Skip to main content

Ant-Inspired Algorithms for Decision Tree Induction

An Evaluation on Biomedical Signals

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9267))

Abstract

In this paper we present an evaluation of ant-inspired method called ACO_DTree over biomedical data. The algorithm maintains and evolves a population of decision trees induced from data. The core of the algorithm is inspired by the Min-Max Ant System.

In order to increase the speed of the algorithm we have introduced a local optimization phase. The generalization ability has been improved using error based pruning of the solutions.

After parameter tuning, we have conducted experimental evaluation of the ACO_DTree method over the total of 32 different datasets versus 41 distinct classifiers. We conducted 10-fold crossvalidation and for each experiment obtained about 20 quantitative objective measures. The averaged and best-so-far values of the selected measures (precision, recall, f-measure, ...) have been statistically evaluated using Friedman test with Holm and Hochberg post-hoc procedures (on the levels of \(\alpha =0.05\) and \(\alpha =0.10\)). The ACO_DTree algorithm performed significantly better (\(\alpha =0.05\)) in 29 test cases for the averaged f-measure and in 14 cases for the best-so-far f-measure.

The best results have been obtained for various subsets of the UCI database and for the dataset combining cardiotocography data and data of myocardial infarction.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   34.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   44.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The \(H_0\) hypothesis states that all the classifiers performed the same.

References

  1. Barros, R., Basgalupp, M., de Carvalho, A., Freitas, A.: A survey of evolutionary algorithms for decision-tree induction. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 42(3), 291–312 (2012)

    Article  Google Scholar 

  2. Bennett, K., Mangasarian, O.: Robust linear programming discrimination of two linearly inseparable sets. Optim. Methods Softw. 1(1), 23–34 (1992)

    Article  Google Scholar 

  3. Boryczka, U., Kozak, J.: Ant colony decision trees – a new method for constructing decision trees based on ant colony optimization. In: Pan, J.-S., Chen, S.-M., Nguyen, N.T. (eds.) ICCCI 2010, Part I. LNCS, vol. 6421, pp. 373–382. Springer, Heidelberg (2010)

    Google Scholar 

  4. Boryczka, U., Kozak, J.: An adaptive discretization in the ACDT algorithm for continuous attributes. In: Jędrzejowicz, P., Nguyen, N.T., Hoang, K. (eds.) ICCCI 2011, Part II. LNCS, vol. 6923, pp. 475–484. Springer, Heidelberg (2011)

    Google Scholar 

  5. Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regression Trees. Wadsworth International Group, Belmont (1984)

    MATH  Google Scholar 

  6. Bursa, M., Lhotska, L.: Automated classification tree evolution through hybrid metaheuristics. In: Corchado, E., Corchado, J.M., Abraham, A. (eds.) Innovations in Hybrid Intelligent Systems. AISC, vol. 44, pp. 191–198. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  7. Bursa, M., Lhotska, L., Macas, M.: Hybridized swarm metaheuristics for evolutionary random forest generation. In: Proceedings of the 7th International Conference on Hybrid Intelligent Systems 2007, IEEE CSP, pp. 150–155 (2007)

    Google Scholar 

  8. Cox, L.A., Quiu, Y., Kuehner, W.: Heuristic least-cost computation of discrete classification functions with uncertain argument values. Ann. Oper. Res. 21(1), 1–30 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  9. Deneubourg, J.L., Aron, S., Goss, S., Pasteels, J.M.: The self-organizing exploratory pattern of the argentine ant. J. Insect Behav. 3, 159–168 (1990)

    Article  Google Scholar 

  10. Dorigo, M., Di Caro, G.D.: New ideas in optimization. In: The Ant Colony Optimization Meta-Heuristic, pp. 11–32. McGraw-Hill (1999)

    Google Scholar 

  11. Dorigo, M., Maniezzo, V., Colorni, A.: Ant system: optimization by a colony of cooperating agents. IEEE Trans. Syst. Man Cybern. B 26(1), 29–41 (1996)

    Article  Google Scholar 

  12. Dorigo, M.: Optimization, learning and natural algorithms. Ph.D. thesis, Dipartimento di Elettronica, Politecnico di Milano, Italy (1992)

    Google Scholar 

  13. Dorigo, M., Gambardella, L.M.: Ant colony system: a cooperative learning approach to the traveling salesman problem. IEEE Trans. Evol. Comput. 1(1), 53–66 (1997)

    Article  Google Scholar 

  14. Engelbrecht, A.P.: Computational Intelligence: An Introduction, 2nd edn. Wiley, New York (2007)

    Book  Google Scholar 

  15. Frank, A., Asuncion, A.: UCI machine learning repository (2010). http://archive.ics.uci.edu/ml

  16. Heath, D., Kasif, S., Salzberg, S.: Learning oblique decision trees. In: Proceedings of the Thirteenth International Joint Conference on Artificial Intelligence IJCAI (1993)

    Google Scholar 

  17. Hyafil, L., Rivest, R.L.: Constructing optimal binary decision trees is np-complete. Inf. Process. Lett. 5(1), 15–17 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  18. Koza, J.R.: Concept formation and decision tree induction using the genetic programming paradigm. In: Schwefel, H.-P., Männer, R. (eds.) Parallel Problem Solving from Nature. LNCS, vol. 496, pp. 124–128. Springer, Heidelberg (1991)

    Chapter  Google Scholar 

  19. Llor, X., Garrell, J.M.: Automatic classification and artificial life models. In: Proceedings of Learning Workshop (2000)

    Google Scholar 

  20. Maniezzo, V., Colorni, A.: The ant system applied to the quadratic assignment problem. IEEE Trans. Knowl. Data Eng. 11(5), 769–778 (1999)

    Article  Google Scholar 

  21. Martens, D., Baesens, B., Fawcett, T.: Editorial survey: swarm intelligence for data mining. Mach. Learn. 82, 1–42 (2011)

    Article  MathSciNet  Google Scholar 

  22. Murthy, K.: On Growing Better Decision Trees from Data. Ph.D. thesis, Johns Hopkins University, Baltimore, MD (1997)

    Google Scholar 

  23. Otero, F., Freitas, A., Johnson, C.: cAnt-Miner: an ant colony classificationalgorithm to cope with continous attributes. In: CIDM, pp. 225–231 (2009)

    Google Scholar 

  24. Otero, F.E.B., Freitas, A.A., Johnson, C.G.: Inducing decision trees with an ant colony optimization algorithm. Appl. Soft Comput. 12(11), 3615–3626 (2012)

    Article  Google Scholar 

  25. Parpinelli, R.S., Lopes, H.S., Freitas, A.A.: Data mining with an ant colony optimization algorithm. IEEE Trans. Evol. Comput. 6(4), 321–332 (2002)

    Article  Google Scholar 

  26. Podgorelec, V., Kokol, P., Stiglic, B., Rozman, I.: Decision trees: an overview and their use in medicine. J. Med. Syst. 26(5), 445–463 (2002)

    Article  Google Scholar 

  27. Rokach, L., Maimon, O.: Top-down induction of decision trees classifiers - a survey. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 1(11), 1–12 (2002)

    Google Scholar 

  28. Stutzle, T., Hoos, H.: Max-min ant system. Future Gener. Comput. Syst. 16(8), 889–914 (2000)

    Article  Google Scholar 

  29. Yeh, I.C., Yang, K.J., Ting, T.M.: Knowledge discovery on RFM model using Bernoulli sequence. Expert Syst. Appl. 36(3), 5866–5871 (2009). http://dx.doi.org/10.1016/j.eswa.2008.07.018

    Article  Google Scholar 

  30. Chudacek, V., Spilka, J., Bursa, M., Janku, P., Hruban, L., Huptych, M., Lhotska, L.: Open access intrapartum ctg database. BMC Pregnancy Childbirth 14, 16 (2014)

    Article  Google Scholar 

Download references

Acknowledgment

This research project has been supported by the project number NT11124-6/2010 “Cardiotocography evaluation by means of artificial intelligence” of the Ministry of Health Care.

The research is supported by the project No. 15-31398A Features of Electromechanical Dyssynchrony that Predict Effect of Cardiac Resynchronization Therapy of the Agency for Health Care Research of the Czech Republic.

And I would like to acknowledge the UCI repository [15] and the relevant donors and creators of the datasets. This breast cancer data (Parp_BRLj) was obtained from the University Medical Centre, Institute of Oncology, Ljubljana, Yugoslavia. Thanks go to M. Zwitter and M. Soklic for providing the data. The blood transfusion data (UCI_bloodt) has been provided by Prof. I-Cheng Yeh [29]. The Breast Cancer Wisconsin dataset (Parp_BRWis) was obtained from the University of Wisconsin Hospitals, Madison from Dr. William H. Wolberg [2]. CTG data originate from Faculty Hospital in Brno, Czech Republic. The CTG database is freely available online [30].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miroslav Bursa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Bursa, M., Lhotska, L. (2015). Ant-Inspired Algorithms for Decision Tree Induction. In: Renda, M., Bursa, M., Holzinger, A., Khuri, S. (eds) Information Technology in Bio- and Medical Informatics. ITBAM 2015. Lecture Notes in Computer Science(), vol 9267. Springer, Cham. https://doi.org/10.1007/978-3-319-22741-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-22741-2_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-22740-5

  • Online ISBN: 978-3-319-22741-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics