
ar
X

iv
:1

50
6.

07
00

0v
1

 [
cs

.L
O

]
 2

3
Ju

n
20

15

Improving search order for reachability testing

in timed automata

Frédéric Herbreteau and Thanh-Tung Tran

Université de Bordeaux, Bordeaux INP, CNRS, LaBRI UMR5800
LaBRI Bât A30, 351 crs Libération, 33405 Talence, France

Abstract. Standard algorithms for reachability analysis of timed au-
tomata are sensitive to the order in which the transitions of the automata
are taken. To tackle this problem, we propose a ranking system and a
waiting strategy. This paper discusses the reason why the search order
matters and shows how a ranking system and a waiting strategy can be
integrated into the standard reachability algorithm to alleviate and pre-
vent the problem respectively. Experiments show that the combination of
the two approaches gives optimal search order on standard benchmarks
except for one example. This suggests that it should be used instead of
the standard BFS algorithm for reachability analysis of timed automata.

1 Introduction

Reachability analysis for timed automata asks if there is an execution of an
automaton reaching a given state. This analysis can be used to verify all kinds
of safety properties of timed systems. The standard approach to reachability
analysis of timed automata uses sets of clock valuations, called zones, to reduce
the reachability problem in the infinite state space of a timed automaton to the
reachability problem in a finite graph. We present two heuristics to improve the
efficiency of the zone based reachability algorithm.

The algorithm for reachability analysis of timed automata is a depth-first
search, or a breadth-first search on a graph whose nodes are pairs consisting of a
state of the automaton and a zone describing the set of possible clock valuations
in this state. The use of zone inclusion is crucial for efficiency of this algorithm.
It permits to stop exploration from a smaller zone if a bigger zone with the same
state has been already explored.

Due to the use of zone inclusion the algorithm is sometimes very sensitive
to exploration order. Indeed, it may happen that a small zone is reached and
explored first, but then it is removed when a bigger zone is reached later. We
will refer to such a situation as a mistake. A mistake can often be avoided by
taking a different exploration order that reaches the bigger zone first.

In this paper we propose two heuristics to reduce the number of mistakes
in the reachability analysis. In the example below we explain the mistake phe-
nomenon in more details, and point out that it can cause an exponential blowup
in the search space; this happens in the FDDI standard benchmark. The two

http://arxiv.org/abs/1506.07000v1

2

q1

q2

q3

q4

.

y > 1

y ≤ 5

(a) Timed automaton.

(q1, Z1)

(q3, Z3) (q2, Z2)

(q3, Z′
3)(q4, Z4)

(q4, Z′
4). . .

. . .

⊆

(b) In wrong order.

(q1 , Z1)

(q2 , Z2) (q3 , Z3)

(q3 , Z′
3)

(q4 , Z′
4)

. . .

⊇

(c) In good order.

Fig. 1: A timed automaton and two exploration graphs of its state-space. On the
left, the transition to q3 is explored first, which results in exploring the subtree
of q3 twice. On the right, the transition to q2 is explored first and subsumption
stops the second exploration as Z3 is included in Z ′

3.

heuristics are quite different in nature, so we evaluate their performance on the
standard examples. Based on these experimental results we propose a simple
modification to the standard exploration algorithm that significantly improves
the exploration order.

We now give a concrete example showing why exploration order matters.
Consider the timed automaton shown in Figure 1a, and assume we perform a
depth-first search (DFS) exploration of its state space. The algorithm starts in
(q1, Z1) where Z1 = (y ≥ 0) is the set of all clock values. Assume that the
transition to q3 is taken first as in Figure 1b. The algorithm reaches the node
(q3, Z3) with Z3 = (y > 1) and explores its entire subtree. Then, the algorithm
backtracks to (q1, Z1) and proceeds with the transition to q2 reaching (q2, Z2),
and then (q3, Z

′
3) with Z2 = Z ′

3 = (y ≥ 0). It happens that Z3 ⊆ Z ′
3: the node

(q3, Z
′
3) is bigger than the node (q3, Z3) which has been previously visited. At

this point, the algorithm has to visit the entire subtree of (q3, Z
′
3) since the clock

valuations in Z ′
3 \ Z3 have not been explored. The net result is that the earlier

exploration from (q3, Z3) turns out to be useless since we need to explore from
(q3, Z

′
3) anyway. If, by chance, our DFS exploration had taken different order

of transitions, and first considered the one from q1 to q2 as in Figure 1c, the
exploration would stop at (q3, Z3) since the bigger node (q3, Z

′
3) has already

been visited and Z3 ⊆ Z ′
3. To sum up, in some cases DFS exploration is very

sensible to the search order.

Several authors [3,6] have observed that BFS exploration is often much more
efficient than DFS for reachability testing in timed automata. This can be at-
tributed to an empirical observation that often a zone obtained by a short path
is bigger than the one obtained by a longer path. This is the opposite in our
example from Figure 1a. In consequence, a BFS algorithm will also do unnec-

3

essary explorations. When (q3, Z
′
3) is visited, the node (q4, Z4) is already in the

queue. Hence, while the algorithm has a chance to realise that exploring (q3, Z3)
is useless due to the bigger node (q3, Z

′
3), it will keep visiting (q4, Z4) and all the

subtree of (q3, Z3). Indeed, in the standard BFS algorithm, there is no mechanism
to remove (q4, Z4) from the queue when (q3, Z

′
3) is reached. Again, considering

the transition from q1 to q2 before the transition to q3 as in Figure 1c, avoids
unnecessary exploration. Yet, by making the path q1 → q2 → q3 one step longer
we would obtain an example where all choices of search order would lead to
unnecessary exploration. Overall, the standard reachability algorithm for timed
automata, be it DFS or BFS, is sensitive to the alignment between the discovery
of big nodes and the exploration of small nodes.

q1

q2

q3

q4

q5 . . . q2n−1

q2n

q2n+1 qf

{y}

y > 1, {y}

{x1}

{y}

y > 1, {y}

{x2}

{y}

y > 1,{y}

{xn}
(x1 ≤ n)
∧ · · ·
∧(xn ≤ n)
∧(n < y ≤ 5n)

Fig. 2: Timed automaton with a racing situation.

One could ask what can be the impact of a pattern from Figure 1a, and does
it really occur. The blowup of the exploration space can be exponential. One
example is presented in Figure 2. It is obtained by iterating n times the pattern
we have discussed above. The final state qf is not reachable. By a similar analy-
sis we can show that both the BFS and DFS algorithms with wrong exploration
order explore and store exponentially more nodes than needed. In the automa-
ton there are 2n different paths to q2n+1. The longest path q1, q2, q3, . . . , q2n+1

generates the biggest zone, while there are about 2n different zones that can
be generated by taking different paths. If the DFS takes the worst exploration
order, all these zones will be generated. If it takes the wrong order half of the
times, then about 2n/2 zones will be generated. Similarly for BFS.

In the experiments section we show that, this far from optimal behaviour
of BFS and DFS exploration indeed happens in the FDDI model, a standard
benchmark model for timed automata.

In this paper we propose simple modifications of the exploration strategy to
counter the problem as presented in the above examples. We will first describe
a ranking system that mitigates the problem by assigning ranks to states, and
using ranks to chose the transitions to explore. It will be rather clear that this
system addresses the problem from our examples. Then we will propose waiting
strategy that starts from a different point of view and is simpler to implement.
The experiments on standard benchmarks show that the two approaches are
incomparable but they can be combined to give optimal results in most of the
cases. Since this combination is easy to implement, we propose to use it instead
of standard BFS for reachability checking.

4

Related work: The influence of the search order has been discussed in the lit-
erature in the context of state-caching [7, 11–13], and state-space fragmenta-
tion [3,6,8]. State-caching focuses on limiting the number of stored nodes at the
cost of exploring more nodes. We propose a strategy that improves the num-
ber of visited nodes as well as the number of stored nodes. In [3, 6, 8], it is
suggested that BFS is the best search order to avoid state-space fragmentation
in distributed model checking. We have not yet experimented our approach for
distributed state-space exploration.

In terms of implementation, our approaches add a metric to states. In a
different context a metric mechanism has been used by Behrmann et al. to guide
the exploration in priced timed automata in [5].

Organisation of the paper: In the next section we present preliminaries for this
paper: timed automata, the reachability problem and the standard reachability
algorithm for timed automata. In Section 3, we propose a ranking system to limit
the impact of mistakes during exploration. Section 4 presents another strategy
that aims at limiting the number of mistakes. Finally, Section 5 gives some
experimental results on the standard benchmarks.

2 Preliminaries

We introduce preliminary notions about timed automata and the reachability
problem. Then, we introduce the classical zone-based algorithm used to solve
this problem.

2.1 Timed Automata and the Reachability Problem

Let X = {x1, . . . , xn} be a set of clocks, i.e. variables that range over the non-
negative real numbers R≥0. A clock constraint φ is a conjunction of constraints
x#c for x ∈ X , # ∈ {<,≤,=,≥, >} and c ∈ N. Let Φ(X) be the set of clock
constraints over the set of clocks X . A valuation over X is a function v : X →
R≥0. We denote by 0 the valuation that maps each clock in X to 0, and by R

X
≥0

the set of valuations over X . A valuation v satisfies a clock constraint φ ∈ Φ(X),
denoted v |= φ, when all the constraints in φ hold after replacing every clock x

by its value v(x). For δ ∈ R≥0, we denote v + δ the valuation that maps every
clock x to v(x) + δ. For R ⊆ X , R[v] is the valuation that sets x to 0 if x ∈ R,
and that sets x to v(x) otherwise.

A timed automaton (TA) is a tuple A = (Q, q0, F,X,Act, T) where Q is a
finite set of states with initial state q0 ∈ Q and accepting states F ⊆ Q, X is a
finite set of clocks,Act is a finite alphabet of actions, T ⊆ Q×Φ(X)×2X×Act×Q

is a finite set of transitions (q, g, R, a, q′) where g is a guard, R is the set of clocks
that are reset and a is the action of the transition.

The semantics of a TA A is given by a transition system whose states are
configurations (q, v) ∈ Q×R

X
≥0. The initial configuration is (q0,0). We have delay

transitions: (q, v)
δ
−→ (q, v+δ) for δ ∈ R≥0, and action transitions: (q, v)

a
−→ (q′, v′)

5

if there exists a transition (q, g, R, a, q′) ∈ T such that v |= g and v′ = [R]v. A run
is a finite sequence of transitions starting from the initial configuration (q0,0).
A run is accepting is it ends in a configuration (q, v) with an accepting state
q ∈ F .

The reachability problem consists in deciding if a given TA A has an accepting
run. This problem is known to be Pspace-complete [1].

2.2 Symbolic Semantics

The reachability problem cannot be solved directly from A due to the uncount-
able number of configurations. The standard solution is to use symbolic seman-
tics of timed automata by grouping valuations together. A zone is a set of valua-
tions described by a conjunction of two kinds of constraints: xi#c and xi−xj#c

where xi, xj ∈ X , c ∈ Z and # ∈ {<,≤,=,≥, >}.
The zone graph ZG(A) of a timed automaton A = (Q, q0, F,X,Act, T) is a

transition system with nodes of the form (q, Z) where q ∈ Q and Z is a zone. The
initial node is (q0, Z0) where Z0 = {0+δ | δ ∈ R≥0}. The nodes (q, Z) with q ∈ F

are accepting. There is a transition (q, Z) ⇒ (q′, Z ′) if there exists a transition

(q, g, R, a, q′) ∈ T such that Z ′ = {v′ ∈ R≥0 | ∃v ∈ Z ∃δ ∈ R≥0 (q, v)
a
−→

δ
−→

(q′, v′)} and Z ′ 6= ∅. The relation ⇒ is well-defined as it can be shown that if Z
is a zone, then Z ′ is a zone. Zones can be efficiently represented by Difference
Bound Matrices (DBMs) [10] and the successor Z ′ of a zone Z can be efficiently
computed using this representation.

The zone graph ZG(A) is still infinite [9], and an additional abstraction step is
needed to obtain a finite transition system. An abstraction operator is a function
a : P(RX

≥0) → P(RX
≥0) such that W ⊆ a(W) and a(a(W)) = a(W) for every set

W of valuations. An abstraction operator defines an abstract symbolic semantics.
Similarly to the zone graph, we define the abstract zone graph ZGa(A). Its initial
node is (q0, a(Z0)) and we have a transition (q, Z) ⇒a (q′, a(Z ′)) if a(Z) = Z

and (q, Z) ⇒ (q′, Z ′).
In order to solve the reachability problem for A from ZGa(A), the abstraction

operator a should have the property that every run of A has a corresponding
path in ZGa(A) (completeness) and conversely, every path in ZGa(A) should
correspond to a run in A (soundness). Furthermore, ZGa(A) should be finite.
Several abstraction operators have been introduced in the literature [4, 9]. The
abstraction operator ExtraLU

+ [4] has all the required properties above. More-
over, the ExtraLU

+ abstraction of a zone is itself a zone. It can be computed
from the DBM representation of the zone. This allows to compute the abstract
zone graph efficiently using DBMs as a symbolic representation for zones. The
ExtraLU

+ abstraction is used by most implementation including the state-of-the-
art tool UPPAAL [2]. The theorem below reduces the reachability problem for

A to the reachability problem in the finite graph ZGExtraLU
+

(A).

Theorem 1 ([4]). There is an accepting run in A iff there exists a path in

ZGExtraLU
+

(A) from (q0,ExtraLU
+(Z0)) to some state (q, Z) with q ∈ F . Further-

more ZGExtraLU
+

(A) is finite.

6

Algorithm 1.1: Standard reachability algorithm for timed automaton A.

1 function reachability check(A)
2 W := {(q0,ExtraLU

+(Z0))} ; P := W // Invariant: W ⊆ P

3

4 while (W 6= ∅) do

5 take and remove a node (q, Z) from W

6 i f (q i s accep t ing)
7 return Yes
8 else

9 for each (q, Z) ⇒ExtraLU
+ (q′, Z′)

10 i f the re i s no (qB , ZB) ∈ P s . t . (q′, Z′) ⊆ (qB , ZB)
11 for each (qS, ZS) ∈ P such that (qS , ZS) ⊆ (q′, Z′)
12 remove (qS, ZS) from W and P

13 add (q′, Z′) to W and to P

14

15 return No

2.3 Reachability algorithm

Algorithm 1.1 is the standard reachability algorithm for timed automata. It

explores the finite abstract zone graph ZGExtraLU
+

(A) of an automaton A from
the initial node until it finds an accepting node, or it has visited the entire state-

space of ZGExtraLU
+

(A). It maintains a set of waiting nodes W and a set of visited
nodes P such that W ⊆ P .

Algorithm 1.1 uses zone inclusion to stop exploration, and this is essential
for its efficiency. We have (q, Z) ⊆ (q′, Z ′) when q = q′ and Z ⊆ Z ′. Notice
that zone inclusion is a simulation relation over nodes since zones are sets of
valuations. Zone inclusion is first used in line 10 to stop the exploration in (q, Z)
if there is a bigger node (qB , ZB) in P . It is also used in line 12 to only keep the
maximal nodes w.r.t. ⊆ in P and W .

Algorithm 1.1 does not specify any exploration strategy. As we have stressed
in the introduction, the search order greatly influences the number of nodes
visited by the algorithm and stored in the sets W and P . At first sight it may
seem strange why there should be a big difference between, say, BFS and DFS
search orders. The cause is the optimisation due to subsumption w.r.t. ⊆ in
lines 10 and 12. When equality on nodes is used instead of zone inclusion, every
node is visited. Hence, BFS and DFS coincide in the sense that they will visit the
same nodes, while not in the same order. The situation is very different with zone
inclusion. Consider again the two nodes (q2, Z2) ⊆ (q2, Z

′
2) in Figure 1b. Since

the smaller node (q2, Z2) is reached first, the entire subtrees of both nodes are
visited whereas it would be sufficient to explore the subtree of the bigger node
(q2, Z

′
2) to solve the reachability problem. Indeed, every node below (q2, Z2) is

simulated by the corresponding node below (q2, Z
′
2). Notice that the problem

occurs both with a DFS and with a BFS strategy since the bigger node (q2, Z
′
2)

7

is further from the root node than the smaller node (q2, Z2). When the bigger
node is found before the smaller one, as in Figure 1c, only the subtree of the
bigger node is visited. An optimal search strategy would guarantee that big
nodes are visited before small ones. In the remaining of the paper we propose
two heuristics to optimise the search order.

3 Ranking system

In this section we propose an exploration strategy to address the phenomenon we
have presented in the introduction: we propose a solution to stop the exploration
of the subtree of a small node when a bigger node is reached. As we have seen,
the late discovery of big nodes causes unnecessary explorations of small nodes
and their subtrees. In the worst case, the number of needlessly visited nodes may
be exponential (cf. Figure 2).

Our goal is to minimise the number of visited nodes as well as the number of
stored nodes (i.e. the size of P in Algorithm 1.1). Consider again the situation in
Figure 1b where (q3, Z3) ⊆ (q3, Z

′
3). When the big node (q3, Z

′
3) is reached, we

learn that exploring the small node (q3, Z3) is unnecessary. In such a situation,
Algorithm 1.1 erases the small node (q3, Z3) (line 10), but all its descendants
that are in the waiting list W will be still explored.

A first and straightforward solution would be to erase the whole subtree of the
small node (q3, Z3). Algorithm 1.1 would then proceed with the waiting nodes
in the subtree of (q3, Z

′
3). This approach is however too rudimentary. Indeed, it

may happen that the two nodes (q4, Z4) and (q4, Z
′
4) in Figure 1b are identical.

Then, erasing the whole subtree of (q3, Z3) will lead to exploring (q4, Z4) and all
its subtree twice. We have observed on classical benchmarks (see Section 5) that
identical nodes are frequently found. While this approach is correct, it would
result in visiting more nodes than the classical algorithm.

We propose a more subtle approach based on an interesting property of
Algorithm 1.1. Consider the two nodes (q4, Z4) and (q4, Z

′
4) in Figure 1b again,

and assume that (q4, Z
′
4) is reached after (q4, Z4). If the two nodes are identical,

then (q4, Z
′
4) is erased by Algorithm 1.1 in line 10, but (q4, Z4) is kept since it

has been visited first. Conversely, if the two nodes are different, we still have
(q4, Z4) ⊆ (q4, Z

′
4), then (q4, Z4) is erased by Algorithm 1.1 in line 10. Hence,

as the algorithm explores the subtree of (q3, Z
′
3), it progressively erases all the

nodes in the subtree of (q3, Z3) that are smaller than some node in the subtree
of (q3, Z

′
3). At the same time, it keeps the nodes that are identical to some node

below (q3, Z
′
3), hence avoiding several explorations of the same node.

Now, it remains to make all this happen before the subtree of (q3, Z3) is de-
veloped any further. This is achieved by giving a higher priority to (q3, Z

′
3) than

all the waiting nodes below (q3, Z3). This priority mechanism is implemented by
assigning a rank to every node.

Algorithm 1.2 below is a modified version of Algorithm 1.1 that implements
the ranking of nodes (the modifications are highlighted). Nodes are initialised
with rank 0. The rank of a node (q′, Z ′) is updated with respect to the ranks

8

of the nodes (qS , ZS) that are simulated by (q′, Z ′) (line 15). For each node
(qS , ZS), we compute the maximum rank r of the waiting nodes below (qS , ZS).
Then, rank(q′, Z ′) is set to max(rank(q′, Z ′), r+1) giving priority to (q′, Z ′) over
the waiting nodes below (qS , ZS).

Algorithm 1.2: Reachability algorithm with ranking of nodes for timed
automaton A. The set P is stored as a tree →.

1 function reachability check(A)

2 W := {(q0, ExtraLU
+(Z0))} ; P := W

3 init rank(q0, ExtraLU
+(Z0))

4

5 while (W 6= ∅) do

6 take and remove a node (q, Z) with highest rank from W
7 i f (q i s accept ing) then

8 return Yes
9 else

10 for each (q, Z) ⇒
ExtraLU

+ (q′, Z′)

11 init rank(q′, Z′)
12 i f the re i s no (qB , ZB) ∈ P s . t . (q′, Z′) ⊆ (qB , ZB) then

13 for each (qS , ZS) ∈ P s . t . (qS , ZS) ⊆ (q′, Z′)
14 i f (qS , ZS) 6∈ W then // imp l i e s not a l e a f node in P
15 rank(q′, Z′) := max(rank(q′, Z′), 1 + max rank waiting(qS , ZS))
16 remove (qS , ZS) from W and P
17 add (q′, Z′) to W and to P
18 return No
19

20 function max rank waiting (q, Z)
21 i f (q, Z) i s in W then // imp l i e s l e a f node in P
22 return rank(q, Z)
23 else

24 r := 0 ;
25 for each edge (q, Z) → (q′, Z′) in P
26 r := max(r,max rank waiting(q′, Z′))
27 return r
28

29 function init rank(q, Z)
30 i f Z i s the true zone then

31 rank(q, Z) := ∞
32 else

33 rank(q, Z) := 0

The function max rank waiting determines the maximal rank among waiting
nodes below (qS , ZS). To that purpose, the set of visited nodes P is stored as a
reachability tree. When a node (qS , ZS) is removed in line 16, its parent node is
connected to its child nodes to maintain reachability of waiting nodes. Observe
that the node (q′, Z ′) is added to the tree P in line 17 after its rank has been
updated in line 15. This is needed in the particular case where (qS , ZS) is an
ancestor of node (q′, Z ′) in line 15. The rank of (q′, Z ′) will be updated taking
into account the waiting nodes below (qS , ZS). Obviously, (q′, Z ′) should not be
considered among those waiting nodes, which is guaranteed since (q′, Z ′) does
not belong to the tree yet.

The intuition behind the use of ranks suggest one more useful heuristic.
Ranks are used to give priority to exploration from some nodes over the others.
Nodes with true zones are a special case in this context, since they can never
be covered, and in consequence it is always better to explore them first. We

9

(q1, Z1)

(q3, Z3) (q2, Z2)

(q4, Z4) (q3, Z′
3)

(q4, Z′
4)

. . .

⊆

⊆

Fig. 3: Reachability tree for Al-
gorithm 1.2 on the automaton in
Figure 1a.

s

.

v1 v2 vn

.

t

.

Fig. 4: Waiting strategy starts ex-
ploring from t only after all paths
leading to t are explored.

implement this observation by simply assigning the biggest possible rank (∞)
to such nodes (line 31 in the Algorithm).

Let us explain how the Algorithm 1.2 works on an example. Consider again
the automaton in Figure 1a. The final exploration graph is depicted in Figure 3.
When (q1, Z1) is visited, both (q3, Z3) and (q2, Z2) are put into the waiting list
W with rank 0. Recall that exploring (q3, Z3) first is the worst exploration order.
This adds (q4, Z4) to the waiting list with rank 0. The exploration of (q2, Z2)
adds (q3, Z

′
3) to the waiting list. At this stage, the rank of (q3, Z

′
3) is set to 1

since it is bigger than (q3, Z3) which is erased. The node (q3, Z
′
3) has the highest

priority among all waiting nodes and is explored next. This generates the node
(q4, Z

′
4) that is bigger than (q4, Z4). Hence (q4, Z4) is erased, (q4, Z

′
4) gets rank

1 and the exploration proceeds from (q4, Z
′
4). One can see that, when a big node

is reached, the algorithm not only stops the exploration of the smaller node
but also of the nodes in its subtree. Figure 3 shows a clear improvement over
Figure 1b.

4 Waiting strategy

We present an exploration strategy that will aim at reducing the number of
exploration mistakes: situations when a bigger node is discovered later than a
smaller one. The ranking strategy from the previous section reduced the cost of
a mistake by stopping the exploration from descendants of a small node when
it found a bigger node. By contrast, the waiting strategy of this section will not
develop a node if it is aware of some other parts of exploration that may lead to
a bigger node.

The waiting strategy is based on topological-like order on states of automata.
We first present this strategy on a single automaton. Then we consider networks

10

of timed automata, and derive a topological-like ordering from orderings on the
components. Before we start we explain what kind of phenomenon our strategy
is capturing.

To see what we aim at, consider the part of a timed automaton depicted in
Figure 4. There is a number of paths form state s to state t, not necessary of
the same length. Suppose the search strategy from (s, Z) has reached (t, Z1) by
following the path through v1. At this point it is reasonable to delay exploration
from (t, Z1) until all explorations of paths through v2, . . . , vk finish. This is be-
cause some of these explorations may result in a bigger zone than Z1, and in
consequence make an exploration from (t, Z1) redundant.

The effect of such a waiting heuristic is clearly visible on our example from
Figure 2. The automaton consists of segments: from q1 to q3, from q3 to q5, etc.
Every segment is a very simple instance of the situation from Figure 4 that we
have discussed in the last paragraph. There are two paths that lead from state
q1 to state q3. These two paths have different lengths, so with a BFS exploration
one of the paths will reach q3 faster than the other. The longest path (that one
going through q2) gives the biggest zone in q3; but BFS will no be able to use
this information; and in consequence it will generate exponentially many nodes
on this example. The waiting heuristic will collect all the search paths at states
q3, q5, . . . and will explore only the best ones, so its search space will be linear.

We propose to implement these ideas via a simple modification of the stan-
dard algorithm. The waiting strategy will be based on a partial order ⊑topo of
sates of A. We will think of it as a topological order of the graph of the automa-
ton (after removing cycles in some way). This order is then used to determine
the exploration order.

Algorithm 1.3: Reachability algorithm with waiting strategy

This algorithm is obtained from the standard Algorithm 1.1 by changing line 5 to
take and remove (q, Z) minimal w. r . t . ⊑topo from W

In the remaining of the section we will propose some simple ways of finding
a suitable ⊑topo order.

4.1 Topological-like ordering for a timed automaton

It is helpful to think of the order ⊑topo on states as some sort of topological
ordering, but we cannot really assume this since the graphs of our automata
may have loops. Given a timed automaton A, we find a linear order on the
states of A in two steps:

1. we find a maximal subset of transitions of A that gives a graph ADAG

without cycles;
2. then we compute a topological ordering of this graph.

Given an automaton A, the graph ADAG can be computed by running a
depth-first search (DFS) from the initial state of A. While traversing A, we only

11

consider the transitions that point downwards or sideways; in other words we
ignore all the transitions that lead to a state that is on the current search stack.
At the end of the search, when all the states have been visited, the transitions
that have not been ignored form a graph ADAG.

As an example, consider the timed automaton A in Figure 1a. The transition
from q4 to q1 is ignored when computing ADAG starting from q1. A topological-
like ordering is computed from the resulting graph: q1 ⊑topo q2 ⊑topo q3 ⊑topo q4.
Let us see how ⊑topo helps Algorithm 1.1 to explore bigger nodes first. Starting
from node (q1, true), Algorithm 1.1 adds (q2, true) and (q3, y > 1) to the waiting
list. Since q2 ⊑topo q3, the algorithm then explores node (q2, true), hence adding
node (q3, true) to the waiting list. The small node (q3, y > 1) is then automati-
cally erased, and the exploration proceeds from the big node (q3, true). Observe
that the exploration of the node (q3, y > 1) is postponed until the second path
reaches q3. Upon this stage, the zone inclusion relation will help to stop all ex-
plorations of smaller nodes; in our case it is (q3, y > 1). Thus, the algorithm
performs optimally on this example, no exploration step can be avoided.

4.2 Topological-like ordering for networks of timed automata

Real-time systems often consist of several components that interact with each
other. In order to apply the same approach we need to find an ordering on a
set of global states of the system. For this we will find an ordering for each
component and then extend it to the whole system without calculating the set
of global states.

We suppose that each component of a system is modelled by a timed au-
tomaton Ai = (Qi, q0i, Fi, Xi, Acti, Ti). The system is modelled as the prod-
uct A = (Q, q0, F,X,Act, T) of the components (Ai)1≤i≤k. The states of A
are the tuples of states of A1, . . . ,Ak: Q = Q1 × · · · × Qk with initial state
q0 = 〈q01, . . . , q0k〉 and final states F = F1 × · · · × Fk. Clocks and actions are
shared among the processes: X =

⋃
1≤i≤k Xi and Act =

⋃
1≤i≤k Acti. Inter-

actions are modelled by the synchronisation of processes over the same action.
There is a transition (〈q1, . . . , qn〉, g, R, a, 〈q′1, . . . , q

′
n〉) ∈ T if

– either, there are two processes i and j with transitions (qi, gi, Ri, a, q
′
i) ∈ Ti

and (qj , gj , Rj , a, q
′
j) ∈ Tj such that g = gi∧gj and R = Ri∪Rj , and q′l = ql

for every process l 6= i, j (synchronised action)
– or there is a process i with transition (qi, g, R, a, q′i) ∈ Ti such that for every

process l 6= i, a 6∈ Actl and q′l = ql (local action).

The product above allows synchronisation of 2 processes at a time. Our work
does not rely on a specific synchronisation policy, hence other models of interac-
tions (broadcast communications, n-ary synchronisation, etc.) could be consid-
ered as well. Notice that the product automaton A is, in general, exponentially
bigger than each component Ai.

The semantics of a network of timed automata (Ai)1≤i≤k is defined as the se-
mantics of the corresponding product automaton A. As a result, the reachability
problem for (Ai)1≤i≤k reduces to the reachability problem in A.

12

In order to apply the same approach as above, an ordering must be defined
on the states of A which are tuples q = 〈q1, . . . , qk〉 of states of the component
automata Ai. It would not be reasonable to compute the product automaton A
as its size grows exponentially with the number of its components. We propose an
alternative solution that consists in computing a topological-like ordering ⊑i

topo

for each component Ai. To that purpose, we can apply the algorithm introduced
in the previous section. Then, the ordering of tuples of states is defined pointwise:

Definition 1 (Joint ordering). For q, q′ ∈ Q1× · · ·×Qk, we have q ⊑topo q
′

if qi ⊑
i
topo q

′

i for all 1 ≤ i ≤ k.

Thus for networks of timed automata we consider the joint ordering in our
waiting strategy.

5 Experimental evaluation

We present and comment the experimental results that we have performed. The
results indicate that a mix of a ranking and waiting strategies avoids mistakes
in most the examples.

We have evaluated the ranking system (Section 3) and the waiting strat-
egy (Section 4) on classical benchmarks from the literature1: Critical Re-
gion (CR), Csma/Cd (C), Fddi (FD), Fischer (Fi), Flexray (Fl-PL)
and Lynch (L), and on the BlowUp (B) example in Figure 2. These automata
have no reachable accepting state, hence forcing algorithms to visit the entire
state-space of the automata to prove unreachability.

Our objective is to avoid mistakes during exploration of the state-space of
timed automata. At the end of the run of the algorithm, the set of visited nodes
P forms an invariant showing that accepting nodes are unreachable. Every node
that is visited by the algorithm and that does not belong to P at the end of the
run is useless to prove unreachability. This happens when the algorithm does
a mistake: it first visits a small node before reaching a bigger node later. We
aim at finding a search order that visits bigger nodes first, hence doing as few
mistakes as possible. Notice that it is not always possible to completely avoid
mistakes since the only paths to a big node may have to visit a small node first.

We compare three algorithms in Table 1: BFS the standard breadth-first
search algorithm2 (i.e. Algorithm 1.1), R-BFS which implements a breadth-first
search with priority to the highest ranked nodes (i.e. Algorithm 1.2) and TW-

BFS which combines giving highest priority to true-zone nodes and the waiting
strategy. We report on the number of visited nodes, the number of mistakes, the
maximum number of stored nodes, and the final number of stored nodes. We also
mention in column “visited ranking” the number of nodes that are re-visited to
update the rank of the nodes by algorithm R-BFS (line 15 in Algorithm 1.2).
The number of visited nodes gives a good estimate of the running time of the

1 The models are available from http://www.labri.fr/perso/herbrete/tchecker.
2 Algorithm 1.1 is essentially the algorithm that is implemented in UPPAAL [2].

13

algorithm, while the maximal number of stored nodes gives a precise indication
of the memory used for the set P .

The ranking system gives very good results on all models exceptCsma/Cd. It
makes no mistakes on Fischer and Lynch. This is due to the highest priority
given to true-zone nodes. Indeed, column “visited ranking” shows that ranks
are never updated, hence the nodes keep their initial rank. It also performs
impressively well on BlowUp, Fddi and Flexray, gaining several orders of
magnitude in the number of mistakes. However, it makes more mistakes than
BFS on Csma/Cd. Indeed, the ranking system is efficient when big nodes are
reached quickly, as the example in Figure 3 shows. When the big node (q3, Z

′
3)

is reached, the ranking system stops the exploration of the subtree of the small
node (q3, Z3) at (q4, Z4). However, making the path q1 → q2 → q3 longer in
the automaton in Figure 1a leads to explore a bigger part of the subtree of
(q3, Z3). If this path is long enough, the entire subtree of (q3, Z3) may be visited
before (q3, Z

′
3) is reached. The ranking system does not provide any help in this

situation. This bad scenario occurs in the Csma/Cd example.

We have experimented the waiting strategy separately (not reported in Ta-
ble 1). While the results are good on some models (BlowUp, Fddi, Csma/Cd),
the waiting strategy makes a lot more mistakes than the standard BFS on Lynch
and Flexray. Indeed, the waiting strategy is sensitive to the topological order-
ing. Consider the automaton in Figure 1a with an extra transition q3 → q2.
The loop on q2 and q3 may lead to different topological orderings, for instance
q1 ⊑topo q2 ⊑topo q3 ⊑topo q4 and q1 ⊑topo q3 ⊑topo q2 ⊑topo q4. These two
choices lead to very different behaviours of the algorithm. Once the initial node
has been explored, the two nodes (q3, y > 1) and (q2, true) are in the waiting
queue. With the first ordering, (q2, true) is selected first and generates (q3, true)
that cuts the exploration of the smaller node (q3, y > 1). However, with the sec-
ond ordering (q3, y > 1) is visited first. As a result, (q3, true) is reached too late,
and the entire subtree of (q3, y > 1) is explored unnecessarily. We have investi-
gated the robustness of the waiting strategy w.r.t. random topological orderings
for the models in Table 1. The experiments confirm that the waiting strategy is
sensitive to topological ordering. For most models, the best results are achieved
using the topological ordering that comes from running a DFS on the automaton
as suggested in Section 4.1.

The two heuristics perform well on different models. This suggests to com-
bine their strengths. Consider again the automaton in Figure 1a with an extra
transition q3 → q2. As explained above, due to the cycle on q2 and q3, sev-
eral topological orderings are possible for the waiting strategy. The choice of
q1 ⊑topo q3 ⊑topo q2 ⊑topo q4 leads to a bad situation where (q3, y > 1) is taken
first when the two nodes (q3, y > 1) and (q2, true) are in the waiting queue. As a
result, the node (q3, y > 1) is visited without waiting the bigger node (q3, true).
In such a situation, combining ranking and the waiting strategies helps. In-
deed, after (q3, y > 1) has been explored, the waiting queue contains two nodes
(q2, true) and (q4, 1 < y ≤ 5). Since q2 ⊑topo q4, the algorithm picks (q2, true),

14

hence generating (q3, true). As a true-zone node, (q3, true) immediately gets a
higher rank than every waiting node. Exploring (q3, true) generates (q4, y ≤ 5)
that cuts the exploration from the small node (q4, 1 < y ≤ 5).

We have tried several combinations of the two heuristics. The best one con-
sists in using the waiting strategy with priority to true zones. More precisely,
the resulting algorithm TW-BFS selects a waiting node as follows:

– True-zone nodes are taken in priority,
– If there is no true-zone node, the nodes are taken according to the waiting

strategy, and in BFS order.

As Table 1 shows, TW-BFS makes no mistake on all models but three. Crit-
ical Region has unavoidable mistakes: big nodes that can only be reached
after visiting a smaller node. The topological ordering used for Fddi is not opti-
mal. Indeed, there exists an optimal topological search order for which TW-BFS

makes no mistake, but it is not the one obtained by the algorithm presented
in Section 4.1. Finally, the algorithm makes a lot of mistakes on Flexray, but
the memory usage is almost optimal: the mistakes are quickly eliminated. This
example is the only one where applying the ranking heuristic clearly outperforms
TW-BFS.

We have also evaluated TW-BFS using randomised versions of the models in
Table 1. Randomisation consists in taking the transitions in a non-fixed order,
hence increasing the possibility of racing situations like in Figure 1. The experi-
ments show that the strategies are robust to such randomisation, and the results
on random instances are very close to the ones reported in the table.

The ranking strategy R-BFS requires to keep a tree structure over the passed
nodes. Using the classical left child-right sibling encoding, the tree can be repre-
sented with only two pointers per node. This tree is explored when the rank of a
node is updated (line 15 in Algorithm 1.2). Column “visited ranking” in Table 1
shows that these explorations do not inflict any significant overhead in terms of
explored nodes, except for Csma/Cd and Critical Region for which it has
been noticed above that algorithm R-BFS does not perform well. Furthermore,
exploring the tree is inexpensive since the visited nodes, in particular the zones,
have already been computed. Both the ranking strategy and the waiting strategy
require to sort the list of waiting nodes. Our prototype implementation based on
insertion sort is slow. However, preliminary experiments show that implementing
the list of waiting nodes as a heap turns out to be very efficient.

To summarise we can consider our findings from a practical point of view of
an implementation. The simplest to implement strategy would be to give priority
to true zones. This would already give some improvements, but for example for
Fddi there would be no improvement since there are no true zones. R-BFS gives
very good results on Flexray model its implementation is more complex than
TW-BFS strategy is relatively easy to implement and has very good performance
on all but one model, where it is comparable to standard BFS. This suggests that
TW-BFS could be used as a replacement for BFS.

15

BFS R-BFS TW-BFS

visited mist.
stored

visited mist.
stored visited

visited mist.
stored

final max final max ranking final max

B-5 63 52 11 22 16 5 11 11 13 11 0 11 11
B-10 1254 1233 21 250 31 10 21 21 28 21 0 21 21
B-15 37091 37060 31 6125 46 15 31 31 43 31 0 31 31

FD-8 2635 2294 341 439 437 96 341 341 579 349 8 341 341
FD-10 10219 9694 525 999 684 159 525 525 1168 535 10 525 525
FD-15 320068 318908 1160 18707 1586 426 1160 1160 4543 1175 15 1160 1160

C-10 39698 5404 34294 48286 59371 25077 34294 52210 54319 34294 0 34294 34302
C-11 98118 17233 80885 124220 153042 72157 80885 130557 160822 80885 0 80885 80894
C-12 239128 50724 188404 311879 378493 190089 188404 320181 430125 188404 0 188404 188414

Fi-7 11951 4214 7737 7738 7737 0 7737 7737 0 7737 0 7737 7737
Fi-8 40536 15456 25080 25082 25080 0 25080 25080 0 25080 0 25080 25080
Fi-9 135485 54450 81035 81038 81035 0 81035 81035 0 81035 0 81035 81035

L-8 45656 15456 30200 30202 30200 0 30200 30200 0 30200 0 30200 30200
L-9 147005 54450 92555 92558 92555 0 92555 92555 0 92555 0 92555 92555
L-10 473198 186600 286598 286602 286598 0 286598 286598 0 286598 0 286598 286598

CR-3 1670 447 1223 1223 1532 309 1223 1223 1837 1563 340 1223 1223
CR-4 21180 7440 13740 13740 17694 3954 13740 13740 24295 19489 5749 13740 13740
CR-5 285094 113727 171367 171367 216957 45590 171367 171367 307010 257137 85770 171367 171367

Fl-PL 881214 228265 652949 652949 655653 2704 652949 652949 6977 12660557 11997402 663155 684467

Table 1: Experimental results: BFS corresponds to Algorithm 1.1 with a BFS
order on the waiting nodes, R-BFS implements the ranking system on top of
the BFS algorithm (i.e. Algorithm 1.2), and TW-BFS implements the waiting
strategy with a priority to true-zone nodes.

6 Conclusion

We have analysed the phenomenon of mistakes in the zone based reachability
algorithm for timed automata. This situation occurs when the exploration algo-
rithm visits a node that is later removed due to a discovery of a bigger node.
It is well known that DFS exploration may suffer from an important number of
mistakes. We have exhibited examples where BFS makes an important number
of mistakes that can be avoided.

To limit the number of mistakes in exploration we have proposed two heuris-
tics: ranking system and the waiting strategy. The experiments on standard mod-
els show that, compared with the standard BFS reachability algorithm the strate-
gies using our heuristics give not only a smaller number of visited nodes, but
also a smaller number of stored nodes. Actually, on most examples our strate-
gies are optimal as they do not make any mistakes. In addition, the experiments
indicate that the TW-BFS strategy works often as good as the combination of
both waiting and ranking strategies, while its implementation is much simpler.
Therefore, we suggest to use the TW-BFS algorithm instead of standard BFS for
reachability checking.

Acknowledgements. The authors wish to thank Igor Walukiewicz for the many
helpful discussions.

References

1. Alur, R., Dill, D.L.: A theory of timed automata. Theoretical computer science
126(2), 183–235 (1994)

16

2. Behrmann, G., David, A., Larsen, K., Haakansson, J., Pettersson, P., Yi, W.,
Hendriks, M.: Uppaal 4.0. In: QEST. pp. 125–126. IEEE Computer Society (2006)

3. Behrmann, G.: Distributed reachability analysis in timed automata. International
Journal on Software Tools for Technology Transfer 7(1), 19–30 (2005)

4. Behrmann, G., Bouyer, P., Larsen, K.G., Pelánek, R.: Lower and upper bounds
in zone-based abstractions of timed automata. International Journal on Software
Tools for Technology Transfer 8(3), 204–215 (2006)

5. Behrmann, G., Fehnker, A.: Efficient guiding towards cost-optimality in UPPAAL.
In: TACAS. pp. 174–188 (2001)

6. Behrmann, G., Hune, T., Vaandrager, F.W.: Distributing timed model checking -
how the search order matters. In: CAV. pp. 216–231 (2000)

7. Behrmann, G., Larsen, K.G., Pelánek, R.: To store or not to store. In: CAV. pp.
433–445 (2003)

8. Braberman, V., Olivero, A., Schapachnik, F.: Zeus: A distributed timed model-
checker based on Kronos. Electronic notes in theoretical computer science 68(4),
503–522 (2002)

9. Daws, C., Tripakis, S.: Model checking of real-time reachability properties using
abstractions. In: TACAS, pp. 313–329. Springer (1998)

10. Dill, D.L.: Timing assumptions and verification of finite-state concurrent systems.
In: Automatic verification methods for finite state systems. pp. 197–212. Springer
(1989)

11. Evangelista, S., Kristensen, L.: Search-order independent state caching. T. Petri
Nets and Other Models of Concurrency 4, 21–41 (2010)

12. Godefroid, P., Holzmann, G.J., Pirottin, D.: State-space caching revisited. Formal
Methods in System Design 7(3), 227–241 (1995)

13. Pleánek, R., Rosecký, V., Sedenka, J.: Evaluation of state caching and state com-
pression techniques. Tech. rep., Masaryk University, Brno (2008)

