
Knowledge transfer in deep block-modular
neural networks

Alexander V. Terekhov, Guglielmo Montone, and J. Kevin O’Regan

Laboratoire Psychologie de la Perception
Université Paris Descartes

75006 Paris, France
avterekhov@gmail.com,montone.guglielmo@gmail.com,

kevin.oregan@parisdescartes.fr

http://lpp.psycho.univ-paris5.fr/feel

Abstract. Although deep neural networks (DNNs) have demonstrated
impressive results during the last decade, they remain highly specialized
tools, which are trained – often from scratch – to solve each particular
task. The human brain, in contrast, significantly re-uses existing capaci-
ties when learning to solve new tasks. In the current study we explore a
block-modular architecture for DNNs, which allows parts of the existing
network to be re-used to solve a new task without a decrease in perfor-
mance when solving the original task. We show that networks with such
architectures can outperform networks trained from scratch, or perform
comparably, while having to learn nearly 10 times fewer weights than the
networks trained from scratch.

Keywords: deep learning, neural networks, modular, knowledge trans-
fer

1 Introduction

Deep Neural Networks (DNN) have demonstrated impressive results in the last
10-15 years. They have established new benchmarks in such tasks as the clas-
sification of hand-written digits [14], object recognition [17], speech recognition
[12], machine translation [23] and many others. These successes can mainly be
attributed to the use of pre-training [7,21], sharing [16], and various forms of
regularization [8,10], as well as to increases in computational capacity and data
availability [22].

In spite of these impressive results, DNNs are still unable to match humans
in the diversity of tasks we can solve and the ease which we learn. For example,
we are able to progressively accumulate and abstract knowledge from previous
experiences and re-use this knowledge to perform new tasks. On the contrary,
in DNNs learning a new task tends to erase the knowledge about the previous
tasks — a phenomenon known as catastrophic forgetting [20].

This specialization contrasts with the operating principles of the human ner-
vous system, as it is well known that the brain re-uses existing structures when

ar
X

iv
:1

90
8.

08
01

7v
1 

 [
cs

.N
E

] 
 2

4 
Ju

l 2
01

9

http://lpp.psycho.univ-paris5.fr/feel


2 A.V. Terekhov, G. Montone, J.K. O’Regan

learning a new task [1,6]. Ideally, we would like neural networks to possess simi-
lar capacities and operating principles. Imagine a neural network NN1 has been
trained on task T1, and we would like to have a new network NN2 which solves
task T2, where T1 and T2 share common features. If we simply take the network
NN1 and train it on T2, it will most probably perform more poorly when solving
T1 after retraining. Of course, we can make an exact copy of NN1 and then train
it on T2, but this is computationally cumbersome. Moreover, when using such
a paradigm, we will simply obtain a collection of networks which are all very
specialized and all work independently from one another. Rather, we would like
to have a system that re-uses features learned in task T1 to solve task T2, and
eventually, after having learned a number of tasks, would re-use relevant features
from all (or more likely some) previous tasks to solve a new task.

The idea of exploiting features learned in a previous task when solving a
new task is not original in the field of artificial neural networks. Simultaneous
learning of multiple related tasks can lead to improves the performance in DNNs
[5] especially if the training data is limited in one of the tasks [18]. The studies
with sequential learning of multiple tasks are rare. In work by Gutstein and
colleagues [13] a multi-layer convolutional neural net was trained to recognize
a set of digits. It was then shown that the same network, when trained on a
second set of digits, achieved better performance when only the upper layers
of the network – and not the entire network – were re-trained on the second
task. Clearly the main problem with this kind of architecture is that learning
a new task necessarily undermines those previously learned [11]. The problem
of solving several tasks has been addressed in modular neural networks. These
networks are able to detect different training patterns, corresponding to different
tasks, and allocate different sub-networks to learn them [15,19].

In the current paper we explore an alternative approach to training DNNs,
partly inspired by modular NNs. This approach will allow the network to learn a
new task by exploiting previously learned features. At the same time, the learning
procedure is such that training on a new task will not affect the performance of
the network on the previously learned tasks. Our procedure consists of training
an initial network on a task, and then, instead of copying the network and
training it on a new task, adding blocks of neurons to the original network and
learning the connections between the neurons in the original network and the
neurons in the introduced blocks. We repeat this procedure on multiple tasks,
showing that the final architecture is able to learn a new task by adding a
rather small number of blocks of neurons and connection weights to the original
network, when compared with a number of neurons and connection weights in a
network which must learn the new task from scratch.

The paper is organized as follows: in the next section we describe the struc-
ture of the neural networks used and the techniques used to add blocks of neurons
to such networks. In the Methods section we present the tasks on which we train
different networks. We then provide details on the networks and on the learning
algorithm. Finally, in the Results section we report the performance of the net-



Knowledge transfer in deep block-modular neural networks 3

works which learned from scratch and those which learned by adding blocks of
neurons to existing networks.

1.1 Block-modular network architecture

Consider a neural network with an input layer, multiple hidden layers, and an
output layer such as the one presented in Figure 1a. Such a network, after being
trained on a certain task, T1, has definite values of weights and biases. We
create a new network by adding neurons to each of the layers, including the
output layer, as shown in Figure 1b. We refer to the added neurons as block
neurons.

The first layer block neurons receive projections from the input only, and
in this aspect are qualitatively similar to the original first-layer neurons. The
second-layer hidden block neurons receive inputs from both the first layer original
neurons and the first layer block neurons. This pattern is repeated for all hidden
layers. The output layer block neurons receive inputs from the last hidden layer
of both original and block neurons.

In the current study we explore the applicability of such an architecture to
classification tasks. We use softmax units in the output layer, which we refer to
as the classification layer. Note that the softmax is computed independently for
the original and block classification layer neurons. We train the original network
on a task T1 and then train the weights of the block neurons on a task T2. The
resulting network is then able to perform both tasks T1 and T2. Note that such
a network has two classifiers: one for T1 (original classification neurons) and one
for T2 (block classification neurons).

We also consider variations of this type of block network. Most frequently, we
add blocks to all layers, except for the first hidden layer, as illustrated in Figure
1c. In this situation the neural network does not receive raw input information;
its only inputs are the outputs of the first hidden layer of the original network.
As in the previous case (Figure 1b), only the weights to the block neurons are
learned.

Additionally, we make use of several original networks, trained for different
tasks. An example of adding blocks to a pair of original networks is presented in
Figure 1d. Both original networks remain unaffected by the introduction of new
neurons. The block neurons receive inputs from both of the original networks,
and only connection weights to the block neurons are changed when learning a
new task.

2 Methods

2.1 Tasks

The driving force behind our suggested architectures (e.g. Figure 1b-d) is the idea
that the added neurons (being trained on task T2) will re-use the capacities of
the original neurons (trained on task T1) whenever these capacities are relevant



4 A.V. Terekhov, G. Montone, J.K. O’Regan

original original block original block original #1 original #2 block

a b c d

T1 T2 T2 T3

Fig. 1. (a) The architecture of the original network. We use a feedforward network
with three hidden layers. (b) An additional block of neurons is added to each layer
of the network. This is represented by the neurons in a dashed box. Each layer of
the additional block is fully connected with the layer directly above and/or below
within the block itself and with the layer below in the original network. (c) One of the
architectures most used in the present work. The architecture is based on an original
network trained on a first task T1. A block of two hidden layers was added to the
original network. The neurons were added at the second and third hidden layers only.
The resulting architecture was trained on a second task T2. (d) Adding blocks to two
original networks. The dashed boxes indicate the layers of the two original networks
and the blocks added. An arrow connecting two boxes indicates that all the neurons in
the first box are connected to all the neurons in the second box.

to the new task (T2). Of course, such re-use will be most efficient when the tasks
T1 and T2 have something in common.

In order to explore the possibility of the re-use of network capacities we
designed several tasks which, to a human observer, involve the notions of line
and angle. Specifically, we designed six tasks, as illustrated in Figure 2.

In each task the stimuli were gray scale images, 32 x 32 pixels in size. Each
image contained two to four line segments, each at least 13 pixels long (30% of
the image diagonal). The distance between the end points of each line segment
and every other line segment was at least 4 pixels (10% of the image diagonal).
In order to obtain anti-aliased images, the lines were first generated on a grid
three times larger (96 x 96). The images were then filtered with a Gaussian filter
with sigma equal to 3 pixels, and downsampled to the final dimensions of 32 x 32
pixels.

We used the following conditions (see illustrations in Figure 2).

ang crs: requires classifying the images into those containing an angle (be-
tween 20◦ and 160◦) and a pair of crossing line segments (the crossing point
must lay between 20% and 80% along each segment’s length).

ang crs line: the same as ang crs, but has an addition line segment crossing
neither of the other line segments.

ang tri ln: distinguishes between images containing an angle (between 20◦

and 160◦) and a triangle (with each angle between 20◦ and 160◦ ); each image
also contains a line segment crossing neither angle nor triangle.



Knowledge transfer in deep block-modular neural networks 5

a b c d e f

Fig. 2. Examples of stimuli: (a) ang crs – line segments forming an angle vs. two
crossing line segments; (b) ang crs line – same, with an additional non-crossing line
segment; (c) ang tri ln – angle vs. triangle; (d) blnt shrp – blunt angle vs. sharp angle;
(e) blnt shrp ln – same, with a non-crossing line segment; (f) crs ncrs – two crossing
line segments vs. two non-crossing line segments.

blnt shrp: requires classifying the images into those having blunt (between
100◦ and 160◦) and those having sharp (between 20◦ and 80◦) angles in them.

blnt shrp ln: the same as blnt shrp, but has an additional line segment, cross-
ing neither of the line segments forming the angle.

crs ncrs: distinguishes between a pair of crossing and a pair of non-crossing
lines (the crossing point must lay between 20% and 80% of each segment length).

Each stimulus was generated by randomly selecting an appropriate number
of points and verifying that all conditions were satisfied. Each image was then
combined with a random background, Ibackground. Four different types of random
background were generated with four patterns changing with different velocities.
In particular a grid of step size s with s ∈ {3, 7, 11, 15} was superimposed onto
a 32 x 32 image. The values of the pixels corresponding to the grid nodes were
randomly drawn from a uniform distribution between 0.1 and 0.9. The values of
the remaining image pixels were obtained by linearly interpolating the randomly
drawn ones. We used positive and negative stimuli. The positive stimuli were
defined by the formula:

Ipositive(x, y) = εIbackground + (1− ε)Istimulus,

where ε was randomly selected between 0.1 and 0.4 for each stimulus.

The negative stimuli were defined as Inegative = 1− Ipositive
For our experiments we generated 700,000 stimuli for each condition.

2.2 Neural Network details

Original neural networks The original neural networks had three hidden
layers and one classification layer with two softmax neurons:

zi =
exi

ex1 + ex2
,

where zi is the output of the i-th classification neuron (i = 1, 2), and xi is the
activation of the corresponding neuron.



6 A.V. Terekhov, G. Montone, J.K. O’Regan

Each of the hidden neurons had a rectified linear activation function:

y = x+ =

{
x, x ≥ 0,
0, x < 0.

where y is the output of this neuron and x is its activation.
The activation of the i-th neuron at the k-th level (with m(k) neurons) was

computed as a weighted sum of the outputs of neurons from the previous layer:

x
(k)
i =

m(k)∑
j=1

w
(k)
ji y

(k−1)
j + b

(k)
i

Here b
(k)
i is the bias.

For the first hidden layer, the activation was computed as a weighted sum of
the inputs.

For every task, the original neural network had three hidden layers with 200,
100 and 50 neurons, respectively, and one classification layer with 2 neurons.
The network received a vector of image pixels, which was of dimension 1024.

Block neural networks We used several block neural network configurations.
The block neural network always had two softmax output neurons. The structure
of the hidden layers is described by a triplet of numbers. For example, the triplet
100-50-25 represents 100 neurons added to the first layer, 50 to the second, and
25 to the third (see Figure 1b). In many cases the block network only received
inputs from the first layer of the original network (see Figure 1c), rather than
from the stimuli directly. In these cases the first number in the triplet is zero,
e.g. 0-50-50.

Cost function The network was trained to minimize a cost function J which
combined three terms: the quality of the prediction J1, the sparsity of the neu-
rons’ activation J2, and the values of the weights J3:

J = J1 + βJ2 + λJ3

The quality of the prediction was measured using the negative log-likelihood
of the prediction given the data:

J1 = − 1

N

N∑
n=1

log zi(n)(x
(0)
n )

where x
(0)
n is the n-th training example, zi(n) is the output of the classifier

corresponding to the correct answer.
The sparsity term of the cost function requires that each neuron in the hidden

layer be active for ρN samples from the training data and silent otherwise. This



Knowledge transfer in deep block-modular neural networks 7

measure was evaluated using the KL divergence [4]:

J2 =

M−1∑
k=1

mk∑
j=1

ρ log
ρ

ρ
(k)
j

+ (1− ρ) log
1− ρ

1− ρ(k)j

,

where ρ
(k)
j is the average activation of the j-th neuron in the k-th layer, M is

the number of layers (we do not apply this regularization to the classification
layer), and m(k) is the number of neurons in the k-th layer.

The third term in the cost function is simply

J3 =

M−1∑
k=1

mk∑
j=1

mk−1∑
i=1

(
w

(k)
ij

)2
.

The target sparseness ρ was set to 0.05, and the coefficient β was equal to
0.01. The weight-limiting coefficient λ was set to 0.0001.

Training The weights of the k-th hidden level were initialized with random
uniformly distributed values in the range ±

√
6/(n(k−1) + n(k)), where n(k) is the

number of neurons in the k-th layer and n(0) is equal to the number of inputs.
This initialization has been recommended for networks with tanh activation
function [9]; in the current study we used rectified linear units, but we kept the
initalization range the same for compatibility with our pilot studies.

The total dataset was split into training (680,000 samples), validation (10,000
samples), and test (10,000 samples) datasets. The neural network was trained
on the entire training dataset using mini-batch gradient descent learning with a
batch size of 20. The initial update rate for the gradient descent was set to 0.01
and it decreased by a factor of 0.985 after every epoch. We used early stopping of
the training process if the error on the validation dataset did not decrease after 5
epochs. The test score corresponding to the minimal validation error is presented
as the performance of the network. Every condition was repeated 5 times, and
the performance of the network was evaluated by the median value of the error.

Implementation All code was written in python using Theano [2,3]. Source
files are available online: https://github.com/feel-project/abstraction

3 Results

We first present the results for the original networks, which were trained from
scratch on each task. Then we present the results for the networks produced by
adding blocks to the original networks and training the added weights on new
tasks. We compare the performance of such networks to the original ones. Given
the large number of permutations of weights and tasks, all possible combina-
tions were not studied. Instead we tried to examine a sample set that gives an
understanding of the performance of block-modular networks.

https://github.com/feel-project/abstraction


8 A.V. Terekhov, G. Montone, J.K. O’Regan

Original neural networks The performance of the original neural networks
is presented in Table 1. These results show that adding a line to the image (e.g.
Figure 2ad vs. 2be) made the task significantly more complicated. The first layer
weights learned by the network are shown in Figure 3. Interestingly, visually, the
weights are rather similar for blnt shrp and blnt shrp ln, as well as for ang crs
and ang crs ln.

angle_crossing angle_crossing_linea b c angle_triangle_line

blunt_sharp blunt_sharp_lined e f crossing_noncrossing

Fig. 3. Examples of weights. Weights (normalized) correspond to randomly selected
first layer neurons of original networks trained to perform the corresponding tasks.

Adding 0-50-50 and 0-100-50 blocks to original networks We tested
whether the networks performing ang crs and blnt shrp tasks could be re-used
to perform ang crs ln and blnt shrp ln tasks by adding blocks to the original
networks. In spite of the apparent similarity of the first-layer weights for both
tasks (see Figure 3), adding block networks resulted in rather poor performance
on tasks with lines (compare results in Table 1 and 2). The results improved
slightly when more neurons were added at the second hidden layer.

Re-using ang crs ln for ang crs and blnt shrp ln for blnt shrp, yielded compa-
rable performance on ang crs and improved performance on blnt shrp compared
to that of the corresponding original networks. This, however, could be partially



Knowledge transfer in deep block-modular neural networks 9

Table 1. The performance of the original 200-100-50 networks on different tasks.

condition performance

ang crs 3.1 (2.4–3.6)
ang crs ln 7.8 (6.7–9.0)
ang tri ln 3.6 (3.0–4.1)
blnt shrp 1.2 (0.8–1.4)
blnt shrp ln 4.1 (3.6–5.2)
crs ncrs 1.6 (1.3–2.6)

The numbers correspond to median (min–max) percentage of misclassified examples.

attributed to the fact that the tasks are similar and, as such, re-using the original
network on a new task in some sense increases the available training data.

We also attempted to re-use the network trained on one task to perform tasks
that were more substantially different, such as ang crs ln for ang tri ln. In spite
of certain similarities in the weights in both tasks (Figure 3bc), the performance
was rather poor compared to that of the corresponding original network.

Table 2. Adding blocks to original networks.

condition 0-50-50 0-100-50 50-50-50 100-50-50

ang crs ln (ang crs) 9.0 (8.5–9.4) 8.2 (7.8–8.5) 7.7 (7.4–8.7) 7.5 (7.0–9.0)
blnt shrp ln (blnt shrp) 6.6 (6.0–7.1) 5.9 (5.2-6.2) 5.5 (5.2–5.9) 5.0 (4.7–5.3)
ang crs (ang crs ln) 2.7 (2.4–3.3) 2.7 (2.4–3.2) 2.9 (2.5–3.3) 2.8 (2.6–3.5)
blnt shrp (blnt shrp ln) 0.8 (0.7–1.0) 0.7 (0.6–0.8) 0.8 (0.7–0.9) 0.7 (0.7–0.9)
ang tri ln (ang crs ln) 6.7 (6.3–7.6) 5.6 (5.0–6.6) 4.8 (4.2–5.5) 4.3 (3.8–4.9)
blnt shrp ln (ang crs ln) 7.8 (7.4–8.2) 6.6 (6.2–7.1) 5.0 (4.6–5.1) 4.3 (4.3–4.6)
ang crs ln (ang tri ln) 12.4 (11.8–13.4) 10.4 (10.1–11.2) 8.9 (8.7–10.2) 7.8 (7.4–8.6)
ang crs ln (blnt shrp ln) 13.0 (12.8–13.4) 11.7 (10.4–12.8) 10.0 (9.5–10.4) 8.8 (8.5–9.6)

The name of the task on which the block neurons were trained is followed by the
name of the task on which the original networks were trained (in brackets). The cases

when the block networks outperform the original ones are marked with bold font.

Adding 50-50-50 and 100-50-50 blocks to original networks One poten-
tial reason for the poor performance of the block networks discussed above is
that they did not receive stimuli as inputs, but only the outputs of the first layer
of the original neural networks. To test this hypothesis we added blocks which
had 50 or 100 neurons in the first layer in addition to neurons in the other lay-
ers. These results are presented in Table 2. This modification yielded substantial
improvement, with some of the conditions performing better than the original
networks.



10 A.V. Terekhov, G. Montone, J.K. O’Regan

Adding blocks to pairs of networks The previous observation suggested
that having a richer first hidden layer may improve the performance of block
networks. We further explored this by creating block networks based on pairs of
original networks (see Figure 1d). The results are presented in Table 3. Clearly,
block networks with an empty first layer performed comparably to or better than
the original networks. It must be noted that the block networks learned an order
of magnitude fewer parameters. Each original network had approximately 105

parameters, while each block network had about 2·104 which were not shared
with original networks (for 0-50-50 blocks). Adding neurons to the first hidden
layer provided additional improvement, as shown in the last column of Table 3.

Table 3. Adding blocks to pairs of original networks.

condition 0-50-50 0-100-50 50-50-50

ang crs ln (ang tri ln+crs ncrs) 8.8 (8.5–9.0) 8.3 (7.3–8.4) 7.7 (7.6–7.8)
ang crs ln (ang tri ln+blnt shrp ln) 8.3 (7.9–9.2) 7.5 (7.3–8.4) 7.9 (7.7–8.5)
blnt shrp (ang tri ln+crs ncrs) 1.0 (0.9–1.2) 0.9 (0.8–1.0) 0.9 (0.8–1.0)
blnt shrp (ang tri ln+ang crs ln) 0.8 (0.7–0.9) 0.7 (0.7–0.8) 0.8 (0.6–0.9)
blnt shrp (ang tri ln+blnt shrp ln) 0.6 (0.6–0.7) 0.6 (0.6–0.8) 0.6 (0.5–0.7)
blnt shrp ln (ang tri ln+ang crs ln) 4.1 (3.9–4.4) 3.8 (3.2–4.1) 3.6 (3.4–4.0)
blnt shrp ln (ang tri ln+crs ncrs) 5.0 (4.3–5.1) 4.4 (4.1–4.6) 4.0 (3.9–4.3)
ang crs (ang tri ln+blnt shrp ln) 3.2 (3.0–3.9) 3.1 (2.8–3.3) 3.1 (2.6–3.6)
ang crs (ang tri ln+ang crs ln) 2.2 (2.1–2.6) 2.2 (1.8–2.7) 2.3 (2.0–2.7)

Adding blocks to triplets of networks The results of adding blocks to
triplets of networks are presented in Table 4. They show that having three orig-
inal networks improved the performance of the block network. For example,
using three original networks (ang tri ln+crs ncrs+blnt shrp ln) a block which
is trained for ang crs outperformed a similar network learned from scratch. In-
terestingly, for blnt shrp ln, combining multiple original networks (two or three)
and adding a block with an empty first layer was more efficient than adding
a block with 100 neurons in the first hidden layer to a single original network
(compare Tables 1–4). The respective number of trained weights was also smaller
in the former case.

4 Conclusions

Our results suggest that adding blocks to neural networks can be an efficient
way to obtain networks capable of performing several tasks. In certain cases such
composite networks outperform the networks trained from scratch, while having
almost one order of magnitude fewer weights. Also, we observed a smaller range
of variability in performance for block networks when compared to the original
networks. Adding fewer new weights offers a significant gain in computational



Knowledge transfer in deep block-modular neural networks 11

Table 4. Adding blocks to triplets of original networks.

condition 0-50-50

ang crs (ang tri ln+crs ncrs+blnt shrp) 3.2 (3.1–3.5)
ang crs (ang tri ln+ang crs ln+crs ncrs) 2.3 (2.1–2.7)
ang crs (ang tri ln+crs ncrs+blnt shrp ln) 2.9 (2.7–3.2)
ang crs ln (ang tri ln+crs ncrs+blnt shrp ln) 7.8 (7.3–8.2)
ang crs ln (ang tri ln+crs ncrs+blnt shrp) 8.4 (8.2–8.6)
blnt shrp (ang crs+ang tri ln+crs ncrs) 0.7 (0.7–0.8)
blnt shrp (ang crs ln+ang tri ln+crs ncrs) 0.7 (0.7–0.8)
blnt shrp ln (ang crs ln+ang tri ln+crs ncrs) 4.0 (3.5–4.1)
blnt shrp ln (ang crs+ang tri ln+crs ncrs) 3.9 (3.4–4.2)

time if the stimuli are to be tested for all tasks. The performance of the block
networks can be partly explained by the pre-training effect; the original network
trained on its task can be considered as a pre-trained sub-network for a new task,
to which the added block is trained. Another reason for better performance could
be the increase in available training data. Since the tasks share some similarities,
certain features could be learned from both original and new datasets. Pilot
computational experiments show that the improvement offered by the block
networks becomes more significant when the amount of training data is reduced
for both the original and new tasks. This ability to re-use features from different
datasets may be beneficial for practical problems where it is often difficult to
collect a large amount of training data for a specific task.

Acknowledgments. This work was funded by the European Research Council
(FP 7 Program) ERC Advanced Grant “FEEL” to KO’R

References

1. Anderson, M.L.: Neural reuse: A fundamental organizational principle of the brain.
Behavioral and brain sciences 33(04), 245–266 (2010)

2. Bastien, F., Lamblin, P., Pascanu, R., Bergstra, J., Goodfellow, I.J., Bergeron, A.,
Bouchard, N., Bengio, Y.: Theano: new features and speed improvements. Deep
Learning and Unsupervised Feature Learning NIPS 2012 Workshop (2012)

3. Bergstra, J., Breuleux, O., Bastien, F., Lamblin, P., Pascanu, R., Desjardins, G.,
Turian, J., Warde-Farley, D., Bengio, Y.: Theano: a CPU and GPU math expres-
sion compiler. In: Proceedings of the Python for Scientific Computing Conference
(SciPy) (Jun 2010), oral Presentation

4. Bradley, D.M., Bagnell, J.A.: Differential sparse coding (2008)

5. Collobert, R., Weston, J.: A unified architecture for natural language processing:
Deep neural networks with multitask learning. In: Proceedings of the 25th inter-
national conference on Machine learning. pp. 160–167. ACM (2008)

6. Dehaene, S., Cohen, L.: Cultural recycling of cortical maps. Neuron 56(2), 384–398
(2007)



12 A.V. Terekhov, G. Montone, J.K. O’Regan

7. Erhan, D., Manzagol, P.A., Bengio, Y., Bengio, S., Vincent, P.: The difficulty of
training deep architectures and the effect of unsupervised pre-training. In: Inter-
national Conference on artificial intelligence and statistics. pp. 153–160 (2009)

8. Girosi, F., Jones, M., Poggio, T.: Regularization theory and neural networks ar-
chitectures. Neural computation 7(2), 219–269 (1995)

9. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward
neural networks. In: International conference on artificial intelligence and statistics.
pp. 249–256 (2010)

10. Glorot, X., Bordes, A., Bengio, Y.: Deep sparse rectifier networks. In: Proceedings
of the 14th International Conference on Artificial Intelligence and Statistics. JMLR
W&CP Volume. vol. 15, pp. 315–323 (2011)

11. Goodfellow, I.J., Mirza, M., Xiao, D., Courville, A., Bengio, Y.: An empirical
investigation of catastrophic forgetting in gradient-based neural networks. arxiv p.
1312.6211 (2013)

12. Graves, A., Mohamed, A.R., Hinton, G.: Speech recognition with deep recurrent
neural networks. In: Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE
International Conference on. pp. 6645–6649. IEEE (2013)

13. Gutstein, S., Fuentes, O., Freudenthal, E.: Knowledge transfer in deep convolu-
tional neural nets. International Journal on Artificial Intelligence Tools 17(03),
555–567 (2008)

14. Hinton, G., Osindero, S., Teh, Y.W.: A fast learning algorithm for deep belief nets.
Neural computation 18(7), 1527–1554 (2006)

15. Jordan, M.I., Jacobs, R.A.: A competitive modular connectionist architecture. In:
Advances in Neural Information Processing Systems. pp. 767–773 (1991)

16. LeCun, Y., Bengio, Y.: Convolutional networks for images, speech, and time series.
The handbook of brain theory and neural networks 3361, 310 (1995)

17. Lee, H., Grosse, R., Ranganath, R., Ng, A.Y.: Convolutional deep belief networks
for scalable unsupervised learning of hierarchical representations. In: Proceedings
of the 26th Annual International Conference on Machine Learning. pp. 609–616.
ACM (2009)

18. Liu, X., Gao, J., He, X., Deng, L., Duh, K., Wang, Y.Y.: Representation learning
using multi-task deep neural networks for semantic classification and information
retrieval

19. Lu, B.L., Ito, M.: Task decomposition and module combination based on class
relations: a modular neural network for pattern classification. Neural Networks,
IEEE Transactions on 10(5), 1244–1256 (1999)

20. McCloskey, M., Cohen, N.J.: Catastrophic interference in connectionist networks:
The sequential learning problem. Psychology of learning and motivation 24, 109–
165 (1989)

21. Salakhutdinov, R., Hinton, G.: An efficient learning procedure for deep boltzmann
machines. Neural computation 24(8), 1967–2006 (2012)

22. Schmidhuber, J.: Deep learning in neural networks: An overview. Neural Networks
61, 85–117 (2015)

23. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural
networks. In: Advances in Neural Information Processing Systems. pp. 3104–3112
(2014)


	Title
	1 Introduction
	1.1 Block-modular network architecture

	2 Methods
	2.1 Tasks
	2.2 Neural Network details
	Original neural networks
	Block neural networks
	Cost function
	Training
	Implementation


	3 Results
	Original neural networks
	Adding 0-50-50 and 0-100-50 blocks to original networks
	Adding 50-50-50 and 100-50-50 blocks to original networks
	Adding blocks to pairs of networks
	Adding blocks to triplets of networks


	4 Conclusions


