Skip to main content

Worm-Like Robotic Locomotion with a Compliant Modular Mesh

  • Conference paper
  • First Online:
Biomimetic and Biohybrid Systems (Living Machines 2015)

Abstract

In order to mimic and better understand the way an earthworm uses its many segments to navigate diverse terrain, this paper describes the design, performance, and sensing capabilities of a new modular soft robotic worm. The robot, Compliant Modular Mesh Worm (CMMWorm), utilizes a compliant mesh actuated at modular segments to create waveforms along its body. These waveforms can generate peristaltic motion of the body similar to that of an earthworm. The modular mesh is constructed from 3-D printed and commercially available parts allowing for the testing of a variety of components that can be easily interchanged. In addition to having independently controlled segments and interchangeable mesh properties, CMMWorm also has greater range of contraction (52% of maximum diameter) than our previous robot Softworm (73% of maximum diameter). The six-segment robot can traverse flat ground and pipes. We show that a segment is able to detect the wall of a pipe and return to its initial position using actuator-based load-sensing. A simple kinematic model predicts the outer diameter of the worm robot’s mesh as a function of encoder position.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alart, P., Curnier, A.: A mixed formulation for frictional contact problems prone to Newton like solution methods. Comput. Methods Appl. Mech. Eng. 92(3), 353–375 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bertetto, A., Ruggiu, M.: In-pipe inch-worm pneumatic flexible robot. In: Proc. Int. Conf. Adv. Intell. Mechatronics, pp. 1226–1231 (2001)

    Google Scholar 

  3. Boxerbaum, A.S., Chiel, H.J., Quinn, R.D.: A new theory and methods for creating peristaltic motion in a robotic platform. In: Proc. IEEE Int. Conf. Robot. Autom, pp. 1221–1227 (2010)

    Google Scholar 

  4. Boxerbaum, A.S., Horchler, A.D., Shaw, K.M., Chiel, H.J., Quinn, R.D.: A controller for continuous wave peristaltic locomotion. In: Proc. IEEE Int. Conf. Intell. Robot. Syst., pp. 197–202 (2011)

    Google Scholar 

  5. Boxerbaum, A.S., Daltorio, K.A., Chiel, H.J., Quinn, R.D.: A Soft-Body Controller with Ubiquitous Sensor Feedback. Proc. Living Machines 7375, 38–49 (2012)

    Google Scholar 

  6. Boxerbaum, A.S., Horchler, A.D., Shaw, K.M., Chiel, H.J., Quinn, R.D.: Worms, waves and robots. In: Proc. IEEE Int. Conf. Robot. Autom., pp. 3537–3538 (2012)

    Google Scholar 

  7. Boxerbaum, A.S., Shaw, K.M., Chiel, H.J., Quinn, R.D.: Continuous wave peristaltic motion in a robot. Int. J. Rob. Res. 31(3), 302–318 (2012)

    Article  Google Scholar 

  8. Brown, R.G.: Exponential Smoothing for Predicting Demand, pp. 1–15. Arthur D. Little Inc., Cambridge (1956)

    Google Scholar 

  9. Chan, B., Ji, S., Koveal, C., Hosoi, A.E.: Mechanical Devices for Snail-like Locomotion. J. Intel. Mat. Syst. Str. 18(2), 111–116 (2007)

    Article  Google Scholar 

  10. Cianchetti, M., Licofonte, A., Follador, M., Rogai, F., Laschi, C.: Bioinspired Soft Actuation System Using Shape Memory Alloys. Actuators 3, 226–244 (2014)

    Article  Google Scholar 

  11. Chiel, H.J., Crago, P., Mansour, J.M., Hathi, K.: Biomechanics of a muscular hydrostat: a model of lapping by a reptilian tongue. Biol. Cybern. 67(5), 403–415 (1992)

    Article  Google Scholar 

  12. Collier, H.O.J.: Central Nervous Activity in the Eathworm I. Responses to Tension and to tactile Stimulation. J. Exp. Biol. 16(3), 286–299 (1939)

    MathSciNet  Google Scholar 

  13. Daltorio, K.A., Boxerbaum, A.S., Horchler, A.D., Shaw, K.M., Chiel, H.J., Quinn, R.D.: Efficient worm-like locomotion: slip and control of soft-bodied peristaltic robots. Bioinspir. Biomim. 8(3), 035003 (2013)

    Article  Google Scholar 

  14. Dario, P., Ciarletta, P., Menciassi, A., Kim, B.: Modeling and Experimental Validation of the Locomotion of Endoscopic Robots in the Colon. Int. J. Rob. Res. 23(4), 549–556 (2004)

    Article  Google Scholar 

  15. Gray, J., Lissmann, H.W.: Studies in Animal Locomotion VII. Locomotory Reflexes in the Earthworm. J. Exp. Biol. 15, 506–517 (1938)

    Google Scholar 

  16. Hannan, M.W., Walker, I.D.: Kinematics and the Implementation of an Elephant’s Trunk Manipulator and Other Continuum Style Robots. J. Robot. Syst. 20(2), 45–63 (2003)

    Article  MATH  Google Scholar 

  17. Horchler, A.D.: DynamixelQ Library, Version 1.1 (Retrieved on March 23, 2015). https://github.com/horchler/DynamixelQ

  18. Horchler, A.D., Daltorio, K.A., Chiel, H.J., Quinn, R.D.: Designing responsive pattern generators: stable heteroclinic channel cycles for modeling and control. Bioinpir. Biomim. 10(2), 026001 (2015)

    Article  Google Scholar 

  19. Kanu, E.N., Daltorio, K.A., Quinn, R.D., Chiel, H.J.: Correlating kinetics and kinematics of earthworm peristaltic locomotion. In: Proc. Living Machines (July 28–31, 2015)

    Google Scholar 

  20. Kim, S., Laschi, C., Trimmer, B.: Soft robotics: a bioinspired evolution in robotics. Trends Biotechnol. 31(5), 287–294 (2013)

    Article  Google Scholar 

  21. Kurth, J.A., Kier, W.M.: Scaling of the hydrostatic skeleton in the earthworm Lumbricus terrestris. J. Exp. Biol. 217, 1860–1867 (2014)

    Article  Google Scholar 

  22. Mangan, E.V., Kingsley, D.A., Quinn, R.D., Chiel, H.J.: Development of a peristaltic endoscope. In: Proc. IEEE Int. Conf. Robot. Autom., pp. 347–352 (2002)

    Google Scholar 

  23. Mangan, E.V., Kingsley, D.A., Quinn, R.D., Sutton, G.P., Mansour, J.M., Chiel, H.J.: A biologically inspired gripping device. Ind. Robot An Int. J. 32(1), 49–54 (2005)

    Article  Google Scholar 

  24. Menciassi, A., Gorini, S., Pernorio, G., Dario, P.: A SMA actuated artificial earthworm. Proc. IEEE Int. Conf. Robot. Autom. 4, 3282–3287 (2004)

    Google Scholar 

  25. Mizushina, A., Omori, H., Kitamoto, H., Nakamura, T., Osumi, H., Kubota, T.: A discharging mechanism for a lunar subsurface explorer with the peristaltic crawling mechanism. In: Proc. IEEE Int. Conf. Recent Adv. Sp. Technol., pp. 955–960 (2013)

    Google Scholar 

  26. Omori, H., Nakamura, T., Iwanaga, T., Hayakawa, T.: Development of mobile robots based on peristaltic crawling of an earthworm. In: Robotics 2010: Current and Future Challenges, pp. 299–319. InTech, Shanghai (2010)

    Google Scholar 

  27. Omori, H., Nakamura, T., Yada, T.: An underground explorer robot based on peristaltic crawling of earthworms. Ind. Robot An Int. J. 36(4), 358–364 (2009)

    Article  Google Scholar 

  28. Onal, C.D., Rus, D.: A modular approach to soft robots. In: Proc. IEEE RAS EMBS Int. Conf. Biomed Robot. Biomechatron., pp. 1038–1045 (2012)

    Google Scholar 

  29. Onal, C.D., Wood, R.J., Rus, D.: An origami-inspired approach to worm robots. IEEE/ASME Trans. Mechatron. 18(2), 430–438 (2013)

    Article  Google Scholar 

  30. Seok, S., Onal, C.D., Cho, K.-J., Wood, R.J., Rus, D., Kim, S.: Meshworm: A Peristaltic Soft Robot With Antagonistic Nickel Titanium Coil Actuators. IEEE/ASME Trans. Mechatronics 18(5), 1485–1497 (2013)

    Article  Google Scholar 

  31. Suzumori, K., Endo, S., Kanda, T., Kato, N., Suzuki, H.: A bending pneumatic rubber actuator realizing soft-bodied manta swimming robot. In: Proc. IEEE Int. Conf. Robot. Autom., pp. 4975–4980 (2007)

    Google Scholar 

  32. Tanaka, T., Harigaya, K., Nakamura, T.: Development of a peristaltic crawling robot for long-distance inspection of sewer pipes. In: IEEE/ASME Int. Conf. Adv. Intell. Mechatronics, pp. 1552–1557 (2014)

    Google Scholar 

  33. Umedachi, T., Trimmer, B.A.: Design of a 3D-printed soft robot with posture and steering control. In: Proc. IEEE Int. Conf. Robot. Autom., pp. 2874–2879 (2014)

    Google Scholar 

  34. Wang, K., Yan, G.: Micro robot prototype for colonoscopy and in vitro experiments. J. Med. Eng. Technol. 31(1), 24–28 (2007)

    Article  Google Scholar 

  35. Webb, B.: What does robotics offer animal behaviour? Anim. Behav. 60(5), 545–558 (2000)

    Article  Google Scholar 

  36. Vaidyanathan, R., Chiel, H.J., Quinn, R.D.: A hydrostatic robot for marine applications. Robot. Auton. Syst. 30, 103–113 (2000)

    Article  Google Scholar 

  37. Zarrouk, D., Shoham, M.: Analysis and design of one degree of freedom worm robots for locomotion on rigid and compliant terrain. J. Mech. Des. 134(2), 021010 (2012)

    Article  Google Scholar 

  38. Zarrouk, D., Shoham, M.: Energy requirements of inchworm crawling on a flexible surface and comparison to earthworm crawling. In: Proc. IEEE Int. Conf. Robot. Autom., pp. 3342–3347 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew D. Horchler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Horchler, A.D. et al. (2015). Worm-Like Robotic Locomotion with a Compliant Modular Mesh. In: Wilson, S., Verschure, P., Mura, A., Prescott, T. (eds) Biomimetic and Biohybrid Systems. Living Machines 2015. Lecture Notes in Computer Science(), vol 9222. Springer, Cham. https://doi.org/10.1007/978-3-319-22979-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-22979-9_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-22978-2

  • Online ISBN: 978-3-319-22979-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics