
ar
X

iv
:1

60
2.

01
53

7v
2

 [
cs

.D
B

]
 5

 D
ec

 2
01

6

A

TopCom: Index for Shortest Distance Query in Directed Graph

VACHIK S. DAVE, Indiana University Purdue University, Indianapolis

MOHAMMAD AL HASAN, Indiana University Purdue University, Indianapolis

Finding shortest distance between two vertices in a graph is an important problem due to its numerous ap-
plications in diverse domains, including geo-spatial databases, social network analysis, and information re-
trieval. Classical algorithms (such as, Dijkstra) solve this problem in polynomial time, but these algorithms
cannot provide real-time response for a large number of bursty queries on a large graph. So, indexing based
solutions that pre-process the graph for efficiently answering (exactly or approximately) a large number of
distance queries in real-time is becoming increasingly popular. Existing solutions have varying performance
in terms of index size, index building time, query time, and accuracy. In this work, we propose TOPCOM,
a novel indexing-based solution for exactly answering distance queries. Our experiments with two of the
existing state-of-the-art methods (IS-Label and TreeMap) show the superiority of TOPCOM over these two
methods considering scalability and query time. Besides, indexing of TOPCOM exploits the DAG (directed
acyclic graph) structure in the graph, which makes it significantly faster than the existing methods if the
SCCs (strongly connected component) of the input graph are relatively small.

CCS Concepts: •Information systems → Information retrieval query processing; Data structures;

Information storage systems;

General Terms: Graph Algorithms, Performance

Additional Key Words and Phrases: Shortest Distance Query, Indexing method for Distance Query, Directed
Acyclic Graph

1. INTRODUCTION

Finding shortest distance between two nodes in a graph (distance query) is one of
the most useful operations in graph analysis. Besides the application that stands
for its literal meaning, i.e. finding the shortest distance between two places in a
road network, this operation is useful in many other applications in social and in-
formation networks. For instance, in social networks, the shortest path distance is
used in the calculation of different centrality metrics, including closeness central-
ity and betweenness centrality [Okamoto et al. 2008; Erdem Sariyuce et al. 2013]. It
is also used as a criterion for finding highly influential nodes [Kempe et al. 2003],
and for detecting communities in a network [Backstrom et al. 2006]. Scientists have
also used shortest path distance to generate features for predicting future links
in a network [Hasan and Zaki 2011]. In information networks, shortest path dis-
tance is used for keyword search [Kargar and An 2011], and also for relevance rank-
ing [Ukkonen et al. 2008].

Due to the importance of the shortest path distance problem, researchers have been
studying this problem from the ancient time, and several classical algorithms (Dijk-
stra, Bellman-Ford, Floyd-Warshall) exist for this problem, which run in polynomial
time over the number of vertices and the number of edges of the network. However, as
real-life graphs grow in the order of thousands or millions of vertices, classical algo-
rithms deem inefficient for providing real-time answers for a large number of distance
queries on such graphs. For example, for a graph of a few thousand vertices, a con-
temporary desktop computer takes an order of seconds to answer a single query, so
thousands of queries take tens of minutes, which is not acceptable for many real-time
applications. So, there is a growing interest for the discovery of more efficient methods
for solving this task.

Author’s addresses: V. S. Dave, Computer & Information Science Department, Indian University Purdue
University, Indianapolis; M. Al Hasan, Computer & Information Science Department, Indian University
Purdue University, Indianapolis.

, Vol. V, No. N, Article A, Publication date: January YYYY.

http://arxiv.org/abs/1602.01537v2

A:2 V. S. Dave et al.

Various approaches are considered for obtaining an efficient distance query method
for large graphs. One of them is to exploit topological properties of real-life networks
that adhere to some specific characteristics. For instance, many researchers exploit the
spatial and planar properties of road networks [Tao et al. 2011; Abraham et al. 2011;
Yan et al. 2013] to obtain efficient solutions for distance queries in road networks.
However, for a general network from any other domain, such methods perform
poorly [Abraham et al. 2012]. The second approach is to perform pre-processing on
the host graph and build an index data structure which can be used at runtime to
answer the distance query between an arbitrary pair of nodes more efficiently. Sev-
eral indexing ideas are used, but two are the most common, landmark-based index-
ing [Tretyakov et al. 2011; Qiao et al. 2014; Potamias et al. 2009; Akiba et al. 2013]
and 2-hop-cover indexing [Cohen et al. 2002]. Methods adopting the former idea iden-
tify a set of landmark nodes and pre-compute all-single source shortest paths from
these landmark nodes. During query time, distances between a pair of arbitrary nodes
are answered from their distances to their respective closest landmark nodes. Most
of these methods deliver an approximation of shortest path distance except a method
presented in [Akiba et al. 2013]. Methods adopting the two-hop cover indexing gen-
erally find the exact solution for a distance query [Jin et al. 2012b; Jiang et al. 2014;
Fu et al. 2013]. These methods store a collection of hops (paths starting from that
node), such that the shortest path between a pair of arbitrary vertices can be obtained
from the intersection of the hops of those vertices.

A related work to the shortest path problem is the reachability problem. Given a di-
rected graph G(V,E), and a pair of vertices u and v, the reachability problem answers
whether a path exists from u to v. This problem can be solved in O(|V |+ |E|) time using
graph traversal, where V is the set of vertices and E is the set of edges. However, us-
ing a reachability index, a better runtime can be obtained in practice. All the existing
solutions [Yildirim et al. 2012; Zhu et al. 2014] of the reachability problem solve it for
a directed acyclic graph (DAG). This is due to the fact that any directed graph can be
converted to a DAG such that a DAG node is a strongly connected component (SCC) of
the original graph; since any nodes in an SCC is reachable to each other, the reachabil-
ity solution in the DAG easily answers a reachability query in the original graph. The
indexing idea that we propose in this work also exploits the SCC, but unlike existing
works we solve the distance query problem instead of reachability.

In this work, we propose TOPCOM 1, an indexing based method for obtaining ex-
act solution of a distance query in an arbitrary directed graph. In principle, TOPCOM

uses a 2-hop-cover solution, but its indexing is different from other existing index-
ing methods. Specifically, the basic indexing scheme of TOPCOM is designed for a
DAG and it is inspired from the indexing solution of the reachability queries proposed
in [Cheng et al. 2013]. Due to its design, TOPCOM exhibits a very attractive perfor-
mance for a DAG or general graph in which SCCs are relatively small. However, we
also extend the basic indexing scheme so that it also solves the distance query for an
arbitrary directed graph. We show experiment results that validate TOPCOM’s supe-
rior performance over IS-Label [Fu et al. 2013] and TreeMap [Xiang 2014] which are
two of the fastest known indexing based shortest path methods in the recent years. Fol-
lowing other recent works, we also compare our method with bi-directional Dijkstra,
which is a well-accepted baseline method for distance query solutions in a directed
graph. Note that, this journal article is an extended version of a published conference
article [Dave and Hasan 2015]; the conference article works for DAG only, but this
work solves distance query indexing for arbitrary directed graphs.

1TOPCOM stands for Topological Compression which is the fundamental operation that is used to create
the index data structure of this method.

, Vol. V, No. N, Article A, Publication date: January YYYY.

TopCom A:3

2. RELATED WORKS

Shortest distance on a graph has many interesting recent and earlier works. In the
section we discuss the most important works among these under two categories: (1)
Online shortest distance calculation, (2) Offline (Index based) shortest distance calcu-
lation.

2.1. Online shortest distance calculation:

For unweighted graph, the simplest online method to find shortest distance is Breadth
First Search (BFS) with time complexity O(|V | + |E|), where V is number of vertices
and E is number of edges of the graph. For weighted graph, most well-known single
source shortest distance algorithm is Dijkstra’s algorithm, which computes shortest
distance for weighted graph with positive weights. Using a binary heap based priority
queue, the complexity of Dijkstra’s algorithm is O(|E| lg |V |) and the same using a
Fibonacci heap is O(|E| + |V | lg |V |). Another well known algorithm for single source
shortest path is the Bellman-Ford algorithm [Bellman 1958; Cormen et al. 2001] with
time complexity O(|V | · |E|), which is generally slow for large graphs with millions of
nodes and edges.

There are methods proposed by different researchers to improve the above classical
shortest distance methods [Bauer et al. 2010; Wagner and Willhalm 2007]. Although,
they do not improve the worst case complexity of the shortest path algorithm, they do
exhibit good average-case behavior. The most popular among these methods is Bidirec-
tional Dijkstra [Sint and de Champeaux 1977], which is particularly applicable when
the objective is to obtain the shortest distance between a pair of vertices. The com-
putational complexity of bidirectional search can be denoted as O(bd/2), where b is the
branching factor and d is the distance from start node to target node. Real life networks
have small value of d (typically smaller than 10)—a fact that makes this algorithm an
attractive choice for many applications. In this work, bidirectional Dijkstra is one of
the methods with which we compare our proposed solution.

2.2. Offline (Index based) shortest distance calculation:

For large graphs, online methods are slower than an indexing based method, so most
of the recent research efforts are concentrated towards indexing based methods. The
literature for shortest distance indexing is quite vast, so, we review few of the works
that have published in the recent years. For a detailed review, we refer the readers to
read [Zwick 2001; Sommer 2014].

Many of the existing works for shortest distance computation is specifi-
cally designed for the road networks [Yan et al. 2013; Rice and Tsotras 2010;
Tao et al. 2011; Zhu et al. 2013a; Abraham et al. 2011; Geisberger et al. 2008;
Sanders and Schultes 2005; Jung and Pramanik 2002]. Such networks show hier-
archical structures with the presence of junctions, hubs, and highways; the shortest
distance computation methods for these networks exploit the hierarchical structure for
compressing distance matrix or for building distance indices [Rice and Tsotras 2010;
Geisberger et al. 2008]. For example, Sanders et al. [Sanders and Schultes 2005]
use highway hierarchy and design an exact shortest distance computation method
that runs faster than a method that does not use the hierarchy structure. Zhu et
al. [Zhu et al. 2013a] design a hierarchy based indexing and prove that the results
on real-life graphs is close to the theoretical complexity of the proposed method.
Jung et al. [Jung and Pramanik 2002] design an efficient shortest path computa-
tion method for hierarchically structured topographical road maps. Abraham et
al. [Abraham et al. 2011] have proposed an efficient hub-based labeling (HL) method
to answer shortest path distance query on road networks. Tao et al. [Tao et al. 2011]

, Vol. V, No. N, Article A, Publication date: January YYYY.

A:4 V. S. Dave et al.

explore the spatial property and find k-skip graph which can answer k-skip shortest
path i.e. path created from the original shortest path by skipping at-most k con-
secutive nodes. Recently Yan et al. [Yan et al. 2013] propose a method to find the
distance preserving sub-graphs to answer a shortest distance query more efficiently.
However, most of the indexing schemes for the road networks are based on some
specific property of the road networks and they are ineffective for general graphs that
do not satisfy those properties of road networks [Abraham et al. 2012].

Finding exact shortest distance in a large graph is a costly task, hence few
researchers have proposed methods for computing estimated shortest distance
[Tretyakov et al. 2011; Gubichev et al. 2010; Qiao et al. 2014; Potamias et al. 2009].
The most common among the estimated shortest distance based methods is the land-
mark based method, which selects a set of landmark nodes based on some criteria
and finds shortest paths that must go through those landmark nodes. The main task
here is to decide the set of vertices that are optimal choice as landmarks. However, it
has been shown that this optimization problem is NP-Hard [Potamias et al. 2009],
so researchers adopt various heuristics based approaches for choosing those land-
marks. Potamias et al. [Potamias et al. 2009] compare centrality and degree based
approaches for selecting landmarks. Gubichev et al. [Gubichev et al. 2010] propose
a sketch based indexing method for estimating answer of a shortest distance query.
Treyakov et al. [Tretyakov et al. 2011] propose a landmark based fully dynamic ap-
proximation method using shortest path tree and also obtain an improved set of ver-
tices as landmark; they show that their method has less approximation error than
other landmark based approaches. Qiao et al. [Qiao et al. 2014] propose a query based
local landmark method which selects landmark nodes that are local to the query in the
sense that the obtained shortest path is the closest to the real shortest path as much
as possible; this method also improves the estimation accuracy. Our proposed indexing
method, TOPCOM, is not comparable to these methods, because unlike these methods,
our method provides exact shortest path distance.

There are some other works for finding shortest distance in large
graphs which are proposed very recently; examples include [Fu et al. 2013;
Zhu et al. 2013b; Jin et al. 2012b; Cheng and Yu 2009; Abraham et al. 2012;
Xiang 2014; Akiba et al. 2013; Gao et al. 2011; Wei 2010; Cheng et al. 2012]. Many of
these have unique ideas, so it is difficult to categorize them under a generic shortest
path method. For example, Gao et al. [Gao et al. 2011] use a relational approach and
propose an index called SegTable which stores local segments of a shortest distance.
Zhu at al. [Zhu et al. 2013b] propose a method to answer single source shortest
distance query for a huge graph on disk. Akiba et al. [Akiba et al. 2013] 2 propose
a unique pruning method based on degree of a vertex, which can efficiently reduce
the search space of BFS. Highway centric label (HCL) [Jin et al. 2012b] is one of the
fastest recent methods that is proposed for a shortest distance query on both directed
and undirected graphs. In a follow-up work, Xiang proposes TreeMap [Xiang 2014],
a tree decomposition based approach for solving distance query exactly; the author
compares TreeMap’s solution with those of HCL to show that the former has better
performance. Another recent method is called IS-Label which is proposed by Fu et
al. [Fu et al. 2013]. They have also shown that that IS-Label has superior performance
than HCL. In this work, we compare TOPCOM with both IS-Label and TreeMap,
which are among the best of the existing index based methods.

Our proposed method exploits conversion of a directed graph into a directed
acyclic graph (DAG) by collapsing strongly connected components (SCCs) into a ver-

2This work cannot be compared with TOPCOM, because the authors were unable to provide code that can
answer shortest distance query in directed graphs.

, Vol. V, No. N, Article A, Publication date: January YYYY.

TopCom A:5

Edge distance

(d, h′) 2
(e, k) 2
(e, l) 2
(f, l) 2
(f,m) 2
(g, l) 2
(g,m) 2
(k, p) 2
(l, p) 2
(l, q) 2

Fig. 1: Pre-processing of DAG before Compression: (a) Original DAG G and (b) Modi-
fied DAG Gm. The dummy edges data structure (DummyEdges) associated with this
modified DAG is shown to the right.

tex. It is a widely used approach for solving reachability query task in a di-
rected graph [Cheng et al. 2013; Jin et al. 2009; Yildirim et al. 2012; Jin et al. 2008;
Jin et al. 2012a; Cheng and Yu 2009]. Any two nodes in an SCC are reachable from
each other, hence for a directed graph the reachability query between two nodes can
be answered through the reachability answer between their corresponding DAG nodes.
However, note that, a reachability query is easier than a distance query, because the
latter provides distance value as answer, which is relatively harder as the graph can be
weighted. Specifically, for online (non-indexing) solution, reachability has a complexity
of O(|V |+|E|), and shortest distance query for weighted graph has a higher complexity,
O(|E| lg |V |). Authors in [Cheng et al. 2013] uses topological folding of DAG for answer-
ing reachability query. Our proposed method TOPCOM also uses topological folding
property of DAG to compress the DAG level-wise, but unlike the above work, our work
answers distance queries on weighted graph. Cheng et al. [Cheng and Yu 2009] is an-
other existing work which also proposes a DAG based approach for answering distance
queries by finding distance aware 2-HOP cover.

Note that, one of the known limitations of indexing based methods is that they re-
quire more memory, but this is not a concern for TOPCOM with today’s commodity
machine having main memory in multiples of 2 GB.

3. METHOD

In this section, we discuss the shortest distance indexing of TOPCOM for a DAG. In
subsequent section, we will show how this can be adapted for a general directed graph.

3.1. Topological compression

The main idea of TOPCOM is based on topological compression of DAG, which is per-
formed during the index building step. During the compression, additional distance
information is preserved in a data structure which TOPCOM uses for answering a dis-

, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6 V. S. Dave et al.

tance query efficiently. For the sake of simplicity, in subsequent discussion we assume
that the given graph is unweighted for which the weight of each edge is 1 and the
distance between two vertices is the minimum hop count between them. We will dis-
cuss the necessary adaptations that are needed for a weighted graph at the end of this
section.
Topological Level: Given a DAG G, we use V (G) and E(G) to represent set of vertices
and edges of G, respectively. The topological level of any vertex v ∈ V (G), defined as
topo(v), is 1 if v has no incoming edge, otherwise it is at least one higher than the
topological level of any of v’s parents. Mathematically,

topo(v) =

{

max
(u,v)∈E(G)

topo(u) + 1, if v has incoming edges

1, otherwise

For a vertex v, if topo(v) is even, we call v an even-topology vertex, otherwise v is
an odd-topology vertex. An edge, e = (u, v) ∈ E(G), is a single-level edge if topo(v) −
topo(u) = 1, otherwise it is a multi-level edge. For a DAG G, its topological level is the
largest value of topo(v) over the vertices in G, i.e.:

topo(G) = max
v∈V (G)

topo(v)

Example: Consider the DAG G in Figure 1(a). Topological level of vertices, a, b, and
c is 1, as the vertices have no incoming edge. The topological level of vertex l is 4, as
one of the predecessor node of l is i, which has a topological level value of 3. Topo(G)
is equal to 7, because 7 is the largest topological level value for one of the vertices in
G.

Topological compression of a DAG is performed iteratively, such that the compressed
output of one iteration is the input of subsequent iteration. For an input DAG G,
one iteration of topological compression removes all odd-topology vertices from G
along with the edges that are incident to the removed vertices. All single-level edges
are thus removed, as one of the adjacent vertices of these edges is an odd-topology
vertex. A multi-level edge is also removed if at least one of the endpoints of the edge
is an odd-topology vertex. As a result of this compression, the topological level of G
reduces by half. For the purpose of shortest distance index building, starting from
G = G0, we apply this compression process iteratively to generate a sequence of
DAGs G1, G2, · · · , Gt such that the topological level number of each successive DAG
is half of that of the previous DAG, and the topological level number of the final
DAG in this sequence is 1; i.e., topo(Gi+1) = ⌊topo(Gi)/2⌋, and topo(Gt) = 1, where
t = ⌊log2 topo(G)⌋.

Example: Consider the same DAG G = G0 in Figure 1(a). Its topological compression
in the first iteration, G1 is shown in Figure 2(a), and in the second iteration, G2 is
shown in Figure 2(c). G2 is the last compression state of G0, as topological level of
G2 is 1. Note that, in G1, all odd-topology vertices of G0, such as, a, b, c, h, i, j, etc.
are removed. All single-level edges of G0, such as, (e, i), (k, n), (p, s), etc. are removed.
Multi-level edges, such as, (b, l) and (m, s) are also removed. However, there are newly
added vertices in G1, such as b′, h′, r1, and s1, along with newly added edges, such as,
(b′, l) and (e, r1). More discussion about these additional vertices and edges are given
in the following paragraphs.

Each iteration of topological compression of a DAG causes loss of information re-
garding the connectivity among the vertices; for correctly answering distance queries
TOPCOM needs to preserve the connectivity information as the input DAG is being
compressed. The preservation process gives rise to additional vertices and edges in G1,

, Vol. V, No. N, Article A, Publication date: January YYYY.

TopCom A:7

which we have seen in the above example. The connectivity preservation process is
discussed in detail below.

The most common information loss is caused by the removal of single-level edges.
However, such edges are also easily recoverable from the lastly compressed graph in
which the edges were present before their removal. So, TOPCOM does not perform
any action for explicit preservation of single-level edges. To preserve the information
that is lost due to the removal of multi-level edges, TOPCOM inserts additional even-
topology vertices, together with additional edges between the even-topology vertices to
prepare the DAG for the compression. The insertion of additional vertices and edges for
preserving the information of a removed DAG multi-level edge e = (u, v) is discussed
below along with an example given in Figure 1. In this figure, the topological levels
are mentioned in rectangular boxes. On the left side we show the original graph, and
on the right side we show the modified graph which preserves information that is lost
due to compression.

There are four possible cases for an edges (u, v) that is being removed due to topo-
logical compression.
Case 1: (topo(u) is odd and topo(v) is even). Compression removes the vertex u, so
we add a fictitious vertex u′ such that topo(u′) = topo(u) + 1. Then we remove the
multi-level edge (u, v) and replace it with with two edges (u, u′) and (u′, v). Since
topological level number of both u′ and v are even, the topological compression does not
delete the edge (u′, v). For example, consider the multi-level edge (b, l) in figure 1(a),
topo(b) = 1 (odd), and topo(l) = 4 (even). In the modified graph Figure 1(b) this edge is
replaced by two edges (b, b′) and (b′, l), where b′ is the fictitious node.

Case 2: (topo(u) is even and topo(v) is odd). This case is symmetric to Case 1 as
compression removes v instead of u. We use a similar approach like Case 1 to handle
this case. We create v1, a copy of the vertex v such that topo(v1) = topo(v) − 1 and
replace the multi-level edge (u, v) with two edges (u, v1) and (v1, v). To distinguish
the vertices added in these two cases, the newly added vertex is called fictitious for
Case 1, and it is called copied for Case 2. The justification of such naming will be
clarified in latter part of the text. Example of Case 2 in Figure 1(a) is edge (m, s),
where topo(m) = 4 (even) and topo(s) = 7 (odd). In modified graph, we add copied node
s1 and replace the original edge with two edges shown in Figure 1(b).

Case 3: (topo(u) is odd and topo(v) is odd). In this case we use the combination of above
two methods and add two new vertices u′ and v1. We set topological level numbering
of new vertices as mentioned above. Also we replace multi level edge (u, v) with three
different edges (u, u′) , (u′, v1), and (v1, v). Multi level edge (h, r) in Figure 1(a) is an
example of this case. As shown in Figure 1(b), we add two new vertices h′ and r1 and
three new edges, (h, h′), (h′, r1), and (r1, r) after deleting the original edge (h, r). Note
that, if topo(u) = topo(v) − 2, topo(u′) = topo(v1). In this case, we treat it as Case 1 by
adding only u′ (but not v1) and following the Case 1. It generates a single-level edge
(u′, v), which we do not need to handle explicitly.

Case 4: (topo(u) is even and topo(v) is even). This is the easiest case as both u and
v are not removed by the compression process and we do not make any change in
the graph. Also note that the changes in the above three cases convert those cases
into this Case 4. For example, applying Case 1 for edge (b, l) in Figure 1 creates new
multi-edge (b′, l) which is an occurrence of Case 4. Similarly Case 2 creates the Case 4
multi-edge (m, s1). �

, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8 V. S. Dave et al.

Fig. 2: (a) 1-Compressed Graph G1, (b) Modified 1-compressed Graph G1
m, (c) 2-

Compressed Graph G2

Dummy edges data structure: We described earlier, we do not need to handle single-
level edges separately. However if two continuous single-level edges are removed, we
still need to maintain the logical connection between the even-topology vertices. For
example, in Figure 1(a) edges (e, i), (i, k), and (i, l) are single-level edges which will
be deleted after the first compression iteration because topo(i) = 3. Now, information
of logical (indirect) connection between e to k and l needs to be maintained, because
all three vertices will exist after the compression. To handle this, we add new dummy
edges (e, k) and (e, l); dummy edges are shown as dotted lines in Figure 1(b). Note that,
for any dummy edge (u, v), topo(v) − topo(u) = 2 in the current DAG and the edges for
which the node-topology difference is higher than 2 are handled by the above 4 multi-
level edge cases. For same start and end nodes, if there are multiple dummy edges,
TOPCOM considers edge with the smallest distance. To find the dummy edges, we scan
through all odd-topology vertices and find their single-level incoming and outgoing
edges. We store all these dummy edges along with the corresponding distance value
in a list called DummyEdges as shown in Figure 1, which we use during the index
generation step. For example dummy edge (d, h′) has a distance 2 in the Figure 1, then
[(d, h′), 2] is stored in DummyEdges.

At each compression iteration, we first obtain a modified graph, with fictitious ver-
tices, copied vertices, and dummy edges and then apply compression to obtain the
compressed graph of the subsequent iteration. The fictitious vertices, copied vertices,
and dummy edges of the modified graph in earlier iteration become regular vertices
and edges of the compressed graph in subsequent iteration. The above modification
and compression proceeds iteratively until we reach t-compressed graph, Gt, for which
the topological level number is 1. We use Gm to denote the modified uncompressed
graph, G1

m to denote the modified 1-compressed graph, G2
m to denote the modified 2-

compressed graph and so on. For example, Figure 2(a) shows G1 which is obtained by
compressing the modified graph Gm in Figure 1(b). Figure 2(b) shows G1

m, the modified
1-compressed graph, and Figure 2(c) shows G2, the 2-compressed graph. We refer the
set of all modified compressed graphs as G∗

m, i.e. { Gt
m, ..., G2

m, G1
m }.

3.2. Index generation

TOPCOM’s index data structure is represented as a table of key-value pairs. For each
key, (vertex) v of the input graph, the value contains two lists: (i) outgoing index value

, Vol. V, No. N, Article A, Publication date: January YYYY.

TopCom A:9

Ioutv , which stores shortest distances from v to a set of vertices reachable from v; and
(ii) incoming index value Iinv , which stores shortest distances between v and a set of ver-
tices that can reach v. Both the lists contain a collection of tuples, 〈vertex id, distance〉,
where vertex id is the id of a vertex other than v, and distance is the corresponding
shortest path distance between v and that vertex.

Algorithm 1 Outgoing Index value Generation

Input: G∗

m (set of modified graphs), DummyEdges (set of dummy edges and corre-
sponding distance)

Output: Iout
∗

(set of out going indexes for all nodes)

1: for all Gcurr
m ∈ {G

topo(G)
m , ..., G1

m, Gm} do
2: O = {u ∈ V (Gcurr

m)|topo(u) = odd number}
3: for all v ∈ O do
4: org v = GETORIGINAL(v)
5: for all (v, w) ∈ E(Gcurr

m) do
6: org w = GETORIGINAL(w)
7: if org v == org w then
8: Continue
9: end if

10: if (v, w) == Dummy Edge then
11: distance = GETDUMMYDISTANCE(DummyEdges, v, w)
12: end if
13: if w == fictitious vertex then
14: distance = distance - 1
15: end if
16: RECURSIVEINSERT(Ioutorg v, org w, distance, out)
17: end for
18: end for
19: end for

At the beginning of the indexing step, for each vertex v, TOPCOM initializes Ioutv and
Iinv with an empty set. It generates index from Gt

m and repeats the process in reverse
order of graph compression i.e. from graph Gt

m to Gm. In i’th iteration of index build-
ing, it uses Gt−i

m and inserts a set of tuples in Ioutv and Iinv , only if v is an odd-topology
vertex in Gt−i

m . Thus, during the first iteration, for every odd-topology vertex v of Gt−1
m ,

for an incoming edge (u, v) TOPCOM first checks whether (u, v) is in DummyEdges data
structure, if so, it inserts 〈u, d〉 in Iinv , where the distance d value is obtained from the
DummyEdges data structure. Otherwise, it inserts 〈u, 1〉 in Iinv . Similarly, for an out-
going edge (v, w) TOPCOM inserts 〈w, d〉 in Ioutv , if (v, w) is in DummyEdges, otherwise
it inserts 〈w, 1〉 in Ioutv . TOPCOM also inserts (Line 16 in Algorithm 1) elements of Iinu
and Ioutw into Iinv and Ioutv , respectively, using recursive calls.

Algorithm 1 shows the pseudo-code of the index generation procedure for outgoing
index values only. An identical piece of code can be used for generating incoming index
values also, but for that we need to exchange the roles of fictitious and copied vertex,
and change the Iout

∗
with Iin

∗
in Line 5-21 (more discussion on this is forthcoming).

As shown in Line 2 of Algorithm 1, TOPCOM first collects all odd-topology vertices in
variable O and builds out-indexes for each of these vertices using outgoing edges from
these vertices (the edge (v, w) in Line 5 of Algorithm 1). Note that, vertices v and w in
Gcurr

m can be fictitious or copied vertex; TOPCOM uses the subroutine GETORIGINAL()

, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10 V. S. Dave et al.

Table I: Intermediate index generated from the DAG in Figure 2(b)

key Out Index value key In Index value

b {〈l, 1〉} p {〈k, 2〉, 〈l, 2〉}
d {〈h, 1〉} q {〈m, 1〉, 〈l, 2〉}
e {〈k, 2〉, 〈l, 2〉} r {〈h, 1〉, 〈e, 1〉}
f {〈l, 2〉, 〈m, 2〉} s {〈m, 1〉}
g {〈l, 2〉, 〈m, 2〉}

which returns original vertex corresponding to any fictitious or copied vertex, if neces-
sary (Line 4 and 6). Using the data structure DummyEdges (discussed in section 3.1),
it first checks whether the edge (v, w) is a dummy edge (Line 10); if so, it obtains the
actual distance from the data structure. In case the end-vertex w is a fictitious vertex,
TOPCOM decrements the distance value by 1 (Line 14), because for each fictitious ver-
tex, an extra edge with distance 1 is added from the original vertex to the fictitious
vertex which has increased the distance value by one. For instance, in the graph in
Figure 1, the actual distance from a to h is 2, but the fictitious vertex h′ records the
distance to be 3, which should be corrected. On the other hand, if w is a copied vertex,
TOPCOM does not make this subtraction, because when a copied vertex is used as des-
tination instead of the original vertex, the distance between the source vertex and the
copied vertex correctly reflects the actual distance. For an example, in the same graph,
the distance between e and r is 1; when we use the copied vertex r1 instead of r, dis-
tance between e and r1 is recorded as 1, which is the correct distance between e and r;
so no distance correction is needed during the out index building when the destination
vertex is a copied vertex. This is the reason why we make a distinction between the
fictitious vertices and the copied vertices.

Finallly note that, after generating indexes for each vertex there may be multiple
entries for some vertices; from these multiple entries we need to get the smallest value
(entry) and remove others. For building incoming index values, TOPCOM subtracts 1
for a copied vertex, but does not subtract 1 for a fictitious vertex, as the roles of start
and end vertices flip for the incoming index values. Below, we give a complete index
building example using the vertex a of the graph in Figure 1.

Example: We want to find the outgoing index (value) for vertex a (key) of the graph G
in Figure 1(a). topo(G) = 2, so we start building index using the graph G1

m, which is
shown in Figure 2(b). In the first iteration, TOPCOM builds Ioutd = {〈h, 1〉}; the distance
value of 1 comes as follows: TOPCOM uses distance of dummy edge (d, h′) that is 2
(Figure 1-II) and then it replaces the fictitious vertex h′ with h and obtains a distance
of 1 by subtracting 1 from 2 (Line 14). It also inserts the following entries under the
key e; i.e., Ioute = {〈k, 2〉, 〈l, 2〉}. The resulting indexes after this iteration is presented
in Table I; incoming index values for keys b, d, e, f, g are empty (not presented in the
table) and similarly outgoing index values for keys p, q, r, s are empty. For next iteration
considering Gm, TOPCOM inserts 〈d, 1〉 in Iouta ; using recursive calls of algorithm 2
(Line 11), this function also inserts 〈h, 2〉 in Iouta , recursion stops at h because Iouth is
empty (Line 6). Similarly, 〈e, 1〉 and 〈k, 3〉, 〈l, 3〉 are inserted in Iouta recursively from
Ioute . At the end of the algorithm 1 we remove duplicate entries from indexes. For
example, incoming index for key s has two entries for vertex m, 〈m, 1〉 and 〈m, 2〉, one
corresponding to edge (m, s1) in G1

m and the other is a recursive result from q to s in
Gm. TOPCOM considers 〈m, 1〉 and discards the other entry from Iins . For the graph in
Figure 1(a), corresponding indexes are presented in Table II.

, Vol. V, No. N, Article A, Publication date: January YYYY.

TopCom A:11

Table II: Index for the DAG in Figure 1

key Out Index value In Index value

a {〈d, 1〉, 〈e, 1〉, 〈h, 2〉, 〈k, 3〉, 〈l, 3〉} ∅
b {〈l, 1〉, 〈f, 1〉, 〈m, 3〉} ∅
c {〈f, 1〉, 〈g, 1〉, 〈l, 3〉, 〈m, 3〉} ∅
d {〈h, 1〉} ∅
e {〈k, 2〉, 〈l, 2〉} ∅
f {〈l, 2〉, 〈m, 2〉} ∅
g {〈l, 2〉, 〈m, 2〉} ∅
h ∅ {〈d, 1〉}
i {〈k, 1〉, 〈l, 1〉} {〈e, 1〉}
j {〈l, 1〉, 〈m, 1〉} {〈f, 1〉, 〈g, 1〉}
n {〈p, 1〉} {〈k, 1〉}
o {〈p, 1〉} {〈l, 1〉}
p ∅ {〈k, 2〉, 〈l, 2〉}
q ∅ {〈m, 1〉, 〈l, 2〉}
r ∅ {〈h, 1〉, 〈e, 1), 〈p, 1〉, 〈k, 3〉, 〈l, 3〉}
s ∅ {〈m, 1〉, 〈p, 1〉, 〈k, 3〉, 〈l, 3〉, 〈q, 1〉}

Algorithm 2 RECURSIVEINSERT(Iiov , a, distance, in or out)

1: if in or out == in then
2: Iioa = Iina
3: else
4: Iioa = Iouta
5: end if
6: if Iioa == ∅ then
7: add tuple(Iiov , a, distance)
8: else
9: add tuple(Iiov , a, distance)

10: for all (x, dist) ∈ Iioa do
11: RECURSIVEINSERT(Iiov , x, distance + dist, in or out)
12: end for
13: end if

3.3. Index for weighted graph

For weighted graph, TOPCOM makes some minor changes in the above algorithm.
First, distance values are stored both in the indexes and in the DummyEdge data
structure. Many of these distances are implicitly 1 for unweighted graph, which is not
true for weighted graph, so, for the latter TOPCOM stores the distance explicitly. Also,
it ensures that the distance value between fictitious (or copied) vertices and an original
vertex is one, so that the Algorithm 1 works as it is.

3.4. Query processing

For query processing, TOPCOM uses the distance indexes that is built during the
indexing stage. For a given distance query from u to v, i.e. to compute δ(u, v), TOPCOM

intersects outgoing index value of key u i.e. Ioutu and incoming index value of key v
i.e. Iinv and finds common vertex id in Ioutu and Iinv , along with the distance values. To
cover the cases, when v is in the outgoing index value of u, or u is in the incoming
index value of v, the tuples 〈u, 0〉 and 〈v, 0〉 are also added in Ioutu and Iinv respectively

, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12 V. S. Dave et al.

and then the intersection set of the indexes is found. If the intersection set size is 0,
there is no path from u to v and hence the distance is infinity. Otherwise, the distance
is simply the sum of the distances from u to vertex id and vertex id to v. If multiple
paths exist, we take the one that has the smallest distance value.

Example: We want to find δ(a, s) in Figure 1. From table II, Iouta ∩ Iins = {k, l}. Now,
we need to sum up the corresponding distance values, that gives {〈k, 6〉, 〈l, 6〉}. Now we
need to find smallest distance value; in this case both the values are same, hence we
can provide any one as a result.

3.5. Theoretical proofs for correctness

In this section, we prove the correctness of TOPCOM, through the claim that TOP-
COM’s index is based on 2-hop covers of the shortest distance in a graph and method
described in Section 3.4 gives correct shortest distance value. For shortest path, such
a cover is a collection S of shortest paths such that for every two vertices u and v,
there is a shortest path from u to v that is a concatenation of atmost two paths from
S. [Cohen et al. 2002]. That is, shortest path from u to v is stored in S or there is an
intermediate node x such that shortest paths from u to x and from x to v are stored
in S. For TOPCOM’s index also, the shortest distance from any node u to node v is the
2-hop cover such that the index itself has shortest distance value from u to v or there
is an intermediate node x which would be present in both Ioutu and Iinv .

Example: In DAG G in Figure 1(a) to find distance from a to s, we need to check the
outgoing index value for vertex a and the incoming index value for vertex s in Table II.
This gives us two possible shortest paths passing through intermediate node k or l,
because distance in both cases is same. Thus, there can be multiple shortest paths
however, atmost one intermediate node in the index.

In the Theorem 3.3, we try to identify the topological layer of an intermediate node
x. We identify a unique topological level for each pair of u and v, which tells there
is atmost one intermediate node in a shortest path from u to v because in DAG there
cannot be a directed edge within topological layer. We begin with the following lemmas,
which will be useful for constructing the proof of the theorem.

LEMMA 3.1. In Gm, if a node u is at topological level 2i, it will be at topological level
1 in Gi.

PROOF. TOPCOM compression method removes all odd-topology nodes and carries
over nodes from the even topological levels to the next compression iteration. Thus any
node from an even topological level 2x in some compressed graph will be at topological
level x in the compressed graph of next iteration. Say, the node u is at topological level
2i in Gm, then it will be at topology level 2i−1 in G1. Since 2i−1 is also even, no fictitious
or copied vertex will be added for u, and in G1

m, it will remain at 2i−1 level. In the next
compression iteration, u will simply be moved to 2i−2 level in G2 and so on. Hence, it
will be at level 2i−i = 20 = 1 level in Gi graph.

Example In the graph Gm shown in Figure 1(b), the node d is at topological level 2
and the node k is at topological level 4. In G1 shown in Figure 2(a) the node d is at
topological level 1; similarly, in G2 shown in Figure 2(c), the node k is at topological
level 1.

LEMMA 3.2. In TOPCOM’s index, for all keys, the values contain vertices, which are
only from even topological level in the modified DAG Gm.

, Vol. V, No. N, Article A, Publication date: January YYYY.

TopCom A:13

Fig. 3: Shortest path from u to v passing through x

PROOF. As per Line 2 of Algorithm 1, TOPCOM’s index keys are nodes from only an
odd topological level, and the values of index are built using the incident edges of those
key nodes. In the modified graph Gm, all the edges from/to an odd topology vertex
connects with an even topology vertex, through the use of fictitious/copied nodes (if
needed). Hence, if any node in DAG Gm is at an odd topological level, it cannot be
included as an index value. Additionally when we compress Gi

m to get Gi+1, we only
include nodes from even topological levels, hence nodes from odd levels will never be
included as a value for index building at compressed levels also.

Example: See the completely built index of the graph G in Figure 1(a) as shown in Ta-
ble II. The nodes that appear as values are {d, e, b′(b), f, g, h′(h), k, l,m, r1(r), p, q, s1(s)}.
All of these are from the even topology nodes in Gm as shown in Figure 1(b).

THEOREM 3.3. For finding shortest distance from u to v, assume that u has topo-
logical level number Lu and v has topological level number Lv in Gm. We define

n = argmax
i

(Lu ≤ 2i ≤ Lv) (1)

Now, if there is a shortest path from u to v, for each shortest path, exclusively, one of
the following is true.

Case 1: No intermediate node x i.e. Ioutu includes v or Iinv includes u.

Case 2: There is an intermediate node x, and

topo(x) = 2n + C

for some constant offset C.

PROOF. We prove this theorem using mathematical induction on n.

Base case: n = 1. If there is a direct edge from u to v then case 1 is true because if
Lu = 2 then Iinv includes u or if Lv = 2 then Ioutu includes v. If there is an intermediate

, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14 V. S. Dave et al.

node x then Lu = 1 and Lv = 3, hence topo(x) = 2 that shows case 2 is true. From
Lemma 3.2 both Ioutu and Iinv include the node x if there is a path from u to v. In this
case constant offset C would be zero.

Induction hypothesis: Here we assume that for n = d given theorem is true.

Induction step: We want to prove, for n = d+ 1 given theorem is true.
If there is no intermediate node x then case 1 is true. Hence, we discuss the only

scenario where there is an intermediate node x and we want to show that x is in both
Ioutu and Iinv . We sub-divide the proof for zero and non-zero values of constant offset C.

Constant offset C is zero:
If there are 2d+1 levels, then compression step would be conducted at least one more

time than 2d levels. From Lemma 3.1 at the d’th step of compression, nodes at topolog-
ical level 2d in graph Gm are at 1st topological level in Gd and nodes from topological
level 2d+1 would be at 2nd topological level.

Hence, TOPCOM will build index for keys (nodes) from topological level 2d in graph
Gm, and those index values include nodes from topological level 2d+1. As our method
recursively includes already built index values, the nodes from topological level 2d+1

would be recursively included to corresponding outgoing index values for keys at lower
compression levels. Hence, if topo(x) = 2d+1 then it is present in outgoing index value
of u.

The similar argument works for incoming index of v.

Constant offset C is non-zero:
If we cannot find n that satisfies equation 1 then constant offset C is non-zero. In

this case offset can be calculated as :

C = 2nlow

where, nlow = argmax
i

(2i < Lu)
(2)

Now, we define modified topological level number of u is Lm
u , where Lm

u = Lu−C and
similarly modified topological level number of v is Lm

v = Lv − C. We use Lm
u and Lm

v in
equation 1 to get n

n = argmax
i

(Lm
u ≤ 2i ≤ Lm

v)

Now, with topo(x) = 2n + C, argument works similarly as zero offset.

Example of non-zero offset C: In Figure 1(b), we want to know the shortest distance
from n to r where corresponding topological levels are Ln = 5 and Lr = 7 respectively.
For this, we can not find any n that satisfies the equation 1. From equation 2, we
can calculate nlow = 2, using which modified topological levels Lm

n = 1(5 − 22) and
Lm
r = 3 can be obtained. From Lm

n and Lm
r we get m = 1. Now, 21 + 22 = 6 is the

topological level of intermediate node p, which is present in both Ioutn and Iinr (Table II).
If we look carefully Lm

n and Lm
r is a base case in the mathematical induction proof

of Theorem 3.3, and Ln(5), Lr(7) with offset C behave exactly the same as the base case.

Note: If there is no node from topological level 2n in the shortest path from u to
v, then there must be one multilevel edge which skips that level. For a node incident
to that multilevel edge, at some step of the compression, we need to prepare ficti-
tious/copied node. That new fictitious/copied node works as a node from topological

, Vol. V, No. N, Article A, Publication date: January YYYY.

TopCom A:15

(a) (1)Example for Distance within Middle DAG
node of Gd and (2)Example of multiple dummy
edges in modified Gd

(b) Example of merging multiple dummy DAG
edges

Fig. 4: Dummy edge handling

level 2n and will be included in both Ioutu and Iinv . Thus, theorem works fine for this
case.

For example, as depicted in Figure 1(b), shortest path from a to r doesn’t pass
through any node from topological level 4(22) in Gm, but it has a multilevel edge (e, r1).
In G2

m (Figure 2(b)), this edge causes a fictitious node e′ at topological level 2 which is
(logically) topological level 4 in Gm. The resulting index in Table II shows that, the
node e′(e) is included as a value in the incoming index of r (Iinr) and also included in
Iouta .

4. INDEXING FOR GENERAL DIRECTED GRAPH

Any directed graph G can be converted to a Directed Acyclic Graph (DAG) Gd, by con-
sidering each strongly connected component (SCC) of G as a node of Gd. Thus in DAG,
the edges within a SCC are collapsed within the corresponding node. However, if an
edge in G connects two vertices from two distinct SCCs, in Gd those SCCs are con-
nected by a DAG edge. To build the shortest path index for a general directed graph,
TOPCOM first uses Tarjan’s algorithm [Tarjan 1972] to convert G to a DAG Gd by find-
ing all SCCs of G. It also maintains a necessary data structure that keeps the mapping
from a DAG node to a set of graph vertices, and vice-versa. We call this a parent-child
mapping, i.e., a DAG node is the parent of graph vertices which are part of the cor-
responding SCC. A DAG edge connects two vertices, one from a distinct SCC. We call
such vertices terminal vertices. A single DAG edge between a pair of SCCs may en-
capsulate multiple paths (one edge or multiple edges) of Graph G such that the end
vertices of these paths are terminal vertices in those pair of SCCs. TOPCOM’s DAG
edge data structure contains a set of tuples, each representing one of these paths. A
tuple has three elements: node-id of start terminal vertex, node-id of end terminal
vertex, and the distance between these two vertices in G. For example consider Fig-
ure 4a(1), a DAG edge (a, b) stores {(3, 5, 1), (4, 7, 1), (3, 7, 2), (4, 5, 3)}, first two tuples
represent a single-edge path, but the last two represent multi-edge paths. 3, 4 are ter-
minal vertices of DAG node a, and 5,7 are terminal vertices of DAG node b. For each
tuple, the third field stores the shortest distance between the pair of terminal vertices
in the first two fields of that tuple. To compute distance between an arbitrary pair of
vertices within an SCC, TOPCOM also pre-computes all-pair shortest paths among all

, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16 V. S. Dave et al.

Table III: Real world datasets and basic information

Name | V | | E | AD MD | VDAG | | EDAG | ADDAG MDDAG Largest SCC

AS Caida 26,374 2,304,095 87.36 2,205,805 26,358 48,958 1.86 2606 8
Email Eu 265,214 420,045 1.58 7,636 231,000 223,004 0.97 168,815 34,203
Epinion 49,289 487,183 9.88 2,631 16,264 16,497 1.01 15,789 32,417
Gnutella09 8,114 26,013 3.21 102 5,491 6,495 1.18 5,147 2,624
Gnutella31 62,586 147,892 2.36 95 48,438 55,349 1.14 43,928 14,149
WikiVote 7,116 103,689 14.57 1,167 5,817 19,540 3.36 4869 1,300

graph nodes belonging to a single SCC and store them in shortest path index. In real-
life directed networks, the size of SCCs are generally not very large, so storing all-pair
distances within a SCC in the shortest path index is feasible.

4.1. Distance for dummy edges:

For an unweighted DAG two consecutive edges yield a distance value of 2, but for
DAG which is a compressed representation of a general unweighted directed graph,
two consecutive DAG edges may constitute an arbitrary distance value. This is due to
the fact that the shortest path may visit a large number of vertices which are part of
the start, middle, and end SCC. For an example, see Figure 4a(1); in this figure, the
rectangles “even1”, “odd” and “even2” are the topological level numbers; a, b and c are
the DAG nodes (ellipses), and nodes with numeric ids are nodes of G. Two consecutive
DAG edges are (a, b) and (b, c) connecting SCCs a, b and SCCs b, c, respectively. The
shortest distance between a and c depends on the terminal nodes of a and c that are
being used. If terminal node of a is 3 and terminal node of c is 13, the distance is 5,
following the path 3 − −4 − −7 − −10 − −12 − −13. In this path, besides the distance
2 over the DAG edges, there are three within-SCC edges, one in each of SCCs. Thus,
the total distance for a dummy edge is the sum of (i) distance from a terminal vertex
of staring SCC to a terminal vertex in the middle SCC, (ii) distance between a pair
of terminal vertices in the middle SCC, and (iii) distance from a terminal node in the
middle SCC to a terminal node in the end SCC. To account for this, TOPCOM computes
the dummy edge distance by considering all possible combination of terminal nodes in
each SCCs.

Example: Say, TOPCOM wants to find dummy DAG edge a to c which would be set
of tuple {(3, 12, ∗), (3, 13, ∗), (4, 12, ∗), (4, 13, ∗)}, (all sources to all destinations) where
∗ represents the shortest distance values that it needs to find. To find the distance
from node 3 to 13, it finds the distance for all combinations of terminal nodes in the
middle SCCs and takes the minimum. From starting SCC to middle SCC (δ(3, 5) = 1
and δ(3, 7) = 2), within middle SCC (δ(5, 9) = 4, δ(5, 10) = 3, δ(7, 9) = 2 and δ(7, 10) = 1)
and finally from middle SCC to end SCC (δ(9, 13) = 1, δ(10, 13) = 2). In this example,
δ(3, 7) + δ(7, 10) + δ(10, 13) gives the minimum value 5 which generates the tuple
(3, 13, 5). Distance for all other tuples are also calculated similarly.

Multiple dummy edges: Another issue is, there could be multiple dummy edges hav-
ing same starting and ending DAG nodes as shown in Figures 4a(2). If the original
graph itself is a DAG, TOPCOM considers the dummy edge with the lowest distance.
But for converted DAG Gd applying this solution is more complex, because distance
within middle SCC can be different for different SCCs. For this, we need to merge
all possible tuples of all dummy edges, and recalculate the distances by taking the
minimum distance from the merged set of tuples.

, Vol. V, No. N, Article A, Publication date: January YYYY.

TopCom A:17

Table IV: Average Query Time for DAG (µs)

Name TopCom IS-Label Bi-Djk TreeMap 3

AS Caida 0.1036 0.2237 24.75 0.2471
Email Eu 0.1059 0.3865 1657.46 0.2674
Epinion 0.0360 0.2388 14.83 0.1722
Gnutella09 0.0345 0.3292 7.27 0.115
Gnutella31 0.0752 0.2095 50.74 0.254
WikiVote 0.1551 0.3494 43.11 0.2131

Example in Figure 4b we extend the example of Figure 4a(1) with one more
DAG node d, which also connects node a to node c. Dummy edge through the
middle node d is {(3, 11, 2), (4, 11, 4), (3, 12, 3), (4, 12, 5), (3, 13, 4), (4, 13, 6)}, and through
the middle node b is {(3, 11, 6), (4, 11, 5), (3, 12, 4), (4, 12, 3), (3, 13, 5), (4, 13, 4)}. For
dummy edge (a, c), we combine both the sets of tuples and obtain the small-
est distance. Thus the final representation of dummy edge (a, c) is the following:
{(3, 11, 2), (4, 11, 4), (3, 12, 3), (4, 12, 3), (3, 13, 4), (4, 13, 4)}.

4.2. Modification in index and query processing

TOPCOM Index for general graph stores the bidirectional mapping between the DAG
nodes and the vertices of the input graph. For every DAG edge (and also for DAG
dummy edges), it stores the set of tuple based representation that we have discussed
in the above subsection. It also stores all pair distance between each of the vertices
within an SCC. Above all, it prepares and stores the 2-hop cover DAG indexes for the
DAG representation of the input graph using the methodologies that we discussed in
Section 3.

For query processing, given a query (u, v), TOPCOM first identifies the correspond-
ing SSE nodes in the DAG using the bidirectional map. Say, these SSEs are su and sv,
respectively. If su = sv, TOPCOM simply uses the within SSE all-pair index and re-
turn the distance between u and v. Otherwise, it first finds the set of out-terminal SSE
nodes of su (say, X), and in-terminal SSE nodes of sv (say, Y). Then it uses the 2-hop
cover indexing for finding the shortest path distance between each pair of nodes—one
from X , and the other from Y . It also considers within SCC distances in three SCCs:
Starting DAG node: Distance from starting node of the query to start terminal node
of the DAG node. For example consider figure 4a(1), where query is δ(1, 14). Now all
outgoing edges from DAG a are from nodes 3 and 4, hence we need to get distances
from 1 to 3 and 4 i.e. δ(1, 3) = 1 and δ(1, 4) = 2.
Middle DAG node: If there is a middle node (from the 2-hop cover index) then dis-
tance from incoming edge terminal node to outgoing edge terminal node within middle
DAG node needs to be calculated. In our example suppose b is middle node, then we
need distance from 5 to 9 and 10, i.e. δ(5, 9) = 4, δ(5, 10) = 3 and similar for node 7.
Ending DAG node: Distance from end terminal node to ending node of the query
within the DAG node.:w That means in our example distance from 12 and 13 to 14 i.e.
δ(12, 14) = 2 and δ(13, 14) = 1.

Here again our task is to get minimum distance among all, and we use the similar
strategy as section 4.1, which is to minimize the summation of above three distances
along with edge distances.

As we can see, TOPCOM’s principle indexing process works with DAG and it per-
forms well on real world datasets (Table V). One reason is, real world complex graph

3Unweighted Graph results

, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18 V. S. Dave et al.

Table V: Average Query Time for General Graph (µs)

Name TopCom IS-Label Bi-Djk TreeMap 3 TopCom 4

AS Caida 0.26282 0.2229 25.9614 0.3873 0.26044
Email Eu 12.4708 21.98527 1482.41 0.8102 10.45136
Epinion 34.6582 2114.02 3570.8667 5.727 33.1907
Gnutella09 1.3405 8.0429 110.6521 1.6255 1.29084
Gnutella31 2.46202 13.9999 299.423 5.804 2.44672
WikiVote 18.3593 23.72954 183.4193 8.371 19.06744

becomes less complex when converted as DAG. For example, average degree of DAG
ADDAG (Table III) are always smaller than AD, mostly an order of magnitude smaller
and specifically for AS Caida average degree reduced to 1.86 from 87.36, which is a
decrease of almost two orders of magnitude. However because of DAG, we also need to
handle a challenging task, i.e. maintaining distance information within SCC for each
DAG node. To keep this information, most common ways are to maintain distance ma-
trix or to keep set of edges and calculate distance at run time. Both of these methods
have their own pros and cons; keeping distance matrix is the fastest access method but
the size of SCC leads to space limitation i.e. we need space for O(n2) elements and for
huge SCC this may be a notable problem. On the other hand keeping set of edges is
a memory efficient way, however all distance finding algorithms are polynomial time
in terms of |V | and |E|; and for huge SCC, finding distance between nodes at run time
would be much slower. This represents a well known phenomenon in Computer Science
called space-time trade-off. Here for our task, time gets priority over space, hence we
selected first method, where we are maintaining distance matrix for each DAG node.
For large SCC, this may take high memory, however we observed that our index is still
not very large for contemporary machine.

4.3. Correctness revisited

In this Section 4, we explain how to adopt the proposed indexing method for a general
directed graph. For that, first we convert a general directed graph into DAG and then
build index on the DAG. We describe the methods to maintain the information at both
steps.

We should be able to calculate shortest distance from one node to any other node
within the same DAG node. When we convert a general directed graph to DAG, we
maintain this information by creating appropriate data structures during conversion
(Section 4).

The index generation method for DAG is further divided into two steps: 1) Topo-
logical Compression and 2) Index Generation. We need to maintain information only
during the first step, because the index generation step only builds index from the
graphs generated in the topological compression (first) step. The topological compres-
sion step is described in Section 3.1, where DAG is compressed iteratively by removing
all odd-topology vertices and incident vertices. This compression process maintains
loss of information using dummy edges, to keep the correct information we explicitly
handle distance information for dummy edges as explained in Section 4.1.

Lastly, as the structure of a converted DAG is different, we need to handle the
queries a little differently. We have explained the modification of query processing
in Section 4.2. Hence, all the required logical modifications are handled and TOPCOM

maintains correctness for general directed graph.

4Unweighted Graph: Avg. over 5 times execution for 10K queries

, Vol. V, No. N, Article A, Publication date: January YYYY.

TopCom A:19

5. EXPERIMENTAL EVALUATION

We compare performance of TOPCOM with two of the recent methods (IS-Label and
TreeMap) for answering distance query. We also compare TOPCOM with baseline
method Bidirectional Dijkstra’s algorithm, which is one of the fastest online meth-
ods for single source shortest distance queries. For both IS-Label and TreeMap, codes
are provided by their authors. For these experiments we use a machine with Intel 2.4
GHz processor, 8 GB RAM and Ubuntu 14.04 LTS OS. In [Xiang 2014] the author has
claimed that TreeMap works for weighted directed graphs, however we are provided
with the code of unweighted version for TreeMap, hence all comparisons with TreeMap
are for unweighted graphs. Additionally as Y. Xiang mentioned in the paper, TreeMap
needs huge memory if tree width is above threshold (1000). The only dataset we are
able to run using above machine is WikiVote. Hence for comparison with TreeMap,
we used machine with AMD 2.3 GHz processor, 132 GB RAM and Red Hat Enter-
prise Server Release 6.6 OS. We also perform comparison to IS-Lable using same ma-
chine for two datasets (Email Eu and Epinion). Using synthetic graphs of different
sizes and degrees, we show that TreeMap is not scalable for higher degree graphs. To
generate these synthetic graphs we use python package networkx (procedure name,
FAST GNP RANDOM GRAPH()).

5.1. Datasets

Here for our experiments, we used seven real world datasets (Table III) from different
domains to show wide applicability of TOPCOM . |V | and |E| are the number of vertices
and the number of edges respectively. Similarly |VDAG| and |EDAG| are the number of
vertices and the edges in the DAG of the corresponding graph. AD and ADDAG are
average degree values for the graph and its DAG counterpart, respectively. MD and
MDDAG are maximum degrees i.e. maximum in or out degree in the graph and its
DAG, respectively. Largest SCC is a size of the biggest DAG node which encapsulate
the maximum number of input graph nodes.

We collected all datasets from SNAP (Stanford Network Analysis Project)
web page5 except Epinion trust network dataset, which we collected from
[Massa and Avesani 2006]. AS Caida is a business relationship network and
Email Eu is a snapshot of an email network generated by European Research In-
stitute. Epinion dataset is a trust network generated from social network users, it
represents which user trusts whom. Gnutella is a peer-to-peer file sharing network
where Gnutella09 is a snapshot of the network on 9th August 2002 and Gnutella31 is a
snapshot of the same network on 31st August 2002. WikiV ote is a network generated
from Wikipedia admin voting history data.

5.2. Results and Discussion

AS per expectation for DAG TOPCOM outperforms IS-Label method for all datasets
depicted in figure 5a. Results are average query time over 10 times execution in micro-
second (µs), where each method calculated 10K random queries in every execution.
For more detailed comparison, if we look at table IV, we can see that for datasets
Epinion,Gnutella09 and Gnutella31 TOPCOM outperforms IS-Label and TreeMap by
an order of magnitude. For other datasets also TOPCOM performs 2-3 times better
than both of the competing methods. If we look at the Bi-Dijkstra results, TOPCOM

performs multiple orders of magnitude better for all datasets. In figure 5b results for
general graphs are plotted, which clearly demonstrate superiority of TOPCOM over
IS-Label for general graph. Here also we used Average Query time over 10 times ex-

5http://snap.stanford.edu/data/index.html

, Vol. V, No. N, Article A, Publication date: January YYYY.

A:20 V. S. Dave et al.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

AS-C
aida

Email
Epinion

Gnutel
l09

Gnutel
l31

WikiVote

Q
ue

ry
-t

im
e(

m
ic

ro
-s

ec
)

TopCom

Is-Label

(a) For DAG (µs)

 0

 0.01

 0.02

 0.03

 0.04

 0.05

AS-C
aida

Email
Epinion

Gnutel
l09

Gnutel
l31

WikiVote

Q
ue

ry
-t

im
e(

m
ill

i-
se

c)

TopCom

Is-Label

(b) For General Graph (ms)

Fig. 5: Average Query time comparison

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

0.5 1 2 3 4 5

C
on

st
ru

ct
io

n-
ti

m
e(

se
c)

Average Degree

10K

15K

20K

25K

(a) TreeMap Results on Synthetic Graphs

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

0.5 1 2 3 4 5

C
on

st
ru

ct
io

n-
ti

m
e(

se
c)

Average Degree

10K

15K

20K

25K

(b) TopCom Results on Synthetic Graphs

Fig. 6: Index Building time for Synthetic graphs

ecution with each run calculating 10K random queries. Now if we look at table V for
dataset AS Caida IS-Label performs better than TOPCOM however the difference is
0.00003989 ms which is really very small. On the other hand TOPCOM outperforms
IS-Label for all other datasets. For Gnutella31 dataset TOPCOM performs an order
of magnitude better than IS-Label and surprisingly IS-Label performs really poor on
Epinion dataset such that TOPCOM outperforms IS-Label by two orders of magnitude.
For Guntella09 TOPCOM performs almost 7 times better and for remaining datasets
TOPCOM performs almost two times better than IS-Label. Here once again TOPCOM

is multiple orders of magnitude faster than Bi-Dijkstra for all datasets.
Table V shows result of TreeMap and TOPCOM comparisons on unweighed graph. It

is clear that TOPCOM is competitively better in AS cadia, Gnutella09 and Gnutella31
datasets, but TreeMap performs an order of magnitude better for other three datasets.
However, when we run the TreeMap for building index it took hours to build the in-
dex for some datasets, for example average index building time for Epinion dataset
is more than 9 hours, while Gnutella31 takes more than 26 hours. We believe one of
the reasons is a bigger graph with higher average degree. To find out the actual cause,

, Vol. V, No. N, Article A, Publication date: January YYYY.

TopCom A:21

we generated synthetic graphs of different sizes (10000-25000) and degrees (0.5-5) and
tried to build indexes using TreeMap. In figure 6a the index building time is shown
in seconds, after degree 1 all graphs started taking higher time and for bigger graphs
the slope of the curve is very large. We compare construction time of TOPCOM for the
same set of synthetic graphs shown in figure 6b, and as shown TOPCOM hardly takes
few seconds for index construction. Highest time taken by TOPCOM is 44 sec for 25K
nodes graph with average degree 5, which is almost thousand times faster compared
to TreeMap. From this we can easily conclude that it is difficult for TreeMap to scale
for higher degree graphs.

6. CONCLUSIONS

In this paper we proposed TOPCOM : a unique indexing method to answer distance
query for directed real-world graphs. This method uses topological ordering property
of DAG and describes a novel method for distance preserving compression of DAG.
We compared TOPCOM with IS-Label and found the our method performs better than
IS-Label for both weighted DAG and weighted general graph. We strongly believe our
method should perform similar or better for unweighed graphs, because we store dis-
tance information in label irrespective of weighted/unweighted edges. We do not com-
pare TOPCOM with other recent methods such as HCL [Jin et al. 2012b] and state-of-
art 2-Hop [Cohen et al. 2002], because Fu et al. have compared IS-Label with HCL and
proved superiority of IS-Label in [Fu et al. 2013]. We also compare TOPCOM with the
recent TreeMap method, which performs better for some datasets, however, we show
that this method is not scalable for huge graphs with higher degree. We plan to study
further to build index for dynamic large graphs that can answer exact distance query
in an acceptable time.

REFERENCES

Ittai Abraham, Daniel Delling, Andrew V. Goldberg, and Renato F. Werneck. 2011. A Hub-based Labeling Al-
gorithm for Shortest Paths in Road Networks. In International Conference on Experimental Algorithms
(SEA’11). 230–241.

Ittai Abraham, Daniel Delling, Andrew V. Goldberg, and Renato F. Werneck. 2012. Hierarchical Hub Label-
ings for Shortest Paths. In Annual European Conference on Algorithms (ESA’12). 24–35.

Takuya Akiba, Yoichi Iwata, and Yuichi Yoshida. 2013. Fast Exact Shortest-path Distance Queries on Large
Networks by Pruned Landmark Labeling. In ACM SIGMOD. 349–360.

Lars Backstrom, Dan Huttenlocher, Jon Kleinberg, and Xiangyang Lan. 2006. Group Formation in Large
Social Networks: Membership, Growth, and Evolution (SIGMOD). 44–54.

Reinhard Bauer, Daniel Delling, Peter Sanders, Dennis Schieferdecker, Dominik Schultes, and Dorothea
Wagner. 2010. Combining Hierarchical and Goal-directed Speed-up Techniques for Dijkstra’s Algorithm.
J. Exp. Algorithmics 15, Article 2.3 (March 2010), 1.21 pages.

Richard Bellman. 1958. On a Routing Problem. Quart. Appl. Math. 16 (1958), 87–90.

James Cheng, Silu Huang, Huanhuan Wu, and Ada Wai-Chee Fu. 2013. TF-Label: A Topological-folding
Labeling Scheme for Reachability Querying in a Large Graph (SIGMOD). 193–204.

James Cheng, Yiping Ke, Shumo Chu, and Carter Cheng. 2012. Efficient Processing of Distance Queries
in Large Graphs: A Vertex Cover Approach. In Proceedings of the 2012 ACM SIGMOD International
Conference on Management of Data (SIGMOD ’12). ACM, New York, NY, USA, 457–468.

Jiefeng Cheng and Jeffrey Xu Yu. 2009. On-line Exact Shortest Distance Query Processing. In Proceedings of
the 12th International Conference on Extending Database Technology: Advances in Database Technology
(EDBT ’09). ACM, New York, NY, USA, 481–492.

Edith Cohen, Eran Halperin, Haim Kaplan, and Uri Zwick. 2002. Reachability and Distance Queries via
2-hop Labels. In Annual ACM-SIAM Symposium on Discrete Algorithms (SODA ’02). 937–946.

Thomas H. Cormen, Clifford Stein, Ronald L. Rivest, and Charles E. Leiserson. 2001. Introduction to Algo-
rithms (2nd ed.). McGraw-Hill Higher Education.

, Vol. V, No. N, Article A, Publication date: January YYYY.

A:22 V. S. Dave et al.

VachikS. Dave and MohammadAl Hasan. 2015. TopCom: Index for Shortest Distance Query in Directed
Graph. In Database and Expert Systems Applications. Lecture Notes in Computer Science, Vol. 9261.
Springer International Publishing, 471–480.

A. Erdem Sariyuce, K. Kaya, E. Saule, and U.V. Catalyurek. 2013. Incremental Algorithms for Network
Management and Analysis based on Closeness Centrality. ArXiv e-prints (2013).

Ada Wai-Chee Fu, Huanhuan Wu, James Cheng, and Raymond Chi-Wing Wong. 2013. IS-Label: An
Independent-set Based Labeling Scheme for Point-to-point Distance Querying. Proc. VLDB Endow. 6
(2013), 457–468.

Jun Gao, Ruoming Jin, Jiashuai Zhou, Jeffrey Xu Yu, Xiao Jiang, and Tengjiao Wang. 2011. Relational
Approach for Shortest Path Discovery over Large Graphs. Proc. VLDB Endow. 5, 4 (Dec. 2011), 358–
369.

Robert Geisberger, Peter Sanders, Dominik Schultes, and Daniel Delling. 2008. Contraction Hierarchies:
Faster and Simpler Hierarchical Routing in Road Networks. In Proceedings of the 7th International
Conference on Experimental Algorithms (WEA’08). Springer-Verlag, Berlin, Heidelberg, 319–333.

Andrey Gubichev, Srikanta Bedathur, Stephan Seufert, and Gerhard Weikum. 2010. Fast and Accurate
Estimation of Shortest Paths in Large Graphs. In Proceedings of the 19th ACM International Conference
on Information and Knowledge Management (CIKM ’10). ACM, New York, NY, USA, 499–508.

MohammadAl Hasan and MohammedJ. Zaki. 2011. A Survey of Link Prediction in Social Networks. In
Social Network Data Analytics, Charu C. Aggarwal (Ed.). Springer US, 243–275.

Minhao Jiang, Ada Wai-Chee Fu, Raymond Chi-Wing Wong, and Yanyan Xu. 2014. Hop Doubling Label
Indexing for Point-to-point Distance Querying on Scale-free Networks. VLDB Endow. 7, 12 (Aug. 2014),
1203–1214.

Ruoming Jin, Ning Ruan, Saikat Dey, and Jeffrey Yu Xu. 2012a. SCARAB: Scaling Reachability Computa-
tion on Large Graphs. In Proceedings of the 2012 ACM SIGMOD International Conference on Manage-
ment of Data (SIGMOD ’12). ACM, New York, NY, USA, 169–180.

Ruoming Jin, Ning Ruan, Yang Xiang, and Victor Lee. 2012b. A Highway-centric Labeling Approach for
Answering Distance Queries on Large Sparse Graphs. In ACM SIGMOD (SIGMOD ’12). 445–456.

Ruoming Jin, Yang Xiang, Ning Ruan, and David Fuhry. 2009. 3HOP: A High-compression Indexing Scheme
for Reachability Query. In Proceedings of the 2009 ACM SIGMOD International Conference on Manage-
ment of Data (SIGMOD ’09). ACM, New York, NY, USA, 813–826.

Ruoming Jin, Yang Xiang, Ning Ruan, and Haixun Wang. 2008. Efficiently Answering Reachability Queries
on Very Large Directed Graphs. In Proceedings of the 2008 ACM SIGMOD International Conference on
Management of Data (SIGMOD ’08). ACM, New York, NY, USA, 595–608.

Sungwon Jung and Sakti Pramanik. 2002. An Efficient Path Computation Model for Hierarchically Struc-
tured Topographical Road Maps. IEEE Trans. on Knowl. and Data Eng. 14, 5 (Sept. 2002), 1029–1046.

Mehdi Kargar and Aijun An. 2011. Keyword Search in Graphs: Finding R-cliques. Proc. VLDB Endow. 4, 10
(July 2011), 681–692.

David Kempe, Jon Kleinberg, and Éva Tardos. 2003. Maximizing the Spread of Influence Through a Social
Network. In ACM SIGKDD (KDD ’03). 137–146.

Paolo Massa and Paolo Avesani. 2006. Trust-aware bootstrapping of recommender systems. In ECAI Work-
shop on Recommender Systems. 29–33.

Kazuya Okamoto, Wei Chen, and Xiang-Yang Li. 2008. Ranking of Closeness Centrality for Large-Scale
Social Networks. In Frontiers in Algorithmics. Lecture Notes in Computer Science, Vol. 5059. 186–195.

Michalis Potamias, Francesco Bonchi, Carlos Castillo, and Aristides Gionis. 2009. Fast Shortest Path Dis-
tance Estimation in Large Networks. In ACM CIKM (CIKM ’09). 867–876.

Miao Qiao, Hong Cheng, Lijun Chang, and J.X. Yu. 2014. Approximate Shortest Distance Computing: A
Query-Dependent Local Landmark Scheme. IEEE Transactions, Knowledge and Data Engineering 26,
1 (Jan 2014), 55–68.

Michael Rice and Vassilis J. Tsotras. 2010. Graph Indexing of Road Networks for Shortest Path Queries
with Label Restrictions. Proc. VLDB Endow. 4, 2 (Nov. 2010), 69–80.

Peter Sanders and Dominik Schultes. 2005. Highway Hierarchies Hasten Exact Shortest Path Queries. In
Algorithms ESA 2005, GerthStlting Brodal and Stefano Leonardi (Eds.). Lecture Notes in Computer
Science, Vol. 3669. Springer Berlin Heidelberg, 568–579. DOI:http://dx.doi.org/10.1007/11561071 51

Lenie Sint and Dennis de Champeaux. 1977. An Improved Bidirectional Heuristic Search Algorithm. J. ACM
24, 2 (April 1977), 177–191.

Christian Sommer. 2014. Shortest-path Queries in Static Networks. ACM Comput. Surv. 46, 4, Article 45
(March 2014), 31 pages.

Yufei Tao, Cheng Sheng, and Jian Pei. 2011. On K-skip Shortest Paths. In ACM SIGMOD. 421–432.

, Vol. V, No. N, Article A, Publication date: January YYYY.

http://dx.doi.org/10.1007/11561071_51

TopCom A:23

Robert Tarjan. 1972. Depth first search and linear graph algorithms. SIAM J. Comput. (1972).

Konstantin Tretyakov, Abel Armas-Cervantes, Luciano Garcı́a-Bañuelos, Jaak Vilo, and Marlon Dumas.
2011. Fast Fully Dynamic Landmark-based Estimation of Shortest Path Distances in Very Large
Graphs. In ACM CIKM. 1785–1794.

Antti Ukkonen, Carlos Castillo, Debora Donato, and Aristides Gionis. 2008. Searching the Wikipedia with
Contextual Information. In ACM CIKM (CIKM ’08). 1351–1352.

Dorothea Wagner and Thomas Willhalm. 2007. Speed-Up Techniques for Shortest-Path Computations. In
STACS 2007, Wolfgang Thomas and Pascal Weil (Eds.). Lecture Notes in Computer Science, Vol. 4393.
Springer Berlin Heidelberg, 23–36. DOI:http://dx.doi.org/10.1007/978-3-540-70918-3 3

Fang Wei. 2010. TEDI: Efficient Shortest Path Query Answering on Graphs. In Proceedings of the 2010 ACM
SIGMOD International Conference on Management of Data (SIGMOD ’10). ACM, New York, NY, USA,
99–110.

Yang Xiang. 2014. Answering Exact Distance Queries on Real-world Graphs with Bounded Performance
Guarantees. The VLDB Journal 23, 5 (Oct. 2014), 677–695.

Da Yan, J. Cheng, W. Ng, and S. Liu. 2013. Finding distance-preserving subgraphs in large road networks.
In ICDE. 625–636.

Hilmi Yildirim, Vineet Chaoji, and MohammedJ. Zaki. 2012. GRAIL: a scalable index for reachability queries
in very large graphs. The VLDB Journal 21, 4 (2012), 509–534.

Andy Diwen Zhu, Wenqing Lin, Sibo Wang, and Xiaokui Xiao. 2014. Reachability Queries on Large Dynamic
Graphs: A Total Order Approach. In ACM SIGMOD. 1323–1334.

Andy Diwen Zhu, Hui Ma, Xiaokui Xiao, Siqiang Luo, Youze Tang, and Shuigeng Zhou. 2013a. Shortest Path
and Distance Queries on Road Networks: Towards Bridging Theory and Practice. In Proceedings of the
2013 ACM SIGMOD International Conference on Management of Data (SIGMOD ’13). 857–868.

Andy Diwen Zhu, Xiaokui Xiao, Sibo Wang, and Wenqing Lin. 2013b. Efficient Single-source Shortest Path
and Distance Queries on Large Graphs. In ACM SIGKDD. 998–1006.

Uri Zwick. 2001. Exact and Approximate Distances in Graphs A Survey. In Algorithms ESA 2001, Fried-
helmMeyer auf der Heide (Ed.). Lecture Notes in Computer Science, Vol. 2161. Springer Berlin Heidel-
berg, 33–48. DOI:http://dx.doi.org/10.1007/3-540-44676-1 3

, Vol. V, No. N, Article A, Publication date: January YYYY.

http://dx.doi.org/10.1007/978-3-540-70918-3_3
http://dx.doi.org/10.1007/3-540-44676-1_3

Online Appendix to:
TopCom: Index for Shortest Distance Query in Directed Graph

VACHIK S. DAVE, Indiana University Purdue University, Indianapolis

MOHAMMAD AL HASAN, Indiana University Purdue University, Indianapolis

This paper is an extension of the short paper published in an international confer-
ence [Dave and Hasan 2015]. In this journal version paper, we have made considerable
additions to the short paper, which are listed below:

(1) We have added an important theoretical explanation with proof that our TOPCOM

is the 2-Hop indexing method, which is the most accepted indexing method from
the last decade. We used the well known mathematical induction technique for this
proof which is explained in the section 3.5.

(2) Our short paper version included indexing for only DAG (Directed Acyclic Graph).
In the journal version we have extended our indexing method for arbitrary directed
graphs. The description of the method is available in section 4.

(3) In section 5 we have added experimental evaluation of the extended method for any
directed graph that shows considerable improvement over state of the art methods.

(4) We have also added experimental study to compare scalability of TopCom with
TreeMap. The comparison is performed over graphs with 10000, 15000, 20000 and
25000 nodes and their average degrees being 0.5, 1, 2, 3, 4 and 5. So 24 graphs with
different sizes and densities were used for checking the scalability of the indexing
method. This comparative study shows that TopCom is significantly better than
TreeMap for huge graphs. The description is available in section 5.2.

(5) A newly added section 2 is a related work section which has brief descriptions of
the recent research on indexing.

We believe there is atleast 45-50% additional content in the journal version as com-
pared to the short paper.

c© YYYY ACM. /YYYY/01-ARTA $15.00
DOI: http://dx.doi.org/10.1145/0000000.0000000

, Vol. V, No. N, Article A, Publication date: January YYYY.

	1 Introduction
	2 Related works
	2.1 Online shortest distance calculation:
	2.2 Offline (Index based) shortest distance calculation:

	3 Method
	3.1 Topological compression
	3.2 Index generation
	3.3 Index for weighted graph
	3.4 Query processing
	3.5 Theoretical proofs for correctness

	4 Indexing for general directed graph
	4.1 Distance for dummy edges:
	4.2 Modification in index and query processing
	4.3 Correctness revisited

	5 Experimental evaluation
	5.1 Datasets
	5.2 Results and Discussion

	6 Conclusions

