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Abstract. Group-living animals often exhibit complex collective behav-
iors that emerge through the non-linear dynamics of social interactions
between individuals. Previous studies have shown that it is possible to
influence the collective decision-making process of groups of insects by
integrating them with autonomous multi-robot systems. However, gener-
ating robot controller models for this particular task can be challenging.
The main difficulties lie in accommodating group collective dynamics
(macroscopic level) and agent-based models implemented in every indi-
vidual robot (microscopic level). In this study, we show how such systems
can be appropriately modeled, and how to use them to modulate the col-
lective decision-making of cockroaches in a shelter-selection problem. We
address two questions in this paper: first, how to optimize a microscopic
model of cockroach behavior to exhibit the same collective behavior as a
macroscopic model from the literature, and second, how to optimize the
model describing robot behavior to modulate the collective behavior of
the group of cockroaches.

Keywords: collective behavior, decision-making, multi-level modeling,
mixed-societies, multi-objective optimization

1 Introduction

Groups of animals are able to reach consensus collectively, when presented with
mutually exclusive alternatives. Previous studies have shown that it possible to
influence the collective decision-making process of groups of insects by integrat-
ing them with autonomous multi-robot systems [12]. A mixed society is defined
as a group of robots and animals able to integrate and cooperate: each robot is
influenced by the animals, but can, in turn, influence the behavior of the animals
and of other robots. Individuals, natural or artificial, are perceived as equivalent,
and the collective decision process results from the interactions between natural
and artificial agents [12, 10, 11].



2 L. Cazenille et al.

A number of recent works in ethology have successfully used robots to in-
vestigate individual and collective animal behaviors, in particular by creating
mixed robot-animals societies: robots are mixed with chicks in [10], cockroaches
in [21, 12], fruit flies in [22], honeybees in [16], guppies in [15] and zebrafish in
[3, 20, 5, 4].

In particular, Halloy et al. ([12]) demonstrates a system in which groups
of robots are used to modulate the collective behavior of groups of animals
(cockroaches P. americana). The same paper introduces a macroscopic Ordinary
Differential Equations (ODE) model of the collective decision-making process of
the mixed-society in a shelter-selection problem.

Macroscopic models can convincingly describe collective dynamics, but can-
not be implemented directly into robotic controllers. Robot controllers are in-
tricately microscopic, as they describe the behavior of individual agents. One of
difficulties in experiments involving mixed-societies is to implement the dynam-
ics described in a macroscopic model into robot controllers (microscopic models).
In previous studies (including [12]), this process is often done empirically. Ways
of handling different levels of descriptions is investigated in [19, 17, 18], but these
studies do not address the issue of transitioning between models of different level
of description automatically.

This paper introduces a novel methodology to navigate between models of
different level of description by optimizing the whole range of parameter sets
of models to get the same bifurcation diagram. This methodology is applied
to the problem of modulating the collective behavior of a group of cockroaches
with robots described in [12]. We take an agent-based modelling approach, and
makes a number of assumptions: firstly, a model of the collective behavior of the
animals already exists (the ODE model presented in [12]); secondly, robots can
be attractive enough to the animals; and lastly, the number of robots is very
small compared to the number of animals.

To describe the behavior of individual insects and robots, we use a Finite
State Machine (FSM) agent-based microscopic model of cockroaches behavior.
To test this FSM model in simulation, two sets of parameters are needed: one
describing insect behavior, the other describing robot behavior. We address two
questions: first, how to calibrate the FSM model describing insect behavior to
exhibit the same collective behavior as the ODE macroscopic model, and second,
how to optimize the FSM model describing robot behavior to modulate the
collective behavior of the group of insects.

2 Multi-level Models

We use the same experimental setup as [12] (cf Fig. 1): a number of cockroaches
(P. americana) are put in a circular arena with two identical shelters (resting
sites). Cockroaches aggregate under the shelters. This setup is well adapted to
study collective decision-making because it imply a trade-off between competi-
tion for resources with limited carrying capacity (the shelters) and cooperation
(aggregation of the individuals).



Multi-level models for controlling animal collective behavior 3

Fig. 1. Experimental setup used in [12] includes two identical shelters (150 mm) and
both cockroaches (P. americana, approximate size: ∼ 4cm, surface: 600mm2) and
robots (surface: 1230mm2) in a circular arena (diameter: 1 m). The setup is symmetric.

2.1 Ordinary Differential Equation Model

A mathematical model describing the collective dynamics of mixed groups of
robots and cockroaches was developed in [12] (based on [1]). In this model,
robots and animals equivalently influence the collective decision-making process,
and they exhibit homogeneous behavior. This model handles two populations
(robots and animals) in setups with two shelters. The evolution of the number
of individuals in each shelter (and outside) is represented by the following set of
Ordinary Differential Equations (ODE):

dxi
dt

= xeµi

(
1 −

xi + ωri
Si

)
− xi

θi

1 + ρ
xi+βri
Si

n (1)

dri
dt

= reµri

(
1 −

xi + ωri
Si

)
− ri

θri

1 + ρr
γxi+δri

Si

nr (2)

C = xe + x1 + x2, M = re + r1 + r2, N = M + C (3)

Table 2 lists the parameters of the ODE model.
Because of crowding effects, the probability that an individual joins a shelter

decrease with the level of occupation of this shelter.
We only consider the case where the two shelters have the same carrying

capacity: S = S1 = S2. We define the measure σ = S/N that corresponds to
the carrying capacity as a multiple of the total population.

When only insects are considered, and no robots are present (M = 0), two
different dynamics can be observed: When 0.4 ≤ σ < 0.8, only one configuration
exists, corresponding of an equipartition of the individuals (x1/N = x2/N =
1/2, xe = 0). In this case, the two shelters are saturated, with the remaining
insects remaining outside. When σ > 0.8, two stable configurations exist, corre-
sponding to all individuals in one of the shelter (either x1 ≈ 0, x2 ≈ 1, xe ≈ 0
or x1 ≈ 1, x2 ≈ 0, xe ≈ 0). These dynamics can be observed in Fig. 3, a bifurca-
tion diagram of the occupation of the first shelter, as function of σ. Represented
results are obtained by resolution of Eq. 1 using the Gillespie method [9]. A
resolution using the Gillespie method allows to take into account experimental
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fluctuations. Figure 3 only represents results with population of 50 cockroaches,
but similar dynamics are observed with different population sizes.

Parameter for
P. americana

Parameter for
robots

Value for P.
americana

Description

C M - Total number of agents
xi ri - Number of agents in shelter i
xe re - Number of agents outside the shelters

µi µri 0.0027s−1 Maximal kinetic constant of entering a
shelter

θi θri 0.44s−1 Maximal rate of leaving a shelter
ρ, n ρr, nr 4193, 2.0 Influence of conspecifics

Parameter Description

Si Carrying capacity of shelter i
ω Surface of one robot as multiple of the surface of one animal
γ Influence of animals on robots
β Influence of robots on animals
δ Influence of robots on robots

Fig. 2. Parameters list of the ODE model. Cockroaches (P. americana) parameter
values are from [12]. We only consider the case where N = 50. In setups with two
shelters, this model has 18 parameters. The influence of animals on animals is equal to
1, and is not considered in [12]: the assumption is made that this parameter is imposed
by biology, and can’t be changed in experiments.

Fig. 3. Bifurcation diagram and distribution of N = 50 P. americana cockroaches
in the first shelter, as function of σ. The bifurcation diagram is represented as bi-
dimensional histograms of the results using 1000 solutions by parameter sets. The
color of each bin of the histogram corresponds to the occurrence of experiments. The
diagram is symmetric for all tested values of σ, so only one shelter is represented. When
0.4 ≤ σ < 0.8, only one configuration exists, corresponding of an equipartition of the
individuals (x1/N = x2/N = 1/2, xe = 0). When σ > 0.8, two stable configurations
exist, corresponding to all individuals in one of the shelters (either x1 ≈ 0, x2 ≈ 1, xe ≈
0 or x1 ≈ 1, x2 ≈ 0, xe ≈ 0). The bifurcation point is close to σ = 0.8.
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Note that while models at the macroscopic level can easily describe the behav-
ior of the dynamical system, in term of shelter selection, and offer a mathematical
basis of description, they cannot explicit the behavior of individual agents, and
cannot be implemented directly in actual robots.

2.2 Finite State Machine Model

We define a Finite State Machine as agent-based model of cockroaches and robots
behavior. This model is very similar to the agent-based aggregation models in-
troduced in [13, 8] to describe the collective behavior of cockroaches in a similar
setup.

Cockroaches tend to follow walls when close to the walls of the arena, and are
gregarious during their resting period. We establish two zones in the arena: the
peripheral zone, which is the ring that borders the walls of the arena, and the
central zone, corresponding to the rest of the arena. In the central zone, agents
exhibit a random-walk behavior, by following a recurring alternation of straight
lines and rotations. In the peripheral zone, agents exhibit a wall-following be-
havior. Shelters are in the central zone. When an agent enters a shelter, it has
a probability of stopping for a random duration before exiting the shelter. Sim-
ilarly to [8], this probability depends on the number of present agents. Figure 4
provides a description of this model, with the relevant model parameters.
In our model (as opposed to [13, 8]), the probability of stopping when reaching a
shelter is not the same for both shelters. While it is not relevant when describing
the behavior of cockroaches (the shelters in the setup are identical), it can be
useful for describing robots that modulate the collective behavior of cockroaches.

3 Results

3.1 Numerical Computation

All results from the ODE model were obtained by resolving Eq. 1 and 2 using
the Gillespie method ([9]). Results from the FSM model were obtained from
simulations of 28800 time steps, of a setup similar to Fig. 1 (used in [12]): a
circular arena (diameter 1m) with two identical shelters (diameter 150mm).
For both models, only populations of 50 individuals were considered.

3.2 Calibration of Models

In this section, we address the problem of finding parameter sets of cockroaches
simulated using the FSM model that exhibit the same collective behavior as in
the ODE model. FSM model parameters describing cockroach behavior can be
derived (or ’Calibrated’) from the ODE model.

As the ODE model is parameterized using experimental data, it allows the
FSM model to be as close as possible to the behavior of cockroaches. This process
is described in Fig. 6.
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Peripheral zone:
 Wall-following behaviorCentral zone:

 Random-walk behaviorEnter a shelter

Leave a shelter

Under a shelter: Stop

Probability of stop:

Mean stop duration:

Mean speed:

Mean time following wall:
Mean speed:

Parameter Description

l Mean size of path
a Geometric mean for angle departure

τexit Mean time an agent follow a wall
vc Mean speed in central zone
vp Mean speed in peripheral zone
si,n Probability of stop in shelter i with n neighbors
τi,n Mean stop duration in shelter i with n neighbors

Fig. 4. Finite State Machine Model of cockroach individual behavior. The arena con-
tains two zones: the peripheral zone (agents follow a wall-following behavior), and the
central zone (agents follow a random-walk behavior). Shelters are in the central zone.
When an agent enters a shelter, it has a probability of stopping for a random duration
before exiting the shelter. The probability of stopping under shelter depends on the
number of neighbors present in the shelter, and can be different for each shelter. Only
10 neighbors are considered in our experiments. In setups with two shelters, this model
has 45 parameters per population.

Fig. 5. Examples of the trajectory of an artificial insect, using the FSM model. The
arena is circular and contains two shelters. Gray lines represents the trajectory of
one agent. The brightness of the line reflects to simulation time. All experiments last
28800 time steps (corresponding to 8 hours). Note that the FSM model do not try to
mimic the actual movement patterns of cockroaches. The arena contains two zones:
the peripheral zone (agents follow a wall-following behavior), and the central zone
(agents follow a random-walk behavior). Shelters are in the central zone. When an
agent enters a shelter, it has a probability of stopping for a random duration before
exiting the shelter.
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We optimize the parameter sets of the cockroaches individuals, for the FSM
model. Instances of the FSM model using these parameter sets are simulated for
different values of σ. The aim is to optimize parameter sets of the FSM model
to obtain a similar bifurcation diagram as in Fig. 3.

As there is only few a-priori information about the parameter space, and as
the parameter space has a relatively large dimensionality, we use the state-of-
the-art CMA-ES evolutionary optimization method ([2], population size is 20,
maximal number of generations is 500).

The fitness, minimized by CMA-ES, corresponds to a comparison between an
optimized bifurcation diagram with the reference diagram from the ODE model.
It is computed as follow:

Fitnesscalibration(x) = DHellinger(Boptimized/Nu,Breference/Nu) (4)

where x is the tested parameter set (genome), Nu is the number of considered
values of σ in the bifurcation diagrams (10) and Boptimized and Breference are

one-dimensional histograms version of the bifurcation diagrams. The term Nu is
used for normalization. The Hellinger distance ([7]) is defined by the equation:

DHellinger(P,Q) =

√√√√√2

d∑
i=1

(
√
Pi −

√
Qi)

2 (5)

where P and Q are two histograms, and Pi,Qi their i-th bins. The Hellinger
distance is a divergence measure, similar to the Kullback-Leibler (KL) diver-
gence. However, the Hellinger distance is symmetric and bounded, unlike the
KL-divergence (and most other distance metrics). As such, it is adapted when
comparing two histograms ([7]).

Figure 7 corresponds to the distribution of cockroaches in the two shelters,
using parameters sets from the best-performing optimized individuals in 100
runs. All values of σ present in Fig. 3 are tested, and Fig. 7 shows typical
results before and after the bifurcation point. Results before the bifurcation
point (σ < 0.8) are similar to results at σ = 0.4, and results after the bifurcation
point (σ ≥ 0.8) are similar to results at σ = 1.2. Results show that it is possible
to find parameters sets of the FSM model that exhibit the same collective choice
that the ones from ODE. Similar results are obtained using the FSM model from
[8] (results not shown).

3.3 Modulation of Collective Behavior By Robots

Our goal is to find sets of parameters of robots, capable of modulating the
collective behavior of the group of cockroaches.

This process is described in Fig. 8. Populations of 50 individuals are consid-
ered, with a varying, but small, proportion of robots in the population.

The parameter set used for modeling cockroaches using the FSM model was
taken from the best-performing optimized individuals during the calibration pro-
cess described in 3.2.
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Simulation
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Fitness: distance between bifurcation diagramsDesc
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Evaluation

Reference:

Optimized:

Evolutionary Algorithm (CMA-ES)

Fig. 6. Workflow of the Automated model calibration task by optimization. The op-
timized bifurcation diagram and the reference bifurcation diagram are both converted
to one-dimensional histograms, by normalizing the sum of all bin values to 1.0. We use
CMA-ES ([2]) as optimizer. The optimizer minimizes the fitness, which is computed
by the formula: Fitnesscalibration(x) = DHellinger(Boptimized/Nu, Breference/Nu) where x
is the optimized parameter set, Nu is the number of histograms in the bifurcation
diagrams (10) and Boptimized and Breference are one-dimensional histograms version of
the bifurcation diagrams. The term Nu is used for normalization. DHellinger(P,Q) =√

2
∑d

i=1(
√
Pi −

√
Qi)2 is the Hellinger distance ([7])
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Fig. 7. Distribution of 50 cockroaches in the first shelter for chosen values of σ, using
two different models: ODE (in dark grey) and FSM (in light grey). The parameter σ
values are chosen before the bifurcation point (σ = 0.4), and just after the bifurcation
point (σ = 1.2). Similar results are obtained for the range of values of σ present
in Fig. 3. The best sets of optimized model parameters are used, after 100 runs of
optimization. The diagram is symmetric for all tested values of σ, so only one shelter is
represented. Calibrated versions of the FSM model behave similarly to the ODE model:
(1) before the bifurcation point (σ = 0.8), only one configuration exists, corresponding
of an equipartition of the individuals (x1/N = x2/N = 1/2, xe = 0); (2) after the
bifurcation point, two stable configurations exist, corresponding to all individuals in
one of the shelters (either x1 ≈ 0, x2 ≈ 1, xe ≈ 0 or x1 ≈ 1, x2 ≈ 0, xe ≈ 0).
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Fig. 9. Instances of results bio-hybrid group behavior when robots are optimized to
change the reference behavior of cockroaches alone as much as possible (dark grey:
reference animal-only model, light grey: optimized animals-and-robots models). σ val-
ues are chosen just after the bifurcation point (σ = 1.2). Results after the bifurcation
point (0.8 ≤ σ ≤ 2.2) are similar. The three plots in the first line correspond to results
obtained from the ODE model, the three plots in the second line are from the FSM
model. These results are taken from the best-performing individuals in 30 runs.
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An optimizer is used to generate the parameter sets of the robots modeled
by the ODE and FSM models. Instances of the FSM and ODE models using
these parameter sets are either simulated (FSM) or resolved using the Gillespie
method (ODE), for specific values of σ.

There are two objectives to minimize:

Fitness1 = DHellinger(Histoptimized,Histreference) (6)

Fitness2 = M/N (7)

with DHellinger described in Eq. 5), and M the number of robots, from Eq. 3.

We need a multi-objective optimizer to minimize these two objectives: we use
the state-of-the-art NSGA-II evolutionary algorithm ([6], population size is 100,
maximal number of generations is 1000).

Three reference histograms are considered: (1) where all of the population
gather in the first shelter, (2) where all of the population gather in the second
shelter, (3) where half of the population gather in the first shelter, and the other
half in the second shelter.

Figure 9 shows several instances of interesting optimized individuals (on the
Pareto Front), for both the ODE and the FSM models, and for the three different
reference histograms. Small groups of robots are capable, using the optimized
controllers, to modulate the collective behavior of the group of cockroaches to
correspond to one of the three considered reference histograms.

When the objective is to force the cockroach population to select one of the
two shelters, a very small portion of robots is required (typically 2 or 3). For the
ODE model, this can be explained by the proportion of cockroaches to remain
under shelter longer when a larger number of neighbors are presents. For the
FSM model, the same behavior is evolved. This induces a progressive aggregation
of the group of cockroaches toward the shelter occupied by the robots. If the
objective is to force the cockroach population to occupy both shelters at the
same time, it requires a larger portion of robots (10 robots). In this case, the
robots have to occupy both shelters to lead the cockroaches into aggregating
themselves in both shelters. Note that the modulation of the collective behavior
of the cockroaches for values of σ < 0.8 is far more challenging because of the
very fast saturation of the shelters, and was not considered in this study. Similar
results are obtained using the FSM model from [8] (results not shown).

4 Discussion and Conclusion

The problem of modulating the collective behavior of a group of cockroaches with
robots is challenging because it involves models of different levels of represen-
tation: an ODE-based macroscopic model (describing the collective dynamics),
and a FSM-based microscopic model (implementable as robot controller). This
paper introduces a novel methodology to navigate between models of different
level of description, by optimizing parameter value of models already present in
the literature. This approach makes three assumptions: firstly, a model of the
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collective behavior of the animals already exists ([12, 1]); secondly, robots can be
attractive enough to the animals; and lastly, the number of robots is very small
compared to the number of animals.

The ODE model can describe the collective behavior of cockroaches, by using
a parameter set obtained by experimentation with actual insects in [12]. A FSM
model of cockroach behavior is introduced, with inspiration from [14, 8]. This
model is calibrated to exhibit the same collective dynamics as in the ODE model,
using the CMA-ES evolutionary algorithm. FSM is a microscopic model that can
be used as robot controller. The robot controller models are then optimized, using
the NSGA-II multi-objective evolutionary algorithm, to modulate the collective
behavior of the group of cockroaches, to match a user-defined reference.

Previous mixed-societies studies could only implement empirically the robot
controllers used in experiments. The approach presented here is a first step to-
ward generating them automatically, by deriving them from a validated macro-
scopic model of the animal collective behavior.

A subsequent study would include an application of this methodology to
more complex setups, with more than two shelters and more than two popula-
tion. Additionally, the calibration of models, and the modulation of collective
behavior, could be performed in an online fashion, by using online evolutionary
algorithms. The models investigated in this paper were only strictly macroscopic
(ODE) or microscopic (FSM) – alternatively, a third kind of model could be de-
fined, integrating both macroscopic and microscopic aspects.

Our methodology gives promising results, and could possibly be applied to
model, calibrate, and modulate the collective behavior of other species (e.g.
fishes, bees, or others).
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