Skip to main content

Trajectory Adaptation and Learning for Ankle Rehabilitation Using a 3-PRS Parallel Robot

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2015)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9245))

Included in the following conference series:

Abstract

This paper presents a methodology for learning and adaptation of a 3-PRS parallel robot skills for ankle rehabilitation. Passive exercises have been designed to train dorsi/plantar flexion, inversion/eversion ankle movements. During exercises, forces may be high because patient cannot follow the desired trajectory. While small errors in the desired trajectory can cause important deviations in the desired forces, pure position control is inappropriate for tasks that require physical contact with the environment. The proposed algorithm takes as input the reference trajectory and force profile, then adapts the robot movement by introducing small offsets to the reference trajectory so that the resulting forces exerted by the patient match the reference profile. The learning procedure is based on Dynamic Movement Primitives (DMPs).

F.J. Abu-Dakk—This work was partially financed by Plan Nacional de I+D, Comisión Interministerial de Ciencia y Tecnologa (FEDER-CICYT) under the project DPI2013-44227-R.-This research was also partially funded by the MINISTERIO DE ECONOMÍA Y COMPETITIVIDAD under the project RTC-2014-3070-5

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Patel, Y.D., George, P.M.: Parallel manipulators applications-a survey. Modern Mechanical Engineering 2, 57–64 (2012)

    Article  Google Scholar 

  2. Díaz, I., Gil, J., Snchez, E.: Lower-limb robotic rehabilitation. Journal of Robotics 2011, 1–11 (2011)

    Article  Google Scholar 

  3. del Ama, A., Koutsou, A., Moreno, J.: Review of hybrid exoskeletons to restore gait following spinal cord injury. J. Rehabil. Res. Dev. 49(4), 497–514 (2012)

    Article  Google Scholar 

  4. Colombo, G., Joerg, M., Schreier, R.: Treadmill training of paraplegic patients using a robotic orthosis. J. Rehabil. Res. Dev. 37(6), 693–700 (2000)

    Google Scholar 

  5. Hesse, S., Uhlenbrock, D.: A mechanized gait trainer for restoration of gait. J. Rehabil. Res. Dev. 37(6), 701–708 (2000)

    Google Scholar 

  6. Peshkin, M., Brown, D., Santos-Munné, J.: Kineassist: a robotic overground gait and balance training device. In: 9th IEEE International Conference on Rehabilitation Robotics. ICORR 2005, Evanston, Ill, USA, pp. 241–246 (2005)

    Google Scholar 

  7. Schmitt, C., Métrailler, P., Al-Khodairy, A.: The motion maker\(^{\text{ tm }}\): a rehabilitation system combining an orthosis with closed-loop electrical muscle stimulation. In 8th Vienna International Workshop on Functional Electrical Stimulation, Vienna, Austria, pp. 117–120 (2004)

    Google Scholar 

  8. Van Delden, A., Peper, C., Kwakkel, G.: A systematic review of bilateral upper limb training devices for poststroke rehabilitation. Stroke research and Treatment 1–17, 2012 (2012)

    Google Scholar 

  9. Abdullah, H.A., Tarry, C., Datta, R., Mittal, G.S., Abderrahim, M.: Dynamic biomechanical model for assessing and monitoring robot-assisted upper-limb therapy. J. Rehabil. Res. Dev. 44, 43–62 (2007)

    Article  Google Scholar 

  10. Patanè, F., Cappa, P.: A 3-dof parallel robot with spherical motion for the rehabilitation and evaluation of balance performance. IEEE T. Neur. Sys. Reh. 19(2), 157–166 (2011)

    Article  Google Scholar 

  11. Tsoi, Y.H., Xie, S.Q.: Design and control of a parallel robot for ankle rehabiltation. In: 15th International conference on Mechatronics and Machine Vision in Practice (M2VIP 2008), Auckland, New-Zealand (2008)

    Google Scholar 

  12. Syrseloudis, C.E., Emiris, I.Z.: A parallel robot for ankle rehabilitation-evaluation and its design specifications. In: 8th IEEE International Conference on BioInformatics and BioEngineering (BIBE 2008), Athens (2008)

    Google Scholar 

  13. Liu, G., Gao, J., Yue, H., Zhang, X., Lu, G.: Design and kinematics simulation of parallel robots for ankle rehabilitation. In: IEEE International Conference on Mechatronics and Automation, Luoyang (2006)

    Google Scholar 

  14. Bharadwaj, K., Sugar, T.: Kinematics of a robotic gait trainer for stroke rehabilitation. In: IEEE International Conference on Robotics and Automation, (ICRA 2006), Orlando, Fla, USA, pp. 3492–3497 (2006)

    Google Scholar 

  15. Prange, G., Jannink, M.: Systematic review of the effect of robot-aided therapy on recovery of the hemiparetic arm after stroke. J. Rehabil. Res. Dev. 43(2), 171–184 (2012)

    Article  Google Scholar 

  16. Rocon, E., Belda-Lois, J., Ruiz, A.: Design and validation of a rehabilitation robotic exoskeleton for tremor assessment and suppression. IEEE T. Neur. Sys. Reh. 15(3), 367–378 (2007)

    Article  Google Scholar 

  17. Saglia, J., Tsagarakis, N., Dai, J., Caldwell, D.: Control strategies for patient-assisted training using the ankle rehabilitation robot (arbot). IEEE-ASME T. Mech. 99, 1–10 (2012)

    Google Scholar 

  18. Dai, J., Zhao, T., Nester, C.: Sprained ankle physiotherapy based mechanism synthesis and stiffness analysis of a robotic rehabilitation device. Auton. Robot. 16, 207–218 (2004)

    Article  Google Scholar 

  19. Girone, M., Burdea, G., Bouzit, M.: The rutgers ankle orthopedic rehabilitation interface. In ASME Int. Mech. Eng. Congr. Dyn. Syst. Control Div., vol. 67, Nashville, TN, pp. 305–312 (1999)

    Google Scholar 

  20. Fan, Y., Yin, Y.: Mechanism design and motion control of a parallel ankle joint for rehabilitation robotic exoskeleton. In: IEEE Robotics and Biomimetics, Guangxi, China, pp. 2527–2532 (2009)

    Google Scholar 

  21. Yoon, J., Ryu, J., Lim, K.: Reconfigurable ankle rehabilitation robot for various exercises. Journal of Robotic Systems 11, 15–33 (2006)

    Article  Google Scholar 

  22. Wang, C., Yuefa, F., Sheng, G., Chagchum, Z.: Design and kinematic analysis of redundantly actuated parallel mechanisms for ankle rehabilitation. Robotica, 1–19 (2014)

    Google Scholar 

  23. Ijspeert, A.J., Nakanishi, J., Hoffmann, H., Pastor, P., Schaal, S.: Dynamical movement primitives: learning attractor models for motor behaviors. Neural Computation 25(2), 328–373 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ijspeert, A.J., Nakanishi, J., Schaal, S.: Nonlinear dynamical systems for imitation with humanoid robots. In IEEE International Conference on Humanoid Robots (Humanoids), Tokyo, Japan, pp. 219–226 (2001)

    Google Scholar 

  25. Nakanishi, J., Morimoto, J., Endo, G., Cheng, G., Schaal, S., Kawato, M.: Learning from demonstration and adaptation of biped locomotion. Robot. Auton. Syst. 47, 79–91 (2004)

    Article  Google Scholar 

  26. Gams, A., Ijspeert, A.J., Schaal, S., Lenarčič, J.: On-line learning and modulation of periodic movements with nonlinear dynamical systems. Auton. Robot. 27, 3–23 (2009)

    Article  Google Scholar 

  27. Peters, J., Schaal, S.: Reinforcement learning of motor skills with policy gradients. Neural Networks 21(4), 682–697 (2008)

    Article  Google Scholar 

  28. Vallés, M., Díaz-Rodríguez, M., Valera, Á., Mata, V., Page, Á.: Mechatronic development and dynamic control of a 3-dof parallel manipulator. Mech. Based Des. Struc. 40(4), 434–452 (2012)

    Article  Google Scholar 

  29. Díaz-Rodríguez, M., Mata, V., Valera, Á., Page, Á.: Dynamical movement primitives: learning attractor models for motor behaviors. Mech. Mach. Theory 45(9), 1337–1356 (2010)

    Article  MATH  Google Scholar 

  30. Ude, A., Gams, A., Asfour, T., Morimoto, J.: Tasks-specific generalization of discrete and periodic dynamic movement primitives. IEEE T. Robot. 26(5), 800–815 (2010)

    Article  Google Scholar 

  31. Villani, L., De Schutter, J.: Force control. In: Siciliano, B., Khatib, O. (eds.) Springer Handbook of Robotics, pp. 161–185. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  32. Siegler, S., Chen, J., Schneck, C.: The three-dimensional kinematics and flexibility characteristics of the human ankle and subtalar joints-part i: Kinematics. J. Biomech. Eng. 110(4), 364–373 (1988)

    Article  Google Scholar 

  33. Dettwyler, M., Stacoff, A., Quervain, I.K.: Modelling of the ankle joint complex. reflections with regards to ankle prostheses. J. Foot. Ankle Surg. 10(3), 109–119 (2004)

    Article  Google Scholar 

  34. Safran, M., Benedetti, R., Bartolozzi, A.: Lateral ankle sprains: a comprehensive review: part 1: etiology, pathoanatomy, histopathogenesis, and diagnosis. Medicine and Science 31(7), 429–437 (1999)

    Google Scholar 

  35. Cazalilla, J., Valls, M., Mata, V., Daz-Rodrguez, M., Valera, A.: Adaptive control of a 3-dof parallel manipulator considering payload handling and relevant parameter models. Robot. Cim-Int. Manuf. 30(5), 468–477 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fares J. Abu-Dakk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Abu-Dakk, F.J., Valera, A., Escalera, J., Vallés, M., Mata, V., Abderrahim, M. (2015). Trajectory Adaptation and Learning for Ankle Rehabilitation Using a 3-PRS Parallel Robot. In: Liu, H., Kubota, N., Zhu, X., Dillmann, R., Zhou, D. (eds) Intelligent Robotics and Applications. ICIRA 2015. Lecture Notes in Computer Science(), vol 9245. Springer, Cham. https://doi.org/10.1007/978-3-319-22876-1_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-22876-1_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-22875-4

  • Online ISBN: 978-3-319-22876-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics