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Abstract. New types of Trusted Execution Environment (TEE) architectures like
TrustLite and Intel Software Guard Extensions (SGX) are emerging. They bring
new features that can lead to innovative security and privacy solutions. But each
new TEE environment comes with its own set of interfaces and programming
paradigms, thus raising the barrier for entry for developers who want to make
use of these TEEs. In this paper, we motivate the need for realizing standard
TEE interfaces on such emerging TEE architectures and show that this exercise is
not straightforward. We report on our on-going work in mapping GlobalPlatform
standard interfaces to TrustLite and SGX.

1 Introduction

For more than a decade the vast majority of smartphones and tablets have been equipped
with hardware security functionality, usually referred to as Trusted Execution Environ-
ments (TEEs) [3]. A TEE is an isolated and integrity-protected processing environment
where sensitive computations, such as cryptographic operations, can be safely carried
out. Until recently, application developers have not had the means to make use of TEEs
to enhance the security and privacy of their applications. New standardization efforts,
such as GlobalPlatform (GP) [5], and open source implementation initiatives, such as
OP-TEE [8] and Trusted Little Kernel [11] have the potential for ushering in widespread
use of TEEs by application developers.

Although the deployed base of mobile devices with TEEs is very large, numbering
in hundreds of millions, they predominantly follow the same architectural pattern: a
computing device containing a physical or logical TEE where small amounts of sensi-
tive computation can be carried out in conjunction with a larger software components
operating outside the TEE. The chief example of such a TEE architecture is ARM Trust-
Zone [1] which is widely deployed in smartphones.

Recently new types of TEE architectures have been proposed. They range from
TEEs like TrustLite [7] and SMART [4] designed for tiny resource constrained devices
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to Intel Software Guard Extensions (SGX) [10] intended primarily for servers and desk-
tops. They provide novel functionality but come with their own Application Program
Interfaces (APIs) and development environments. This constitutes a high barrier for en-
try for developers making it more difficult for them to benefit from such TEE function-
ality. A natural solution approach to this problem would be to support a set of standard
TEE interfaces, such as those specified by GP, on these emerging TEE architectures
thereby allowing developers familiar with the standard interfaces to readily make use
of the new TEEs. However, subtle differences in architectural assumptions pose some
challenges in mapping GP interfaces to these TEEs. In this work-in-progress paper, we
examine these challenges.

Our contribution is two-fold. First, we briefly juxtapose the features of the emerging
TEE architectures with the assumptions behind TEE standards (Section 2). We then
show the subtleties and challenges in realizing the GlobalPlatform model on two such
example TEE architectures: TrustLite and SGX (Section 3). We briefly describe our
experience so far in resolving these challenges.

2 Background

The isolation and integrity-protection of the processing environment in a TEE can be
achieved in different ways. Contemporary TEE architectures commonly utilize either a
dedicated security co-processor or CPU extensions that allow one physical processor to
operate efficiently in two distinct isolated modes in a so called split-world configura-
tion. In either case, the device may be viewed as having two separate environments, each
with its own set of features, as shown in Fig. 1. The Rich Execution Environment (REE)
refers to the operating environment that houses the conventional OS and applications.
In contrast, the TEE typically only has a limited set of features that are only intended
to address security critical functionality offloaded onto the TEE by Client Applications
(CAs) in the REE. The isolation of the TEE itself and discrete pieces of software inside
the TEE, referred to as Trusted Applications (TAs) is realized by means of hardware
support. Services and APIs available to TAs, such as access to trusted storage, are pro-
vided by a TEE OS, part of the TEE Trusted Computing Base (TCB).

Fig. 1. Abstract view of computing device equipped with a TEE [5]



A discrete co-processor is either be embedded on the main core physical System on
Chip (SoC), or a discrete hardware module outside the main core SoC. The advantages
of a dedicated co-processor compared to split-world-based isolation is the capability to
run simultaniously as the main core. A discrete co-processor can also enable a higher
level of isolation, especially in the case of an external co-processor which does not
necessarily share any resources with the main core. On the other hand, co-processor
architecture may exhibit increased overhead when transferring data to and from the
co-processor. The co-processor is also generally less powerful compared to the main
core.

In split-world-based isolated execution, such as ARM TrustZone [1], CPU state
is banked between the two isolated modes; the normal world and the secure world.
Transfer of execution between worlds occurs via a higher privilege monitor mode that
marshals the transition to and from the secure world. The secure monitor may be in-
voked through a Secore Monitor Call (SMC) instruction. In addition, split-world-based
isolation needs to be extended to both on-SoC and off-SoC memory and peripherals. In
ARM TrustZone this protection is provided by TrustZone-aware SoC peripherals and
a Advanced eXtensible Interface (AXI) system bus which propagates an extra control
signal known as the Non-Secure (NS) bit system-wide via bus transactions.

Physical memory partitioning between the normal and secure world is supported
through the TrustZone Address Space Controller (TZASC) and TrustZone Protection
Controller (TZPC). The TZASC can partition DRAM into several memory regions,
each of which can be configured to be accessible from either the normal or secure
world, or based on a more dynamic access control policy. On-SoC static memory like
ROM or SRAM protection is provided by the TrustZone Memory Adapter (TZMA) SoC
peripheral. TZPC is mainly used to configure peripherals as secure or non-secure for ac-
cess control on the low-bandwidth Advanced Peripheral Bus (APB) bus attached to the
AXI bus using a AXI-to-APB bridge. Unlike the AXI bus, the APB bus does not prop-
agate the NS bit. The AXI-to-APB bridge mediates access to APB peripherals and will
deny illegal access to protected peripherals. A TrustZone-aware Memory Management
Unit (MMU) provides both worlds with distinct translation tables. Translation Looka-
side Buffer (TLB) entries are tagged secure or non-secure, so that secure and non-secure
data may coexists in the cache thus avoiding the need to flush the TLB when a world
switch occurs. For Direct Memory Access (DMA), the multi-channel Direct Memory
Access Controller (DMAC) which moves data around the physical memory system is
made world sensitive and supports concurrent secure and non-secure channels. Any
normal world DMA transfer to or from secure memory will be denied.

A split-world-based configuration trades off the need to offload data to and from
the secure world with the cost associated with storing and restoring the world state
when transfering execution between CPU modes. However, compared to a discrete co-
processor, split-world-based isolation also results in a reduced cost per unit as the main
core serves a dual purpose. Nevertheles, it should be noted that since the distinct worlds
in fact share SoC resources, there may exist situations in which software in the normal
world may interfere with the secure world indirectly (e.g. side-channels [?]).



2.1 TrustLite and TyTAN

TrustLite [7] is a generic hardware security architecture intended for low-cost and ex-
ceedingly resource constrained embedded systems, such as automotive electronics, in-
dustrial control systems, medical implants or wearables. Such classes of devices have
particularly strong economic incentives to minimize development and production costs,
and hence typically lack hardware support for isolated execution or even support for
paging and virtual memory. Nevertheless, in many cases such devices are employed in
security-sensive and safety-critical applications, which not only require real-time guar-
antees, but can also benefit from certain security features, such as strong isolation and
the possibility of attesting local state to a (remote) verifier.

Lacking a conventional Memory Management Unit (MMU), memory access in these
constrained environments is typically mediated by a Memory Protection Unit (MPU),
which can be programmed in supervisor mode by the device OS with memory access
rules for the next task scheduled to run. In TrustLite the basis for strong isolation be-
tween tasks is an Execution Aware Memory Protection Unit (EA-MPU), which not only
enforces access control on all memory accesses, but does so considering the current
program counter value when validating a particular access to memory. Hence, a plat-
form equipped with an EA-MPU can enforce fine-grained access control based on the
individual code regions executed independently of the OS. TrustLite also introduces a
secure exception engine which maintains the memory isolation of secure tasks protected
by the EA-MPU even in the case of hardware and software interrupts.

Later work by Brasser et. al. leverages the TrustLite architecture to realize Ty-
TAN [2], a security architecture for embedded systems that provides strong isolation of
dynamically configurable tasks assisted by hardware features introduced in TrustLite,
as well real-time scheduling guarantees. TyTAN utilizes the secure exception engine of
TrustLite to provide a secure Inter Process Communication (IPC) mechanism, where
both sender and receiver can be authenticated using the digest of respective tasks mea-
sured upon loading. TyTAN does not provide any built-in access control for IPC. In-
stead, e.g., the task on the receiving end of an IPC call can make access control deci-
sions based on the verified identity of the sender. TyTAN differs from the traditional
TEE model in Fig. 1 in that normal and secure tasks co-exist in a single environment,
and rely on scheduling provided by an untrusted (real time) operating system. The OS
is assumed to schedule tasks fairly without starvation. Normal tasks are isolated from
other tasks but are fully controlled and accessible by the OS. In contrast, secure tasks
are isolated by the EA-MPU from the rest of the system, including the OS. Whereas
CAs in Fig. 1 are thought to include the advanced domain logic of an application, and
TAs only very limited security sensitive functionality, all tasks in TyTAN are relatively
simple. The primary concern in TyTAN is the correct operation of secure tasks, even
in the face of an adversary who has full control of the untrusted OS and normal tasks
running on the platform.

2 Instead, the class of devices TrustLite represents may potentially be used as part of a pro-
grammable secure co-processor.



2.2 Intel SGX

Intel Software Guard Extensions [10] is another hardware-based approach to realize an
isolated environment for preserving the confidentiality and integrity of sensitive code
and data. SGX consists of a set of new CPU instructions and memory access changes
to the Intel CPU architecture, which allows parts of the application code and data re-
siding in main memory to be encrypted using a key accessible only in the CPU core.
The protected portions of the application’s virtual address space together with the corre-
sponding SGX control data structures are referred to as an enclave. Enclave creation and
initialization is handled via two dedicated instructions, Enclave CREATE (ECREATE)
and Enclave INIT (EINIT). When an enclave is operated on, a dedicated hardware unit
on the CPU package decrypts incoming, and encrypts outgoing traffic between the main
memory and CPU package, so that sensitive code and data never leave the CPU package
unencrypted. Transfer of execution into and out of an enclave is strictly controlled.

Entry to an enclave occurs via a dedicated Enclave ENTER (EENTER) CPU instruc-
tion, which causes any cached page table translations overlapping with the protected
address region of an enclave to be invalidated and transfers control to code inside the
enclave. While the CPU is executing in enclave mode, it has access to the protected
pages belonging to the currently executing enclave, as well as any unprotected pages in
the current processes’s virtual address space. Accesses to protected pages belonging to
other enclaves are prevented. Outside of enclave mode, access attempts by the CPU to
enclave pages are treated as references to nonexistent memory, as are physical memory
accesses by other agents, such as DMA access by capable disk drive controllers, graph-
ics cards etc. Furthermore, SYSENTER and SYSCALL instructions are prohibited while
in enclave mode, requiring the enclave to be exited before making system calls.

Exit from an enclave may occur either as a result of an Enclave EXIT (EEXIT)
instruction, or asynchronously, such as when exceptions or interrupts occur during en-
clave execution. In the latter case, an Asynchronous Enclave eXit (AEX) event causes
the processor state to be securely saved inside protected enclave memory and the CPU
registers to be scrubbed in order to avoid leakage of sensitive data. Finally, the CPU
leaves enclave mode. The enclave may subsequently be re-entered with an Enclave RE-
SUME (ERESUME) instruction, which restores the execution state of the enclave. In
both cases, any cached page translations referring to the enclave’s protected address
region are cleared.

In contrast to conventional split-world-based isolated execution approaches, such as
ARM TrustZone, the SGX hardware architecture results in much simpler transitions to
and from the secure CPU mode. There is no need to manually transfer data back and
forth between a secure and normal world, as the isolated enclaves execute within the
address space of the host process. In addition there is no need for a separate operating
environment to provide further isolation between enclaves, as each enclave is already
isolated from other processes in the system, including it’s own host process and other
enclaves.

2.3 Standardization

To date there have been many proprietary APIs developed for TEEs. Almost every ven-
dor of TEE technology has supplied their own implementations, with varying levels



of complexity and functionality. Many of these solutions are aimed at the same market
segments. They thus impact the consumers, namely Original Equipment Manufacturers
(OEMs) and operators in this case, in similar ways. This fragmentation has been partly
to blame for the slow uptake in the use of TEE technology. OEMs find that they need to
provide more engineering effort to support essentially the same functionality on differ-
ent hardware platforms. With ever increasing demands for more services and growing
awareness of end users’ need for privacy protection, OS vendors such as Google are
mandating that more of the security critical components of the OS are protected by
hardware security mechanisms.

This fragmentation and the need for OEMs to pass Compliance Test Suites (CTSs),
designed to test that the platform protects the security critical components as mandated
by the OS vendor, have led to the need to address this through some form of standardiza-
tion. There have also been a number of efforts to address this by providing a standard
operating system to run within the TEE, such as Nvidia’s Trusted Little Kernel [11]
(TLK) and Linaro’s OP-TEE [8]. Though a common operating system is a good start
to help adoption as it removes a lot of engineering effort, it does not go far enough
to address the needs of application developers on platforms such as Android or iOS.
To benefit these application developers there must be a consistent API by which TEE
functionality can be accessed.

To this end GlobalPlatform (GP) [5], a non-profit association focused on promot-
ing the industry wide adoption of security standards, has been formulating and driving
standards for TEE APIs. Within the scope of the TEEs that we describe in this paper,
i.e. extensible TEEs that allow for the deployment of trusted third-party code, GP has
defined two main standards. The TEE Client API, running in the host operating system,
and the TEE Core API, running inside the TEE. This provides standardization of both
the TAs (so they can be deployed in any GP compliant TEE irrespective of the HW
vendor) and the CAs that run on the host operating system. It is these CAs that provide
the services to meet the corresponding CTS requirements of OS vendors.GP’s architec-
ture is built around the model defined in Fig. 1 where a CA running in the REE creates
one or more sessions to TAs in the TEE. This session establishes an effective Remote
Procedure Call (RPC) mechanism through which it is possible for the CA to invoke
commands in the TA. Via a well defined API a TA is able to provide its services while
also protecting itself from misuse. The first column in Table 1 summarizes the GP TEE
Core API internal TA interface.

To date GP is the forerunner in TEE standardization – numerous GP implementa-
tions are starting to emerge. Both TLK and OP-TEE provide some form of GP compli-
ance, though the exact extent of the compliance is unknown as the GP compliance test
suite is not readily available.

2.4 Open-TEE

In our previous work [9], while recognizing the efforts that have been undertaken to
address the issue of TEE compliance, we highlight other issues that hinder widespread
adoption of TEEs. Chief among them are the lack of access to debug-enabled versions
of existing TEEs and the difficulty of developing applications for the TEE.



“Software development kits for TEE application development are often propri-
etary or expensive. Debugging low-level TEE applications either requires ex-
pensive hardware debugging tools, or leaves the developer with only primitive
debugging techniques like “print tracing” (e.g., using printf statements in C to
keep track of how values of variables change during program execution).” [9]

This insight led to the development of Open-TEE, a virtual TEE that complies with
the GP standard and provides a fast and efficient prototyping platform for TAs / CAs.
Fig. 2 shows the Open-TEE architecture as a series of processes running on a develop-
ment machine, thus allowing developers to leverage the tools, e.g. editors and debug-
gers, that they are familiar with. The Manager process provides the TEE runtime with
services usually expected from the TEE OS. Unlike a proper TEE OS, which would
be self-contained and run on bare hardware, the implementation of Manager utilizes
APIs provided by the host OS, in this case POSIX and a small number of APIs specific
to Linux. The sole purpose of the Launcher process is to pre-load the shared library
implementing the TEE Core API and serve as a base process used to clone the actual
TA processes, which are subsequently reparented onto Manager. Each TA process is
divided into two separate threads; the I/O thread and TA logic thread. The I/O thread
facilitates communication with Manager, whereas the TA logic thread executes the TA
logic. Open-TEE is publicly available 3 under the permissive Apache-V2 license.

3 Mapping GlobalPlatform Interfaces to New TEE Architectures

Although not conventional TEE environments with their own OSs, TrustLite and SGX
provide the same security assurances i.e. integrity and confidentiality of both code and
data. They do not enforce the split world view that has become the de facto standard
for extensible TEEs. However, there are still a number of use cases where applying the
GP concepts and having access to a GP compliant implementation can be beneficial.
First and foremost is the question of portability – GP compliant applications should be
readily deployable in any compliant TEE. Second is the notion of a services framework
– there are many cases when a developer would like to use existing services provided
by a TEE, e.g. a keystore with key management and cryptographic routines, without the
need to reimplement these.

3.1 Realizing GP interfaces on TrustLite / TyTAN

In Section 2.1 we noted how the isolation model in TyTAN differs from the typical GP
model. Consequently, mapping the GP APIs to platforms such as TyTAN presents some
challenges:

Placement of TEE Core API implementation Typically, the TEE Core API and
support for CA-to-TA communication would be provided as services by the TEE OS.
In TrustLite and TyTAN the OS itself is excluded from the platform TCB; thus the TEE
Core API implementation needs to be provided in some other manner. An obvious al-
ternative would be to provide it purely in a library linked to each trusted task designated

3 http://open-tee.github.io/

http://open-tee.github.io/


Fig. 2. Open-TEE architecture [9] Fig. 3. GP architecture on TyTAN

as a GP-style TA. This has a number of drawbacks. First, due the lack of paging mem-
ory management and caching, this leads to suboptimal memory utilization as identical
functionality would be replicated in each TA. Second, the implementation of certain
APIs, such as trusted storage access would be greatly simplified by platform support
for centralized secure storage. Therefore TEE Core API functionality could either be
provided directly by the TyTAN TCB, or in a less invasive approach, by a separate se-
cure task, referred to as TEE Core task, separately protected by the EA-MPU. The TEE
Core API library linked to TAs can then invoke IPC calls to the TEE Core task, which
resolves such calls appropriately. The overall architecture is shown in the Fig. 3. In this
case, the challenge stems from the fact that the strong isolation provided by TrustLite
is not based on a completely separate environment, but on per-task isolation. Therefore,
there is no separate trusted OS part of the TCB as is the case in established TEEs.

Session access control The TEE Client API is used for communication between
normal and secure tasks. The TEE Core API also provides an Internal Client API, which
allows one TA to act as a client to another TA. With regards to TyTAN tasks, this can
be utilized for communication from one secure task to another. One challenge with this
mapping is the need to enforce access restrictions on the TEE Core task so that only
secure tasks are allowed to invoke TEE Core API functionality. In addition, the TEE
Client API provides session-based access to TAs. As noted in Section 2.1, TyTAN does
not provide any IPC access control by itself, but leaves this up to individual secure
tasks based on the hash digest of the sender as reported by the IPC primitives part
of the TyTAN TCB. One approach would be to implement sessions, TEE Core task
multiplexing and access control in each secure task individually. However, providing
this functionality as part of a proxy in the TyTAN TCB has the same advantages as
the centralized TEE Core placement which is an important consideration in the highly
resource constrained environments that TyTAN targets. The challenge here stems from
a large disparity in levels of IPC abstraction between TyTAN, and the GP specifications.

Identifiers One advantage of the TEE Client API compared to the secure IPC prim-
itives in TyTAN is a more robust addressing scheme. TyTAN uses the hash digest of the
intended receiver for secure IPC addressing. This creates a brittle binding between the
sender and receiver, where a software update in the receiver necessitates update of the
sender also to account for the new receiver digest. In scenarios involving communica-



tion between multiple tasks, the brittleness would cause a cascade of updates between
tasks with dependencies between each other, making selective code update impossible.
In contrast, TA addressing in the TEE Client API is based on Universally Unique IDen-
tifiers (UUIDs) assigned to TAs. However, as no centralized authority is required to
administer UUID assignments, it would be desirable to bind a UUID to a set of valid
task measurements, the verification of which may be delegated to the platform. The GP
standards does not address this issue directly, but leaves TA verification up to individual
implementations.

Other issues Apart from the Internal Client API, the TEE Core API provides the
TAs with internal programming interfaces for trusted storage, cryptographic operations,
time API, and an arithmetic API intended as building blocks for developers to imple-
ment further asymmetric cryptographic algorithms. For performance reasons, platforms
based on TrustLite may require additional cryptographic hardware accelerators to meet
operational requirements, hence full coverage of the TEE Core API is not only imprac-
tical, but also unnecessary for many intended use cases. Due to its nature, it is likely that
instantiations of TrustLite for different use cases will have varying degrees of hardware
support for aforementioned features, and it is unlikely that a one-size-fits-all solution
would be applicable for devices of this scale.

3.2 Realizing GP with SGX through Open-TEE

Open-TEE was conceived as a GP compliant tool for fast prototyping. However,
throughout its design, choices were made that would allow it to work as a fully func-
tional TEE environment when combined with the right hardware security mechanisms,
like SGX enclaves. An enclave is a ring-3 construct. As such code in an enclave cannot
make systems calls or other external interactions. Due to these restrictions, an enclave
must synchronize with the non-enclave part of the application to perform external tasks
on its behalf.

GP TEE Core API internal TA entry points SGX instructions and events
TA_CreateEntryPoint ECREATE, EINIT, EENTER, EEXIT
TA_DestroyEntryPoint EENTER, EEXIT
TA_OpenSessionEntryPoint EENTER, AEX, ERESUME, EEXIT
TA_CloseSessionEntry EENTER, AEX, ERESUME, EEXIT
TA_InvokeCommandEntryPoint EENTER, AEX, ERESUME, EEXIT

Table 1. Mapping TEE Core API internal TA entry points to SGX instructions

If we take a common usage scenario of a CA wishing to interact with a TA that
performs some operation involving access to secure storage, we can see how Open-
TEE’s architecture (Fig 2) can be mapped to SGX [6]. The choice to split the TA process
into two distinct threads, one handling I/O, and the other logic functionality facilitates
this mapping. The I/O thread is responsible for all communication with Manager and
CA. It is also responsible for all system interactions that may be required. The TA logic



thread is where the TA code, which can make use of the TEE Core API, is executed.
Manager provides secure storage functionality as a service to TA processes.

The CA initiates an open session call towards the TA. Manager noticing that the
TA is not running requests Launcher to create a TA process. At this point the TA is a
standard process and loads in accordance with the OS requirements. Once the TA is
created we must initialize the TA logic code which conforms to the GP standard [5]
by invoking TA_CreateEntryPoint(). As all of the GP conformant functionality
is implemented within the enclave it is at this point that the enclave must be created.
The TA hands over the enclave code along with any additional configuration data to the
enclave creation service running in supervisor mode. Once the enclave has been created
and initialized control is handed back to the TA application which enters the enclave to
finalize the TA initialization and establish the session to the CA.

Now that the session is established between the CA and the TA, the CA can in-
voke TA commands using TEEC_InvokeCommand(). Imagine that the CA wishes
to provision some data to the secure storage. It invokes the corresponding TA command
when the TA logic thread wants to access the secure storage. This requires a read or
write operation to the storage media, which is a system call and is thus prohibited by
SGX. In this case the Open-TEE implementation of the TEE Core secure storage API
initiates an interrupt towards the I/O thread causing an AEX event which stores the en-
clave state and control is passed back to the I/O thread. The I/O thread then invokes the
Manager to read/write encrypted data from/to persistent storage. When this action has
been completed the TA can resume execution in the TA logic thread. When the invoked
task is complete the enclave can be exited thereby returning control to the I/O thread
which can then respond to the CA on the status of the invoked command. Other system
services needed in the TEE Core API such as time functionality can be handled in a
similar fashion. Table 1 summarizes the mapping of TEE Core API internal TA entry
points to SGX instructions and events.

4 Conclusion

The GP TEE interfaces were designed to support split-world-based TEEs. We have
shown that, even though potentially beneficial for easing the adoption of new, emerging
TEE environments, mapping existing GP interfaces to them has a number of challenges.
In ongoing work we are implementing the GP TEE Client API, and a subset of the
TEE Core API on TyTAN. We are also exploring practical subsets of the TEE Core
API applicable to different use cases. In future work we plan to investigate possible
extensions to the TEE Core API relevant for small scale devices as well as realize
Open-TEE on SGX.
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