provide new experiments.

3 MULTIDIMENSIONAL CONCEPTUAL MODEL AND OLAP CUBE

3.1 Conceptual Multidimensional Model

To ensure robust translation rules we first define the multidimensional model used at
the conceptual level [8][12].

A multidimensional schema, namely E, is defined by (FE, DE, StarE) where

� FE = {F1,…, Fn} is a finite set of facts,
� DE = {D1,…, Dm} is a finite set of dimensions,
� StarE: FE → 2DE is a function that associates facts of FE to sets of dimensions

along which it can be analyzed; (
ED2 is the power set of DE).

A dimension, denoted Di∈DE (abusively noted as D), is defined by (ND, AD, HD)
where

� ND is the name of the dimension,
� }all,id{ }a,...,a{A DDD

u
D
1

D ∪= is a set of dimension attributes,

� }H,...,H{H D
v

D
1

D = is a set of hierarchies.

A hierarchy of the dimension D, denoted Hi∈HD, is defined by (NHi, ParamHi,
WeakHi) where

� NHi is the name of the hierarchy,

� >=< DH
v

H
v

D All,p,...,p,idParam i

i

i

1

Hi is an ordered set of vi+2 attributes which

are called parameters of the relevant graduation scale of the hierarchy,

∀k∈[1..vi],
Hi
kp ∈AD ,

� WeakHi: ParamHi →
HiD paramA −2 is a function associating with each parameter

possibly one or more weak attributes.

A fact, F∈FE, is defined by (NF, MF) where

� NF is the name of the fact,
�)}m(f),...,m(f{M F

vv
F
11

F = is a set of measures, each associated with an ag-

gregation function fi.

3.2 The OLAP cuboid

The pre-aggregate view or OLAP cuboid corresponds to a subset of aggregated
measures on a subset of analysis dimensions. OLAP cuboids are often pre-computed
to turn frequent analysis of data more efficient. Typically, we pre-compute aggregate

functions on given interest measures grouping on some analysis dimensions. The
OLAP cube O=(FO ,DO) derived from E is formally composed of

� FO = (NFo, MFo) a fact derived from F∈FE with NFo = NF a subset of measures.
� DO = Star(FO) ⊆ DE a subset of dimensions.

If we generate OLAP cuboids on all combination of dimension attributes, we have an
OLAP cube lattice.

Illustration: Let’s consider an excerpt of the star schema benchmark [12]. It consists
in a monitoring of a sales system. Orders are placed by customers and the lines of the
orders are analyzed. A line consists in a part (a product) bought from a supplier and
sold to a customer at a specific date. The conceptual schema of this case study is pre-
sented in Fig. 2. .

─ The fact FLineOrder is defined by (LineOrder, {SUM(Quantity), SUM(Discount),
SUM(Revenue), SUM(Tax)}) and it is analyzed according to four dimensions, each
consisting of several hierarchical levels (called detail levels or parameters):

─ The Customer dimension (DCustomer) with parameters Customer (along with the
weak attribute Name), City, Region and Nation,

─ The Part dimension (DPart) with parameters Partkey (with weak attributes Size and
Prod_Name), Category, Brand and Type; organized using two hierarchies HBrand
and HCateg,

─ The Date dimension (DDate) with parameters Date, Month (with a weak attribute,
MonthName) and Year,

─ The Supplier dimension (DSupplier) with parameters Supplier (with weak attributes
Name), City, Region and Nation.

From this schema, called ESSB, we can define cuboids, for instance:

─ (FLineOrder, {DCustomer, DDate, DSupplier }),
─ (FLineOrder, {DCustomer, DDate }).

Fig. 2. Graphical

4 Document-oriented modeling of multidimensional data

warehouses

4.1 Formalism for document

In the document-oriented model, data is stored in collections and collections g
documents. The structure of documents is defined
ple attributes whose values are atomic from
documents called nested documents
is described as a set of paths from the document tree.

A document is defined

- K: all keys of a document
- C: the collection where the document belongs.

indicate a document/ of a collection C with identifier

- id: a unique identifier (explicit or internal to the syste

- K: all keys of a documen
- V: all atomic values of the document
- A: all simple attributes (key, atomic value)

Graphical notations of the multidimensional conceptual model

oriented modeling of multidimensional data

Formalism for document-oriented data models

oriented model, data is stored in collections and collections g
The structure of documents is defined by attributes. We distinguish

whose values are atomic from compound attributes whose values are
nested documents or sub-documents. The structure of document

is described as a set of paths from the document tree.

is defined by:

: all keys of a document
tion where the document belongs. We use the notation

indicate a document/ of a collection C with identifier id.

identifier (explicit or internal to the system);
: all keys of a document
all atomic values of the document
all simple attributes (key, atomic value)

oriented modeling of multidimensional data

oriented model, data is stored in collections and collections group
We distinguish sim-

whose values are
of document

We use the notation C[id] to

- P: all paths in the tree of the document

p=C[key]{k1.k2…kn

at the leaf node a
The following example illustrates the above formalism. Consider
Figure 3 describing a document

Figure

4.2 Document-oriented models for data warehousing

In document-oriented stores, the data model is determined not only by its
and values, but also by the path to the data. In relational database models, the ma
ping from conceptual to logical is more straightforward. In document
there are multiple candidate models
model has been proven better than the others and no mapping rules are widely accep
ed. In this section, we present three
eling. These models correspond to a broad classification of possible approaches for
modeling multidimensional cuboid (one fact and its star). In the first approach, we
store all cuboid data in one collection
second case, we make use of nesting (embedded sub
tion (richer expressivity). In the third case, we consider distributing the cuboid data in
more than one collection.

: all paths in the tree of the document. A path Pp∈ is described as

n.a} where k1, k2, … kn K are keys within the same path ending
A∈ 		 (simple attribute); C[id] is a document.

The following example illustrates the above formalism. Consider the document tree in
a document r of the collection C with identifier id.

Figure 3: Tree-like representation of documents

oriented models for data warehousing

oriented stores, the data model is determined not only by its
and values, but also by the path to the data. In relational database models, the ma
ping from conceptual to logical is more straightforward. In document-oriented stores,
there are multiple candidate models that differ on the collections and stru
model has been proven better than the others and no mapping rules are widely accep

In this section, we present three approaches of logical document-oriented
These models correspond to a broad classification of possible approaches for
ing multidimensional cuboid (one fact and its star). In the first approach, we

data in one collection in a flat format (without sub-document
case, we make use of nesting (embedded sub-documents) within one colle

tion (richer expressivity). In the third case, we consider distributing the cuboid data in
more than one collection. These approaches are described below.

is described as

are keys within the same path ending

the document tree in

oriented stores, the data model is determined not only by its attributes
and values, but also by the path to the data. In relational database models, the map-

oriented stores,
differ on the collections and structure. No

model has been proven better than the others and no mapping rules are widely accept-
oriented mod-

These models correspond to a broad classification of possible approaches for
ing multidimensional cuboid (one fact and its star). In the first approach, we

document). In the
documents) within one collec-

tion (richer expressivity). In the third case, we consider distributing the cuboid data in

MLD0: For a given fact, all related dimensions attributes and all measures are com-
bined in one document at depth 0 (no sub-documents). We call this the flat model
noted MLD0.

MLD1: For a given fact, all dimension attributes are nested under the respective at-
tribute name and all measures are nested in a subdocument with key “measures”. This
model is inspired from [3]. Note that there are different ways to nest data, this is just
one of them.

MLD2: For a given fact and its dimensions, we store data in dedicated collections one
per dimension and one for the fact. Each collection is kept simple: no sub-documents.
The fact documents will have references to the dimension documents. We call this
model MLD2 or shattered. This model has known advantages such as less memory
usage and data integrity, but it can slow down interrogation.

4.3 Mapping from the conceptual model

The formalism that we have defined earlier allows us to define a mapping from the
conceptual multidimensional model to each of the logical models defined above. Let
O=(FO, DO) be a cuboid for a multidimensional model for the fact FO (MO is a set of
measures) with dimensions in D. NF and ND stand for fact and dimension names.

Table 1 Mapping rules from the conceptual model to the logical models

Conceptual

Logical

MLD0 MLD1 MLD2

∀D∈DO, ∀a∈AD a→ C[id]{a} a→ C[id]{N D :a} a→ CD[id]{a}

idD → CF[id ’]{a} (*)

 ∀m∈MF m→ C[id]{m} m→ C[id]{N F :m} m→ CF[id ’]m

(*) the two identifiers CF[id ’] and CD[id] are different from each other because the

document collections are not same C
D
 et C

F
. The dimensions identifiers idDwill play

the foreign key role.

The above mappings are detailed below:

Let C be a generic collection, CD a collection for the dimension D and CF a collection
for a fact FO. The Table 1 shows how we can map any measure m of FO and any di-
mension of DO into any of the models: MLD0, MLD1, MLD2.

Conceptual Model to MLD0: To instantiate this model from the conceptual model,
these rules are applied:

� Each cuboid O (FO and its dimensions DO) is translated in a collection C.
� Each measure m ∈ MF is translated into a simple attribute (i.e. C[id]{m})
� For all dimension D ∈ DO, each attribute a ∈ AD of the dimension D is convert-

ed into a simple attribute of C (i.e. C[id]{a})

Conceptual Model to MLD1: To instantiate this model from the conceptual model,
these rules are applied:

� Each cuboid O (FO and its dimensions DO) is translated in a collection C.
� The attributes of the fact FO will be nested in a dedicated nested document

C[id]{N F}. Each measure m ∈ MF is translated into a simple attribute
C[id]{N F:m}.

� For any dimension D ∈ DO, its attributes will be nested in a dedicated nested
document C[id]{N D}. Every attribute a ∈ AD of the dimension D will be
mapped into a simple attribute C[id]{N D:a}.

Conceptual Model to MLD2: To instantiate this model from the conceptual model,
these rules are applied:

� Each cuboid O (FO and its dimensions DO), the fact FO is translated in a collec-
tion CF and each dimension D ∈ DO into a collection CD.

� Each measure m ∈ MF is translated within CF as a simple attribute (i.e.
CF[id]{m})

� For all dimension D ∈ DO, each attribute a ∈ AD of the dimension D is mapped
into CD as a simple attribute (i.e CD[id]{a}), and if a=idD

 the document CF is
completed by a simple attribute CF[id]{a} (the value reference of the linked di-
mension).

5 Experiments

Our experimental goal is to validate the instantiation of data warehouses with the
three approaches mentioned earlier. Then, we consider converting data from one
model to the other. In the end, we generate OLAP cuboids and we compare the effort
needed by model. We rely on the SSB+ benchmark that is popular for generating data
for decision support systems. As data store, we rely on MongoDB one of the most
popular document-oriented system. The details of the experimental setup are as
follows.

5.1 Protocol

Data: We generate data using the SSB+ [4] benchmark. The benchmark models a
simple product retail reality. It contains one fact table “LineOrder” and 4 dimensions
“Customer”, “Supplier”, “Part” and “Date”. This corresponds to a star-schema. The
dimensions are hierearchic e.g. “Date” has the hierarchy of attributes [d_date,
d_month, d_year]. We have extended it to generate raw data specific to our models in
JSON file format. This is convenient for our experimental purposes. JSON is the best
file format for Mongo data loading. We use different scale factors namely sf=1,
sf=10, sf=25 and sf=100 in our experiments. The scale factor sf=1 generates approxi-
mately 107 lines for the LineOrder fact, for sf=10 we have approximately 108 lines and
so on. In the MLD2model we will have (sf x 107) lines for LineOrder and quite less
for the dimensions.

Data loading: Data is loaded into MongoDB using native instructions. These are
supposed to load data faster when loading from files. The current version of
MongoDB would not load data with our logical model from CSV file, thus we had to
use JSON files.

Lattice computation: To compute the pre-aggregate lattice, we use the aggregation
pipeline suggested as the most performing alternative by Mongo itself. Four levels of
pre-aggregates are computed on top of the benchmark generated data. Precisely, at
each level we aggregate data respectively on: the combination of 4 dimensions all
combinations of 3 dimensions, all combinations of 2 dimensions, all combinations of
1 dimension, 0 dimensions (all data). At each aggregation level, we apply aggregation
functions: max, min, sum and count on all dimensions.

Hardware. The experiments are done on a cluster composed of 3 PCs (4 core-i5,
8GB RAM, 2TB disks, 1Gb/s network), each being a worker node and one node acts
also as dispatcher.

5.2 Results

In Table 2, we summarize data loading times by model and scale factor. We can ob-
serve at scale factor SF1, we have 107 lines on each line order collections for a 4.2 GB
disk memory usage for MLD2 (15GB for MLD0 and MLD1). At scale factors SF10
and SF100 we have respectively 108 lines and 109 lines and 42GB (150GB MLD0 and
MLD1) and 420GB (1.5TB MLD0 and MLD1) for of disk memory usage. We ob-
serve that memory usage is lower in the MLD2 model. This is explained by the ab-
sence of redundancy in the dimensions. The collections “Customers”, “Supplier”,
“Part” and “Date” have respectively 50000 records, 3333 records, 3333333 records
and 2556 records.

Table

SF=1
107 lines

SF=10
108 lines

SF=25
25.107 lines

In Figure 4, we show the time needed to convert
model with SF1. When we convert data from MLD0 to MLD1 and vice
sion times are comparable. To transform data from MLD0 to MLD1 we just introduce
a depth of 1 in the document. On the other sense (MLD1 to MLD0), we reduce the
depth by one. The conversion is more complicated when we consider MLD0 and
MLD2. To convert MLD0 data into MLD2 we need to
we have to apply 5 projections on original data and select only distinct keys for d
mensions. Although, we produce less data (in memory usage), we need more pr
cessing time than when
is the slowest process by far. This is due to the fact that most NoSQL
ing MongoDB) do not support joins (natively). We had to test different optimization
techniques hand-coded. The loadi
be possible to optimize this conversion further, but the results are illustrative
jointure issues in Mongo

In Figure 5, we sumarize
the OLAP cuboids at different levels of the OLAP lattice
model MLD0. We report the time needed to compute the cuboid and the number of

Table 2 Loading times by model into MongoDB

MLD0 MLD1 MLD2

1306s/15GB 1235s/15GB 1261s/4.2GB

16680s/150GB 16080s/150GB 4320s/42GB

 46704s/375GB 44220s/375GB

10980s/105GB

, we show the time needed to convert data of one model to data of another
. When we convert data from MLD0 to MLD1 and vice-versa conve

sion times are comparable. To transform data from MLD0 to MLD1 we just introduce
a depth of 1 in the document. On the other sense (MLD1 to MLD0), we reduce the

The conversion is more complicated when we consider MLD0 and
To convert MLD0 data into MLD2 we need to split data in multiple tables:

we have to apply 5 projections on original data and select only distinct keys for d
Although, we produce less data (in memory usage), we need more pr

cessing time than when we convert data to MLD1. Converting from MLD2 to MLD0
is the slowest process by far. This is due to the fact that most NoSQL systems (inclu

) do not support joins (natively). We had to test different optimization
coded. The loading times fall between 5h to 125h for SF1.

be possible to optimize this conversion further, but the results are illustrative
jointure issues in MongoDB.

Figure 4: Inter-model conversion times

, we sumarize experimental observations concerning the computation of
the OLAP cuboids at different levels of the OLAP lattice for SF1 using data from the

. We report the time needed to compute the cuboid and the number of

data of one model to data of another
versa conver-

sion times are comparable. To transform data from MLD0 to MLD1 we just introduce
a depth of 1 in the document. On the other sense (MLD1 to MLD0), we reduce the

The conversion is more complicated when we consider MLD0 and
split data in multiple tables:

we have to apply 5 projections on original data and select only distinct keys for di-
Although, we produce less data (in memory usage), we need more pro-

Converting from MLD2 to MLD0
systems (includ-

) do not support joins (natively). We had to test different optimization
ng times fall between 5h to 125h for SF1. It might

be possible to optimize this conversion further, but the results are illustrative of the

the computation of
using data from the

. We report the time needed to compute the cuboid and the number of

records it contains. We
cuboids with less records, which makes computation faster.

We observe as expected that the number of records decreases from one level to the
lower level. The same is true for computation time.
seconds to compute the cuboids at the first level (3 dimensions).
seconds and 250 seconds at the second layer (2 dimensions).
second to compute the cuboids at the third and fo

OLAP computation using the model MLD1 provides similar results. The performance
is significantly lower with the MLD2 model due to joins.
only the layer 1 (depth one) of the OLAP lattice, cause the other layers can be
computed from the latter.

Figure 5

Observations: We observe that we need comparable times to load data in one model
with the conversion times (except of MLD2 to MLD0). We also observe reasonable
times for computing OLAP cuboids. These observations are important. At one hand,
we show that we can instantiate data warehouses in document
On the other, we can think of pivot models or materialized views that
ed in parallel with a chosen data model

6 Conclusion

In this paper, we have studie
oriented systems. We propose three

records it contains. We compute the cuboids from one of the “upper”-in hierarchy
cuboids with less records, which makes computation faster.

We observe as expected that the number of records decreases from one level to the
lower level. The same is true for computation time. We need between 300 and 500
seconds to compute the cuboids at the first level (3 dimensions). We need between 30
seconds and 250 seconds at the second layer (2 dimensions). We need less than one
second to compute the cuboids at the third and fourth level (1 and 0 dimensions).

OLAP computation using the model MLD1 provides similar results. The performance
is significantly lower with the MLD2 model due to joins. These differences involve
only the layer 1 (depth one) of the OLAP lattice, cause the other layers can be
computed from the latter. We do not report this results for space constraints.

5: Computation time and records by OLAP cuboid

We observe that we need comparable times to load data in one model
with the conversion times (except of MLD2 to MLD0). We also observe reasonable
times for computing OLAP cuboids. These observations are important. At one hand,

show that we can instantiate data warehouses in document-oriented data systems.
On the other, we can think of pivot models or materialized views that can be compu
ed in parallel with a chosen data model.

In this paper, we have studied the instantiation of data warehouses with document
We propose three approaches at the document-oriented

in hierarchy

We observe as expected that the number of records decreases from one level to the
eed between 300 and 500

We need between 30
We need less than one
d 0 dimensions).

OLAP computation using the model MLD1 provides similar results. The performance
These differences involve

only the layer 1 (depth one) of the OLAP lattice, cause the other layers can be
We do not report this results for space constraints.

We observe that we need comparable times to load data in one model
with the conversion times (except of MLD2 to MLD0). We also observe reasonable
times for computing OLAP cuboids. These observations are important. At one hand,

oriented data systems.
can be comput-

the instantiation of data warehouses with document-
oriented logical

model. Using a simple formalism, we describe the mapping from the multidimension-
al conceptual data model to the logical level.

Our experimental work illustrates the instantiation of data warehouses with each of
the three approaches. Each model has its weaknesses and strengths. The shattered
model (MLD2) uses less disk memory, but it is quite inefficient when it comes to
answering queries with joins. The simple models MLD0 and MLD1 do not show
significant performance differences. Passing from one model to another is shown to
be easy and comparable in time to “data loading from scratch”. One conversion is
significantly non-performing; it corresponds to the mapping from multiple collections
(MLD2) to one collection. Interesting results are also met in the computation of the
OLAP lattice with document-oriented models. The computation times are reasonable
enough.

For future work, we will consider logical models in column-oriented models and
graph-oriented models. After exploring data warehouse instantiation across different
NoSQL systems, we need to generalize across logical model. We need a simple for-
malism to express model differences and we need to compare models within each
paradigm and across paradigms (document versus column).

References

1. Bosworth, A., Gray, J., Layman, A., Pirahesh, H.: Data cube: A relational aggregation op-

erator generalizing group-by, cross-tab, and sub-totals. Tech. Rep. MSRTR-95-22, Mi-

crosoft Research (February 1995).

2. Chaudhuri, S., Dayal, U.: An overview of data warehousing and OLAP technology.

SIGMOD Record 26, 65.74 (1997).

3. Chevalier, M., malki, M.E., Kopliku, A., Teste, O., Tournier, R.: Implementing Multidimen-

sional Data Warehouses into NoSQL. 17th International conference on entreprise

information systems (April 2015).

4. CHEVALIER, M., EL MALKI, M., KUPLIKU, A., TESTE, O., TOURNIER, R., Benchmark for

OLAP on NoSQL Technologies, Comparing NoSQL Multidimensional Data Warehousing

Solutions, 9
th

 Int. Conf. on Research Challenges in Information Science (RCIS), IEEE, 2015.

5. Colliat, G.: Olap, relational, and multidimensional database systems. SIGMOD Rec. 25(3),

64.69 (Sep 1996).

6. Cuzzocrea, A., Song, I.Y., Davis, K.C.: Analytics over large-scale multidimensional data:

The big data revolution! 14th International Workshop on Data Warehousing and OLAP.

pp. 101-104. DOLAP '11, ACM, (2011)

7. Dede, E., Govindaraju, M., Gunter, D., Canon, R.S., Ramakrishnan, L.: Performance eval-

uation of a mongodb and hadoop platform for scientific data analysis. 4th ACM Work-

shop on Scientific Cloud Computing. pp.13-20. Science Cloud '13, ACM (2013).

8. Dehdouh, K., Boussaid, O., Bentayeb, F.: Columnar nosql star schema benchmark. In:

Model and Data Engineering, vol. 8748, pp. 281-288. Springer International Publishing

(2014).

9. Golfarelli, M., Maio, D., Rizzi, S.: The dimensional fact model: A conceptual model for

data warehouses. International Journal of Cooperative Information Systems 7,215-247

(1998)

10. Kimball, R., Ross, M.: The Data Warehouse Toolkit: The Complete Guide to Dimensional

Modeling. John Wiley & Sons, Inc., New York, NY, USA, 2nd ed. (2002)

11. Mior, Michael J.: Automated Schema Design for NoSQL Databases SigMOD’14

12. ONeil, P., ONeil, E., Chen, X., Revilak, S.: The star schema benchmark and augmented

fact table indexing. In: Performance Evaluation and Benchmarking, vol.5895, pp. 237-

252. Springer Berlin Heidelberg (2009)

13. Ravat, F., Teste, O., Tournier, R., Zuruh, G.: Algebraic and graphic languages for OLAP

manipulations. IJDWM 4(1), 17-46 (2008).

14. Stonebraker, M.: New opportunities for new sql. Commun. ACM 55(11), 10-11 (Nov

2012), http://doi.acm.org/10.1145/2366316.2366319

15. Zhao, H., Ye, X.: A practice of tpc-ds multidimensional implementation on nosql data-

base systems. In: Performance Characterization and Benchmarking, vol. 8391, pp.

93{108 (2014)

