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Construction of Smooth Isogeometric Function

Spaces on Singularly Parameterized Domains

Thomas Takacs

Abstract We aim at constructing a smooth basis for isogeometric function spaces on

domains of reduced geometric regularity. In this context an isogeometric function is

the composition of a piecewise rational function with the inverse of a piecewise ra-

tional geometry parameterization. We consider two types of singular parameteriza-

tions, domains where a part of the boundary is mapped onto one point and domains

where parameter lines are mapped collinearly at the boundary.

We locally map a singular tensor-product patch of arbitrary degree onto a trian-

gular patch, thus splitting the parameterization into a singular bilinear mapping and

a regular mapping on a triangular domain. This construction yields an isogeometric

function space of prescribed smoothness. Generalizations to higher dimensions are

also possible and are briefly discussed in the final section.

1 Introduction

In this paper we are dealing with isogeometric function spaces derived from singu-

lar NURBS parameterizations. We consider two different configurations of singular
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2 Thomas Takacs

planar NURBS geometry parameterizations, leading to two different types of trian-

gular domains. The goal of our construction is the definition of arbitrarily smooth

isogeometric function spaces defined on these domains. The approach presented

here can be generalized to other types of domains and to higher dimensions.

The ability to construct test/ trial functions of high smoothness, suitable for nu-

merical simulations, is one of the main features of isogeometric analysis, as in-

troduced in [6]. B-spline and NURBS function spaces on standard tensor-product

domains possess the possibility of k-refinement, creating a sequence of non-nested

spaces of increasing degree and increasing smoothness. Hence, increasing degree

and smoothness may lead to improved convergence [1]. Several applications in iso-

geometric analysis rely on function spaces of smoothness of higher order, like dif-

ferential equations of higher order [3], or the analysis of shells [2, 8, 7], just to name

a few examples. In all these applications, the results may be deteriorated if singular

parameterizations are present. To overcome this deficiency, we present constructions

leading to isogeometric functions spaces of arbitrary smoothness on singularly pa-

rameterized domains.

We start with some preliminary definitions and notation on B-splines and NURBS

in Section 2.1 and on isogeometric functions in Section 2.2. The smoothness con-

ditions of interest are presented in Section 2.3. In Section 3 we develop the con-

struction of smooth spaces over singular domains where one edge of the parameter

domain is mapped onto one point in the physical domain. In Section 4 we present a

similar costruction for domains where two parameter directions are collinear at the

boundary of the physical domain. Both constructions can be used to obtain circu-

lar domains, see also [9]. We briefly discuss generalizations to higher dimension in

Section 5 and conclude the presented results in Section 6.

2 Preliminaries

Isogeometric function spaces V , as they are present in isogeometric analysis, are

built from an underlying B-spline or NURBS space. Hence, to introduce the notation

needed, we start this preliminary section with recalling the notion of B-splines and

NURBS. We do not give detailed definitions here and refer to standard literature for

further reading [10, 4, 11].
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2.1 B-Splines and NURBS

Univariate B-splines are piecewise polynomial functions. Given a degree p ∈ Z+

and a knot vector S = (s−p, . . . ,sN+p+1) of length N + 2p+ 2, the i-th B-spline, for

i = 0, . . . ,N + p, is denoted by B
p
i [S](s). We assume that the parameter domain is

the unit interval and that the knot vector is open, i.e.

0 = s−p = . . .= s0 < s1 ≤ . . .≤ sN < sN+1 = . . .= sN+p+1 = 1. (1)

Note that any B-spline basis function can be represented via its local knot vector

B
p
i [S](s) = b[si−p, . . . ,si,si+1](s).

Using this notation, the degree p of the B-spline B
p
i [S] is implicitly given by the

length p+ 2 of the local knot vector.

The concept of univariate B-splines can easily be generalized to two dimensions

via a tensor-product construction. Let p,q∈Z+ and let S and T be open knot vectors

fulfilling equation (1). The parameter domain is set to be the box B = [0,1]2, leading

to the tensor-product B-spline space

S = span
({

B
p
i [S]B

q
j [T] : B →R | for (0,0)≤ (i, j) ≤ (N1 + p,N2 + q)

})

.

The B-splines span a piecewise polynomial function space on a grid given by the

knot vectors S and T. Given a weight function g0 ∈ S , with g0(s)> 0 for all s ∈ B,

we can define a NURBS space via

N =

{

f

g0

: B → R | f ∈ S

}

.

We can now define isogeometric function spaces.

2.2 Isogeometric functions

We use the following standard definition of isogeometric functions over a physical

domain Ω , where we follow the notation in [16]. This definition is based on the

concept of isogeometric analysis introduced in [6]. For a given NURBS geometry

parameterization

G = (G1,G2)
T =

(

g1

g0

,
g2

g0

)T

: B → Ω ⊂ R2,
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with G1,G2 ∈ N , the space of isogeometric functions defined on the open domain

Ω = G(B◦) is denoted by

V =

{

ϕ : Ω →R | ϕ = F ◦G−1, with F =
f

g0

∈ N

}

.

We assume that G is invertible in the interior B◦ =]0,1[2 of the box B, hence the

functions ϕ are well-defined. Note that an isogeometric function ϕ can be defined

via its graph surface in homogeneous coordinates

f = (g0,g1,g2, f )T : B → Ω̃ ×R, (2)

with r j ∈ S for j = 0,1,2,3. Here Ω̃ is given such that Π(Ω̃ ) = Ω , where the

mapping Π : (x0,x1,x2) 7→ (x1/x0,x2/x0) is the central projection onto the plane

x0 = 1.

In the following subsection we present smoothness conditions which are of in-

terest in isogeometric analysis.

2.3 Smoothness conditions

We consider a notion of continuity, which may be of interest for any numerical

application where a high order of smoothness is necessary.

Definition 1. The space C k(Ω) of C k-continuous functions on the closure of Ω is

defined as the space of functions ϕ : Ω → R with ϕ ∈ Ck(Ω) such that there exists

a unique limit

lim
y→x,y∈Ω

∂ |α |ϕ(y)

∂x
α1
1 ∂x

α2
2

=
∂ |α |ϕ(x)

∂x
α1
1 ∂x

α2
2

for all x ∈ ∂Ω = Ω\Ω and for all |α|= α1 +α2 ≤ k. Here Ck(Ω) is the traditional

space of k-times continuously differentiable functions on the open domain Ω .

The highest reasonable smoothness is smoothness of order k = p− 1, where p is

the degree of the spline space S . However, this may not be feasible for arbitrary

domains.

Another way to prescribe smoothness is by regularity in the sense of Sobolev

spaces, i.e. V ⊂ Hk(Ω). Note that C
k(Ω ) ⊂ Hk(Ω). However, for many isogeo-

metric function spaces, the condition V ⊂ C k(Ω) is equivalent to V ⊂ Hk+1(Ω).

If the domain parameterization G is singular somewhere at the boundary ∂B, then

the function space V may not be regular. For most settings V ⊂ C 0(Ω) and conse-
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quently V ⊂ H1(Ω) is not fulfilled (e.g. for patches of type A, see Section 3). For

studies concerning Sobolev regularity on singular parameterizations in isogeometric

analysis we refer to [14, 15]. The papers present construction schemes for H1- and

H2-smooth isogeometric function spaces.

In this paper we generalize the presented approach to C k-smoothness for arbi-

trary k. We consider two types of singular parameterizations. The first type A is a

class of singular parameterizations where a part of the boundary of B is mapped onto

one point. The second type B covers singular parameterizations where the parameter

lines in the physical domain are collinear at the boundary.

3 Singular tensor-product patches of type A

In this section we construct smooth isogeometric function spaces on singular patches

of type A. A parameterization G is called a singular mapping of type A if it fulfills

det∇G(s) = 0 for all s ∈ {0}× [0,1]. (3)

Hence, the part of the boundary {0}× [0,1]⊂ ∂B of the parameter domain box B

is mapped onto one point in the physical domain. The class of singular patches we

consider is derived from triangular Bézier patches. We start with a construction for

Bézier patches which we then generalize to B-spline patches. Note that the condition

(3) is more general then the configurations we consider in this section.

3.1 Triangular Bézier patches as singular tensor-product Bézier

patches

As presented by Hu in [5], a triangular Bézier patch

ρρρ : ∆ → Rd : (u,v) 7→ ∑
i+ j+k=p

β p

(i, j,k)
(u,v) ρρρ i, j,k,

with control points ρρρ i, j,k ∈ Rd , parameter domain

∆ = {(u,v) : 0 ≤ u ≤ 1, 0 ≤ v ≤ u}

and basis functions
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β p

(i, j,k)
: ∆ → R : (u,v) 7→ p!

i! j!k!
(1− u)iv j(u− v)k,

can be represented as a tensor-product Bézier patch

f : [0,1]2 →Rd : s = (s, t) 7→
p

∑
i=0

p

∑
j=0

b
p
i (s) b

p
j (t) fi, j, (4)

with Bernstein polynomials b
p
i of degree p, where

fi, j =
i

∑
ℓ=0

(

i

ℓ

)

(

p−i
j−ℓ

)

(

p
j

) ρρρ p−i,ℓ,i−ℓ

for 0 ≤ i, j ≤ p. The control points for each row are computed via degree elevation.

For i = 0 all control points are the result of degree elevation of a constant “curve”,

i.e. all points are equal

f0, j = ρρρ p,0,0,

hence the tensor-product Bézier patch f(s, t) is singular at s = 0. For i = 1 the con-

trol points result from degree elevating a linear, for i = 2 from degree elevating a

quadratic curve, and so on.

The transformation leading to Equation (4) can also be interpreted as a change of

parameters

f = ρρρ ◦u (5)

with the reparameterization

(s, t) 7→ (u,v), with

u(s, t) = (u(s, t),v(s, t)) = (s,st)

with u ∈ (Q1(R
2))2, ρρρ ∈ (Pk(R

2))d and f ∈ (Qk(R
2))d . Note that the bilinear map-

ping u(s, t) is singular for s = 0. Here Qk(R
ℓ) is the space of ℓ-variate polynomials

of maximal degree ≤ k and Pk(R
ℓ) is the space of ℓ-variate polynomials with total

degree ≤ k.

Selecting ρρρ p−i,ℓ,i−ℓ ∈R4, we get f = ρρρ ◦u : B →R4 which may serve as a homo-

geneous graph surface of an isogeometric function as in (2). In this case we conclude

V ⊂C ∞(Ω ) if the rational triangular Bézier patch (ρ1/ρ0,ρ2/ρ0)
T is regular. Gen-

eralizing this construction we can define a smooth isogeometric function space on a

certain class of domains containing a singularity. We will also give a detailed proof

of the smoothness result in the following section.



Smooth Isogeometric Function Spaces on Singularly Parameterized Domains 7

3.2 Smooth function spaces over a singular B-spline patch

Given a tensor-product B-spline function space S of degree (p,q) and prescribed

order of smoothness k ≤ min(p,q) we want to construct a function space S k ⊂ S ,

as well as V k ⊂ V derived from S k, such that V k ⊂ C k(Ω).

In the previous section we constructed a polynomial patch f = ρρρ ◦ u that can

be split into a singular bilinear part u and a regular polynomial part ρρρ defined on a

triangular domain. The core idea of the generalized approach is the following. Given

a B-spline surface f ∈ (S )4, we assume that f is equivalent to a triangular patch up

to order k at the singularity. Hence, we introduce the function space S
k(u,S)⊂S .

Definition 2. The function space S k(u,S) ⊂ S is defined as the space of splines

f ∈ S , such that there exists a polynomial ρ ∈ Pk fulfilling

∂ |α | f

∂ sα1 ∂ tα2
(s) =

∂ |α |(ρ ◦u)

∂ sα1∂ tα2
(s) for all s ∈ S, (6)

for 0 ≤ α1,α2 ≤ k, |α|= α1 +α2, where u is the mapping

u : [0,1]2 → ∆ = {(u,v) : 0 ≤ u ≤ 1, 0 ≤ v ≤ u}
(s, t)T 7→ (s,st)T

and S = {0}× [0,1].

Note that if k = q = p, then S
p(u,S) |[0,s1]×[0,1] ◦u−1 = Pp, where Pp is the space

of polynomials of total degree ≤ p and s1 is the first interior knot of the knot vector

S.

Using this approach, we obtain linear conditions on the B-spline basis functions.

Certain linear combinations of B-spline basis functions will correspond to the basis

functions on the triangular patch. Just as presented in [5], Definition 2 is equivalent

to the first row of control points being constant, the second row forming a linear

curve, the third row a quadratic, and so on. This leads to the following definition.

Definition 3. Let k ≤ min(p,q). The basis Sk is defined via

Sk =
{

B
p
i [S](s)b

i
j(t) : 0 ≤ j ≤ i and 0 ≤ i ≤ k

}

∪
{

B
p
i [S](s)B

q
j [T](t) : k+ 1 ≤ i ≤ N1 + p and 0 ≤ j ≤ N2 + q

}

,

where B
p
i [S]B

q
j [T], with (0,0)≤ (i, j)≤ (N1 + p,N2+q), is the standard basis of S

and bi
j(t) is the j-th Bernstein polynomial of degree i.
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Figure 1 gives a schematic depiction of the index set corresponding to Sk for k = 3.
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i

j

k
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0

1

1 2 3

Fig. 1 Index set corresponding to Sk for k = 3

Lemma 1. Let k ≤min(p,q). The set Sk given in Definition 3 is a basis for the space

S k(u,S) given in Definition 2.

Proof. Obviously, we have span(Sk)⊂ S since

bi
j(t) ∈ span

({

B
q
j [T](t) : 0 ≤ j ≤ N2 + q

})

for all i, j with 0 ≤ j ≤ i ≤ q.

We first show that span(Sk)⊆ S k(u,S), i.e. all functions f ∈ Sk fulfill equation

(6) for some polynomial ρ ∈ Pmin(p,q). Since the condition (6) needs to be fulfilled

for s = 0, we assume that s < s1, which is the first knot of the knot vector S. For

i > k+1, the functions B
p
i [S](s)B

q
j [T](t) fulfill ∂ α

∂ sα B
p
i [S](s)B

q
j [T](t) = 0 for all α ≤

k. Hence (6) is fulfilled with ρ ≡ 0. For B
p
i [S](s)b

i
j(t) with j ≤ i ≤ k we have that

B
p
i [S](s) = si r(s), where r(s) is some polynomial in s of degree ≤ k− i. Moreover,

bi
j(t) is a polynomial in t of degree i. Hence, B

p
i [S](s)b

i
j(t) = r(s)si bi

j(t) can be

represented as a polynomial ρ in u = s and v = st with total degree ≤ k. This is

exactly the form B
p
i [S](s)b

i
j(t) = ρ ◦u required in equation (6).

What remains to be shown is that S k(u,S) ⊆ span(Sk). Assume that f ∈ S is

equivalent to a monomial ui v j, i+ j ≤ k, with respect to condition (6). In that case

we conclude f (s, t) = si+ j t j + sk+1 r(s, t) for s < s1, where r is some polynomial of

degree p− k− 1 in s and of degree q in t. One can show easily that f ∈ span(Sk) in

that case. Finally, if f ∈ S is equivalent to ρ ≡ 0 with respect to (6), then f (s, t) =

sk+1 r(s, t) for s < s1, and again f ∈ span(Sk), which concludes the proof. �
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One can show that if ρρρ is regular and G is Ck-smooth, then the mapping

F : ∆ →R with F = G◦u−1

is a Ck-smooth mapping from the triangle ∆ to the domain Ω . Here, the inverse of

the singular mapping u is equal to

u−1(u,v) =
(

u,
v

u

)T

.

This leads to a split of the mapping G into a bilinear singular transformation u and

a regular mapping F, via

G = F◦u.

The various introduced mappings and domains are depicted in Figure 2.

PSfrag replacements

s

t

u

v

[0,1]2 ∆

Ω

FG

u

Fig. 2 Mappings F, u, G for an example domain of type A

Using this definition we can construct an isogeometric function space fulfilling

V k ⊆ V ∩C k(Ω), for k ≤ min(p,q).

Theorem 1. Let k ≤ min(p,q), let S ⊂ Ck(B) and let V k be the isogeometric

function space derived from S k(u,S) with G = (g1/g0,g2/g0)
T with g0,g1,g2 ∈

S
k(u,S). Moreover, G(s, t) is regular for all s > 0 and t ∈ [0,1].

Then V k ⊂ C k(Ω ) if (g0,g1,g2)
T is equivalent to (ρ0,ρ1,ρ2)

T with respect to

(6) and
(

ρ1
ρ0
, ρ2

ρ0

)T

is regular in ∆ .

Proof. Given an isogeometric function ϕ = f ◦G−1 ∈ V k. Due to Lemma 1 the

homogeneous graph surface f=(g0,g1,g2, f )T fulfills (6) for some (ρ0,ρ1,ρ2,ρ3)
T .
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The condition ϕ ∈ C k(Ω ) is given by

f

g0

◦
(

g1

g0

,
g2

g0

)−1

∈ C
k(Ω).

Since G is regular for s > 0 and G ∈Ck(B), we conclude that G−1 ∈ C k(G([ε,1]×
[0,1])) by definition. Hence, it remains to be shown that

f

g0

◦
(

g1

g0

,
g2

g0

)−1

∈ C
k(G([0,ε]× [0,1])).

Due to (6) this is equivalent to

ρ3

ρ0

◦u−1 ◦u◦
(

ρ1

ρ0

,
ρ2

ρ0

)−1

∈ C
k(G([0,ε]× [0,1])).

Since ρi ∈ C∞, this condition is equivalent to
(

ρ1

ρ0
, ρ2

ρ0

)

being invertible which con-

cludes the proof. �

In Definition 3 we have already given a basis Sk for the function space S k(u,S).

In the next section we propose an algorithm to determine the coefficients of the

linear conditions with respect to the standard basis of S yielding the new basis

functions in Sk.

3.3 Algorithm to construct the new basis functions

In this section we describe an algorithm to find a representation for the new basis

functions

B
p
k [S](s)b[0,1, . . .,1](t)

B
p
2 [S](s)b[0,1,1,1](t)

.

.

.

B
p
1 [S](s)b[0,1,1](t) B

p
2 [S](s)b[0,0,1,1](t)

B
p
0 [S](s)b[0,1](t) B

p
1 [S](s)b[0,0,1](t) B

p
2 [S](s)b[0,0,0,1](t) . . . B

p
k [S](s)b[0, . . . ,0,1](t)

or equivalently

{

b[si−p, . . . ,si+1](s)b
i
j(t) : 0 ≤ j ≤ i and 0 ≤ i ≤ k

}

,

in terms of the basis B
p
i [S](s)B

q
j [T](t) of the space S . Here bi

j(t) is the j-th Bern-

stein polynomial of degree i. The algorithm is composed of three steps: degree eleva-
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tion for t, knot insertion for t and tensor-product multiplication with basis functions

in s-direction. The presented algorithms are taken from standard literature [10, 11].

1. Perform degree elevation in t-direction

Let E
q
i be the matrix corresponding to the degree elevation of a Bernstein polynomial

of degree i represented in terms of Bernstein polynomials of degree q > i, i.e.

(bi
j(t))

T
j=0,...,i = E

q
i (b

q
j(t))

T
j=0,...,q.

The matrix E
q
i is of dimension (i+ 1)× (q+ 1) and has the form

E
q
i =

(

(

i

ℓ

)

(

q−i
j−ℓ

)

(

q
j

)

)

ℓ=0,...,i × j=0,...,q

,

see e.g. [11]. In Section 3.4 we list some of the matrices E
q
i for example configura-

tions.

2. Perform knot insertion for t-direction

Let Kτ be the matrix corresponding to the knot insertion of interior knots τ =

(t1, t2, . . . tN) of the knot vector T, leading to

(b
q
j(t))

T
j=0,...,q = Kτ(b[t j−q, . . . , t j, t j+1](t))

T
j=0,...,N+q.

The knot insertion matrix Kτ can be defined via iteratively inserting the knots

into the knot vector. The following algorithm gives the resulting matrix for insertion

of the single knot ti into the given knot vector with interior knots up to ti−1. A B-

spline of degree q with knot vector (0, . . . ,0, t1, . . . , ti−1,1, . . . ,1) can be represented

as a B-spline of degree q with knot vector (0, . . . ,0, t1, . . . , ti−1, ti,1, . . . ,1) using knot

insertion. The corresponding transformation matrix Kti is given by



































.

.

.

b[ti−q−2, . . ., ti−1](t)

b[ti−q−1, . . . , ti−1,1](t)

b[ti−q, . . . ,1,1](t)

.

.

.

b[ti−2, ti−1,1, . . .,1](t)

b[ti−1,1, . . .,1](t)



































=



































. . .
.
.
.

1 0 0 0 0

0 1 1−λi−q−1 0 0

0 0 λi−q−1 0 0

. . .

0 0 0 1−λi−1 0

. . . 0 0 0 λi−1 1





































































.

.

.

b[ti−q−2, . . . , ti−1](t)

b[ti−q−1, . . ., ti](t)

b[ti−q, . . . , ti,1](t)

.

.

.

b[ti−1, ti,1, . . .,1](t)

b[ti,1, . . .,1](t)



































,
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where

λ j =
ti − t j

1− t j

.

Using this construction, the knot insertion matrix Kτ is given via

Kτ = Kt1 Kt2 . . .KtN .

In the last step we multiply with the corresponding s-dependent functions.

3. Compute tensor-product basis

Combining steps 1 and 2 with the tensor product representation leads to

(B
p
i [S](s)b

i
j(t))

T
j=0,...,i = E

q
i (B

p
i [S](s)b

q
j(t))

T
j=0,...,q

= E
q
i Kτ(B

p
i [S](s) B

q
j [T](t))

T
j=0,...,N+q,

for 0 ≤ i ≤ p.

In the following we compute the coefficients for some example configurations.

3.4 Some example configurations

We start with an example of a patch of degree p = q = 2.

Example 1. Let S = (0,0,0,h,2h,3h, . . .) and T = (0,0,0,1/4,1/2,3/4,1,1,1). We

want to find a representation of the basis S2 for S 2(u,S) with respect to the standard

basis B2
i [S]B

2
j [T] of S . We denote the new basis functions by B̃

p

(i, j)
= B

p
i [S](s)b

i
j(t).

The basis functions we need to construct are B̃2
(i, j), with 0 ≤ i ≤ 2 and 0 ≤ j ≤ i.

The degree elevation matrices E
q
i for q = 2 are given by

E2
0 =

(

1 1 1

)

,E2
1 =





1 1
2

0

0 1
2

1



 ,E2
2 =









1 0 0

0 1 0

0 0 1









and the knot insertion matrix Kt , with (b2
i )

T
i=0,1,2 = Kt(B

2
j [T])

T
j=0,...,5, fulfills

Kt =









1 3
4

3
8

1
8

0 0

0 1
4

1
2

1
2

1
4

0

0 0 1
8

3
8

3
4

1









.
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Hence we conclude

B̃2
(0,0) = E2

0Kt(B
2
0[S]B

2
j [T])

T
j=0,...,5 =

(

1 1 1 1 1 1

)

(B2
0[S]B

2
j [T])

T
j=0,...,5,





B̃2
(1,0)

B̃2
(1,1)



= E2
1Kt(B

2
1[S]B

2
j [T])

T
j=0,...,5 =





1 7
8

5
8

3
8

1
8

0

0 1
8

3
8

5
8

7
8

1



(B2
1[S]B

2
j [T])

T
j=0,...,5

and









B̃2
(2,0)

B̃2
(2,1)

B̃2
(2,2)









= E2
2Kt(B

2
2[S]B

2
j [T])

T
j=0,...,5 =









1 3
4

3
8

1
8

0 0

0 1
4

1
2

1
2

1
4

0

0 0 1
8

3
8

3
4

1









(B2
2[S]B

2
j [T])

T
j=0,...,5.

The left hand side of figure 3 depicts a schematic overview of the bi-quadratic patch.

The newly defined basis functions are visualized via their Greville ascissae (red

dots). The part of the domain containing the singularity is the red triangle to the

left. The part colored in light red is the support of the newly defined basis functions.

The remaining part of the patch is not influenced by the modification of the function

space. One standard basis function is visualized via its Greville abscissa and support

(colored in blue and light blue, respectively).

Fig. 3 Quadratic (left) and cubic (right) singular B-spline patch of type A

The second example is a patch of degree p = q = 3.

Example 2. Let S and T be the same knot vectors as in the previous example. Again,

we represent the new basis functions B̃3
(i, j), with 0 ≤ i ≤ 3 and 0 ≤ j ≤ i, of S k with

respect to the standard basis B3
i [S]B

3
j [T] of S .

Note that in general the degree elevation matrix E
q
0 is a row vector of length q+1

with entry 1 in each column. This derives from the fact that E
q
0 arises from degree
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elevation of a constant function. Obviously, the matrix E
q
q is the unit matrix of size

(q+ 1)× (q+ 1). The remaining degree elevation matrices and the knot insertion

matrix Kt fulfill

E3
1 =





1 2
3

1
3

0

0 1
3

2
3

1



 , E3
2 =









1 1
3

0 0

0 2
3

2
3

0

0 0 1
3

1









, Kt =















1 3
4

3
8

3
32

0 0 0

0 1
4

1
2

13
32

1
8

0 0

0 0 1
8

13
32

1
2

1
4

0

0 0 0 3
32

3
8

3
4

1















.

Hence we conclude

B̃3
(0,0) =

(

1 1 1 1 1 1 1

)

(B3
0[S]B

3
j [T])

T
j=0,...,6,





B̃3
(1,0)

B̃3
(1,1)



=





1 11
12

3
4

1
2

1
4

1
12

0

0 1
12

1
4

1
2

3
4

11
12

1



(B3
1[S]B

3
j [T])

T
j=0,...,6

and








B̃3
(2,0)

B̃3
(2,1)

B̃3
(2,2)









=









1 5
6

13
24

11
48

1
24

0 0

0 1
6

5
12

13
24

5
12

1
6

0

0 0 1
24

11
48

13
24

5
6

1









(B3
2[S]B

3
j [T])

T
j=0,...,6

as well as















B̃3
(3,0)

B̃3
(3,1)

B̃3
(3,2)

B̃3
(3,3)















=















1 3
4

3
8

3
32

0 0 0

0 1
4

1
2

13
32

1
8

0 0

0 0 1
8

13
32

1
2

1
4

0

0 0 0 3
32

3
8

3
4

1















(B3
3[S]B

3
j [T])

T
j=0,...,6

The right hand side of Figure 3 depicts a schematic overview of the bi-cubic patch.

The structure is the same as for the previous example.

A simple consequence of the tensor-product structure of the newly defined basis

Sk of the function space S k(u,S) is that we can also define a corresponding dual

basis.
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3.5 Dual basis

In this section we present a construction of a dual basis for the basis presented in

Definition 3. Recall that the basis Sk is given by

{

B
p
i [S](s)b

i
j(t) : 0 ≤ j ≤ i and 0 ≤ i ≤ k

}

∪
{

B
p
i [S](s)B

q
j [T](t) : 0 ≤ j ≤ N + p and k+ 1 ≤ i ≤ M+ q

}

.

Let {λ s
ℓ}ℓ=0,...,M+p be a dual basis of {B

p
i [S](s)}i=0,...,M+p and let {λ t

ℓ}ℓ=0,...,N+q be

a dual basis of {B
q
j [T](t)} j=0,...,N+q, with

λ s
ℓ (B

p
i [S](s)) = δ ℓ

i and λ t
ℓ(B

q
j [T](t)) = δ ℓ

j .

One possibility for such a dual basis is presented in [12]. Moreover, let {µ i
ℓ}ℓ=0,...,i

be a dual basis to the Bernstein polynomials {bi
j(t)} j=0,...,i of degree i, with

µ i
ℓ(b

i
j(t)) = δ ℓ

j .

Then, since the construction of the function space is tensor-product, the functionals

{

λ s
i µ i

j : 0 ≤ j ≤ i and 0 ≤ i ≤ k
}

∪
{

λ s
i λ t

j : 0 ≤ j ≤ N + p and k+ 1 ≤ i ≤ M+ p
}

form a dual basis for the basis Sk as given in Definition 3.

4 Singular tensor-product patches of type B

In this section we discuss the construction of a smooth basis for singular param-

eterizations of type B, which have collinear parameter directions at a point of the

boundary. A parameterization G is called a singular mapping of type B if the partial

derivatives are collinear and in opposite direction at (s, t) = (0,0), i.e. there exists a

λ > 0 such that
∂G

∂ s
(0,0) =−λ

∂G

∂ t
(0,0),

leading to det∇G(0,0) = 0. In the following we give a construction for B-spline

function spaces leading to smooth isogeometric spaces, similar to the construction

presented for patches of type A.
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Definition 4. Let k ≤ min(p,q). The function space S k(u,S)⊂S is defined as the

space of splines f ∈ S , such that there exists a polynomial ρ ∈ Pk fulfilling

∂ |α | f

∂ sα1 ∂ tα2
(s) =

∂ |α |(ρ ◦u)

∂ sα1∂ tα2
(s) for all s ∈ S,

for 0 ≤ α1,α2 ≤ k, |α|= α1 +α2, where u is the mapping

u : [0,1]2 → ∆ = {(u,v) : 0 ≤ u ≤ 1, −1+ u ≤ v ≤ 1− u}
(s, t)T 7→ (st, t − s)T .

and S = {(0,0)}.

Moreover, we can define a Bernstein-like basis Sk via

Sk =
{

B̃k
(i, j)(s, t) : 0 ≤ i, j ≤ k and i+ j ≤ k

}

∪
{

B
p
i [S](s)B

q
j [T](t) : 0 ≤ i ≤ N1 + p, 0 ≤ j ≤ N2 + q and max(i, j) > k

}

,

where B
p
i [S]B

q
j [T], with (0,0)≤ (i, j)≤ (N1 + p,N2+q), is the standard basis of S

and

B̃k
(i, j) ∈ span

({

B
p
ℓ1
[S](s)Bq

ℓ2
[T](t) : 0 ≤ ℓ1, ℓ2 ≤ k

})

(7)

are defined in such a way that

∂ |α |B̃k
(i, j)

∂ sα1∂ tα2
(s) =

∂ |α |(β k
(i, j) ◦u)

∂ sα1∂ tα2
(s) for all s ∈ S,

for 0 ≤ α1,α2 ≤ k, |α|= α1 +α2, with triangular Bernstein basis functions

β k
(i, j) : ∆ → R : (u,v) 7→ k!

i! j!(k− i− j)!

(

1− u− v

2

)i(
1− u+ v

2

) j

uk−i− j.

Remark 1. One can show easily, that Sk is in fact a basis for S k(u,S). Moreover,

similar to singular mappings of type A, the isogeometric function space V
k derived

from S k(u,S) fulfills V k ⊂ C k(Ω) if the underlying triangular patch is regular.

We do not go into the details of the construction but present an example configura-

tion allowing for C 2-smooth bi-cubic isogeometric functions.

Example 3. Let p = q = 3 and k = 2. We construct the geometry mapping from a

bi-quadratic rational triangular patch representing a quarter of a circle. Applying

degree elevation to a bi-quadratic triangular Bézier parameterization T given by its

homogeneous control points
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t(i, j,2−i− j) j = 0 j = 1 j = 2

i = 0 (1,0,0)T (2,0,1)T (1,0,1)T

i = 1 (2,1,0)T (
√

2,
√

2,
√

2)T

i = 2 (1,1,0)T

leads to a singular tensor-product patch G = T◦u with control points as depicted in

Figure 4. The blue control points correspond to standard basis functions and the red

control points correspond to basis functions B
p
ℓ1
[S]B

q

ℓ2
[T], with 0 ≤ ℓ1, ℓ2 ≤ 2, that

span the space containing the new basis functions B̃k
(i, j), with 0 ≤ i+ j ≤ 2, as in

equation (7).

Fig. 4 Parameterization and control points for a singular patch of type B for Example 3

In the following we briefly discuss a way to generalize to higher dimensions.

5 Constructions for higher dimension

The approach presented here can also be generalized to higher dimensions. On the

one hand one can generate smooth isogeometric function spaces on surfaces em-

bedded in R3 directly by substituting the planar triangular patch with a triangular

surface patch. This may be for interest when dealing with partial differential equa-

tions on surfaces or for implementations of a boundary element method (e.g. [13]).

The basic idea behind this generalization is to consider f = (g0,g1,g2,g3, f )T ,

with gi, f ∈ S k(u,S) for either type A or type B. Then, the isogeometric function

ϕ : Ω → R

x 7→ f

g0

◦
(

g1

g0

,
g2

g0

,
g3

g0

)−1

(x)
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defined on the surface Ω = G(B◦) ⊂ R3 is smooth of order k if the underlying

triangular surface patch is regular.

On the other hand, one can define smooth isogeometric spaces on singularly pa-

rameterized volumetric domains. Similar to the bivariate case, one can again define

an isogeometric function represented via its graph in homogeneous coordinates

f = (g0,g1,g2,g3, f )T : [0,1]3 → Ω̃ ×R

with Ω̃ being the homogeneous representation of the physical domain Ω . On a

tetrahedral domain, given by the tri-linear singular mapping u(r,s, t) = (r,r s,r st),

we can define a basis according to

∂ |α |B̃k
i

∂ rα1 ∂ sα2∂ tα3
(s) =

∂ |α |(β k
i ◦u)

∂ rα1 ∂ sα2∂ tα3
(s) for all s = (r,s, t) ∈ S,

for S = {0}× [0,1]× [0,1], 0 ≤ α1,α2,α3 ≤ k, |α| = α1 +α2 +α3, and tri-variate

tetrahedral Bernstein polynomials β k
i for i = (i1, i2, i3) with 0 ≤ i1 + i2 + i3 ≤ k.

Moreover, one needs to enforce smoothness along the face s = 0 of the unit box,

which collapses to a line in physical space. Such a construction corresponds to the

findings in [16] about the smoothness conditions of isogeometric functions on vol-

umetric patches.

6 Conclusion

In this paper we presented a local mapping technique to construct isogeometric func-

tions of arbitrary smoothness over singularly parameterized domains. The construc-

tion works for domains of arbitrary dimension. We focused on two dimensional

patches containing exactly one point of singularity in physical space. However, the

concept can be generalized to embedded surfaces and volumes as well as to struc-

turally more complex domains.

One direction of future research is the study and development of a refinement

scheme maintaining the smoothness without enforcing additional smoothness con-

ditions after each refinement step. Another area of interest, which arises for the

presented isogeometric function spaces, is the question of approximation proper-

ties and convergence behavior. It is not clear, following the presented construction,

whether or not the approximation properties of the function space are optimal.
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