Skip to main content

Quaternion-Based Adaptive Control for Staring-Mode Observation Spacecraft

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2015)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9244))

Included in the following conference series:

  • 5053 Accesses

Abstract

The spacecraft staring-mode observation is to render space-borne optical sensor an accurate and continuous pointing strategy at a specified ground target within a specified time span. First, the desired attitude reference trajectory are derived from the geographic information according to the need of the staring-mode. Then, an adaptive tracking control law is proposed to accomplish the staring-mode maneuver suffering from the inertia matrix uncertainty. In addition, a signum function is mixed in the switching surface in controller to produce a maneuver to the reference attitude trajectory in a shortest distance. The stability of the resulting system by the proposed controller is guaranteed by the Lyapunov-based method. Simulation results are presented to illustrate all the technical aspects of this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lee, A.Y., Hanover, G.: Cassini spacecraft attitude control system flight performance. In: AIAA Guidance, Navigation, and Control Conference, August 15−18, 2005, San Francisco, CA, United states, pp. 4172−4254 (2005)

    Google Scholar 

  2. Goeree, B.B., Fasse, E.D.: Sliding mode attitude control of a small satellite for ground tracking maneuvers. In: 2000 American Control Conference, June 28−30, 2000 Chicago, IL, USA, pp. 1134−1138 (2000)

    Google Scholar 

  3. Sun, Z.-W., Wu, S.-N., Li, H.: Variable structure attitude control of staring mode spacecraft with disturbance observer. Harbin Gongye Daxue Xuebao/Journal of Harbin Institute of Technology 42, 1374–1378+1417 (2010)

    MathSciNet  Google Scholar 

  4. Wu, S., Radice, G., Gao, Y., Sun, Z.: Quaternion-based finite time control for spacecraft attitude tracking. Acta Astronautica 69, 48–58

    Google Scholar 

  5. Song, Y.D., Cai, W.C.: Quaternion Observer-Based Model-Independent Attitude Tracking Control of Spacecraft. Journal of Guidance Control and Dynamics 32, 1476–1482 (2009)

    Article  Google Scholar 

  6. Krstic, M., Tsiotras, P.: Inverse optimal stabilization of a rigid spacecraft. IEEE Transactions on Automatic Control 44, 1042–1049 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  7. Luo, W., Chu, Y.-C., Ling, K.-V.: Inverse optimal adaptive control for attitude tracking of spacecraft. IEEE Transactions on Automatic Control 50, 1639–1654 (2005)

    Article  MathSciNet  Google Scholar 

  8. Robinett, R.D., Parker, G.G.: Spacecraft Euler parameter tracking of large-angle maneuvers via sliding mode control. Journal of Guidance, Control, and Dynamics 19, 702–703 (1996)

    Article  MATH  Google Scholar 

  9. Jin, Y., Liu, X., Qiu, W., Hou, C.: Time-varying sliding mode controls in rigid spacecraft attitude tracking. Chinese Journal of Aeronautics 21, 352–360 (2008)

    Article  Google Scholar 

  10. Wu, J., Liu, K., Han, D.: Adaptive sliding mode control for six-DOF relative motion of spacecraft with input constraint. Acta Astronautica 87, 64–76 (2013)

    Article  Google Scholar 

  11. Ahmed, J., Coppola, V.T., Bernstein, D.S.: Adaptive Asymptotic Tracking of Spacecraft Attitude Motion with Inertia Matrix Identification. Journal of Guidance, Control, and Dynamics 21, 684–691 (1998)

    Article  Google Scholar 

  12. Seo, D., Akella, M.R.: High-Performance Spacecraft Adaptive Attitude-Tracking Control Through Attracting-Manifold Design. Journal of Guidance, Control, and Dynamics 31, 884–891 (2008)

    Article  Google Scholar 

  13. Costic, B.T., Dawson, D.M., de Queiroz, M.S., Kapila, V.: Quaternion-Based Adaptive Attitude Tracking Controller Without Velocity Measurements. Journal of Guidance, Control, and Dynamics 24, 1214–1222 (2001)

    Article  Google Scholar 

  14. Shucker, G.B., Fasse, E.: Geometric attitude control of a small satellite for ground tracking maneuvers. In: Annual AIAA/Utah State University Conference on Small Satellites. United States, Logan (1999)

    Google Scholar 

  15. Chen, X., Steyn, W., Hashida, Y.: Ground-target tracking control of earth-pointing satellites. In: Proceedings AIAA-2000-4547, Guidance, Navigation, and Control Conference, Denver Colorado (2000)

    Google Scholar 

  16. Crassidis, J., Vadali, S., Markley, F.: Optimal Variable-Structure Control Tracking of Spacecraft Maneuvers. Journal of Guidance Control and Dynamics 23, 564–565 (2000)

    Article  Google Scholar 

  17. Slotine, J.J., Li, W.: Applied Nonlinear Control. Prentice Hall Englewood Cliffs, New Jersey (1991)

    MATH  Google Scholar 

  18. Li, Z.X., Wang, B.L.: Robust Attitude Tracking Control of Spacecraft in the Presence of Disturbances. Journal of Guidance, Control, and Dynamics 30, 1156–1159 (2007)

    Article  Google Scholar 

  19. Junkins, J.L., Akella, M.R., Robinett, R.D.: Nonlinear adaptive control of spacecraft maneuvers. Journal of Guidance Control and Dynamics 20, 1104–1110 (1997)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao Yan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Lei, C., Yan, X., Dong, Y., Changjun, L. (2015). Quaternion-Based Adaptive Control for Staring-Mode Observation Spacecraft. In: Liu, H., Kubota, N., Zhu, X., Dillmann, R., Zhou, D. (eds) Intelligent Robotics and Applications. ICIRA 2015. Lecture Notes in Computer Science(), vol 9244. Springer, Cham. https://doi.org/10.1007/978-3-319-22879-2_57

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-22879-2_57

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-22878-5

  • Online ISBN: 978-3-319-22879-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics