Skip to main content

On Dynamic Decoupling of MIMO Fractional Order Systems

  • Chapter
  • First Online:

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 357))

Abstract

In the paper problems with a dynamic decoupling of multi-input multi-output MIMO fractional order systems are discussed. Similarities and differences to integer order decoupling methods are shown. Basing on a few examples taken from a literature simulations of decoupled fractional order systems were caried out. Te paper ends with some final remarks on a practical implementation of decoupling methods for fractional order systems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Adolfsson, K., Enelund, I., Olsson, P.: On the fractional order model of viscoelasticity. Mech. Time-Depend. Mater. 9, 15–34 (2005)

    Article  Google Scholar 

  2. Bristol, E.H.: On a new measure of interaction for multivariable process control. IEEE Trans. Autom. Control. AC–11, 133–134 (1966)

    Article  Google Scholar 

  3. Chen, YQ., Petras, I., Xue, D.: Fractional order control—a tutorial. In: Proceedings of the American Control Conference, pp. 1397–1411. St. Louis (2009)

    Google Scholar 

  4. CRONE Toolbox. www.ims-bordeaux.fr/CRONE/toolbox/ (2014)

  5. Domek, S.: Rachunek różniczkowy ułamkowego rzedu w regulacji predykcyjnej. Wydawnictwo Uczelniane ZUT, Szczecin (2013)

    Google Scholar 

  6. Dworak, P., Bańka, S.: Efficient algorithm for synthesis of multipurpose control systems with dynamic decoupling. MMAR05, pp. 345–350. Miedzyzdroje (2005)

    Google Scholar 

  7. Dworak, P.: Squaring down plant model and I/O grouping strategies for a dynamic decoupling of left-invertible MIMO plants. Bull. Pol. Acad. Sci. Tech. Sci. 62(3), 471–479 Sept 2014. ISSN (Online): 2300-1917, doi:10.2478/bpasts-2014-0050

    Google Scholar 

  8. Dworak, P.: Dynamic decoupling of left-invertible MIMO LTI plants. Arch. Control. Sci. 21(4), 443–459 (2011)

    MathSciNet  MATH  Google Scholar 

  9. Dzieliński, A., Sierociuk, D.: Ultracapacitor modelling and control using discrete fractional order state-space model. Acta Montan. Slovaca 13(1), 136–145 (2008)

    Google Scholar 

  10. Garrido, J., Vazquez, F. Morilla, F.: Generalized inverted decoupling for TITO processes. In: Proceedings of the18th IFAC World Congress, pp. 7535–7540. Milano, Italy (2011)

    Google Scholar 

  11. Ghosh, A., Das, S.K.: Open-loop decoupling of MIMO plants. IEEE Trans. Autom. Control. 54(8), 1977–1981 (2009)

    Article  MathSciNet  Google Scholar 

  12. Jesus, I.S., Machado, J.T.: Application of integer and fractional models in electrochemical. Math. Probl. Eng. 2012, 248175 (2012)

    Google Scholar 

  13. Kaczorek, T.: Selected problems of fractional systems theory. Springer, Berlin (2011)

    Book  MATH  Google Scholar 

  14. Latawiec, J.K., Lukaniszyn, M., Stanisławski, R.: Advances in modelling and control of non-integer order systems. Springer, New York (2014)

    Google Scholar 

  15. Li, Y., Chen, YQ.: Fractional order universal adaptive stabilization for fractional order MIMO system. In: Proceedings of the 4th IFAC Workshop Fractional Differentiation and its Applications, Badajoz, Spain (2010)

    Google Scholar 

  16. Li, Z., Chen, YQ.: Ideal, simplified and inverted decoupling of fractional order TITO processes. In: Proceedings of the 19th World Congress The International Federation of Automatic Control, pp. 2897–2902. Cape Town, South Africa (2014)

    Google Scholar 

  17. Li, Z., Chen, YQ.: Identificationof linear fractional order systems using the relay feedback approach. In: Proceedings of the American Control Conference, Portland, OR, USA (2014)

    Google Scholar 

  18. Liao, Z., Peng, C., Wang, Y.: A frequency-domain identification algorithm for MIMO fractional order systems with time-delay in state. Adv. Mater. Res. 383–390, 4397–4404 (2012)

    Google Scholar 

  19. Machado, J.T.: Fractional control of heat diffusion systems. Nonlinear Dyn. 54(3), 263–282 (2012)

    Google Scholar 

  20. Migan, R.: Fractional calculus in bioengineering. Begell House, Redding (2006)

    Google Scholar 

  21. Mitkowski, W., Kacprzyk, J., Baranowski, J.: Avances in the theory and applications of non-integer order systems. Springer, New York (2013)

    Book  Google Scholar 

  22. Monje, C.A., Chen, Y.Q., Vinagre, J.B. M., Xue, D. Y., Feliu, V.: Fractional order systems and controls: fundamentals and applications. Springer, London (2010)

    Google Scholar 

  23. Oldham, K.B., Spanier, J.: The fractional calculus; theory and application of differentiation and integration to arbitrary order. Academic Press, New York (1974)

    Google Scholar 

  24. Oustaloup, A., Sabatier, J., Moreau, X.: From fractal robustness to CRONE approach. ESAIM 5, 177–192 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  25. Oustaloup, A., Levron, F., Mathieu, B., Nanot, F.M.: Frequency-band complex noninteger differentiator: characterisation and synthesis. IEEE Trans. Circut Syst. 47(1), 25–39 (2000)

    Article  Google Scholar 

  26. Petras, I.: Fractional-order nonlinear systems: modeling, analysis and simulation. Springer, New York (2011)

    Google Scholar 

  27. Podlubny, I.: Fractional differential equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  28. Sabatier, J., Aoun, M., Oustaloup, A., Gregoire, G., Ragot, F., Roy, P.: Fractional system identification for lead acid battery state of charge estimation. Signal Process. 86(10), 2645–2650 (2006)

    Article  MATH  Google Scholar 

  29. Sierociuk, D.: Estymacja i sterowanie dyskretnych układów dynamicznych ułamkowego rzedu opisanych w przestrzeni stanu. Politechnika Warszawska (2007)

    Google Scholar 

  30. Sierociuk, D., Macias, M., Malesza, W.: Analog modeling of fractional switched order derivative using different switching schemes. IEEE J. Emerg. Sel. Top. Circuts Syst. 3(3), 394–403 (2013)

    Article  Google Scholar 

  31. Skovranek, T., Podlubny, I., Petras, I.: Modeling of the national economies in state-space: a fractional approach. Econ. Model. 29(4), 1322–1327 (2012)

    Article  Google Scholar 

  32. Tavazoei, M.S., Tavakoli-Kakhki, M.: Minimal realizations for some classes of fractional order transfer functions. IEEE J. Emerg. Sel. Top. Circuts Syst. 3(3) (2013)

    Google Scholar 

  33. Toolbox ninteger for Matlab. http://web.ist.utl.pt/duarte.valerio/ninteger/ninteger.htm (2014)

  34. Valerio, D., Costa, J.: Ninteger: a non-integer control toolbox for Matlab. In: Proceedings of the 1st IFAC Workshop on Fractional Differentiation and its Applications, pp. 208–213. Bordeaux, France (2004)

    Google Scholar 

  35. Williams, T.W.C., Antsaklis, P.J.: A unifying approach to the decoupling of linear multivariable systems. Int. J. Control. 44(1), 181–201 (1986) Tech. Sci. 62(3), 471–479 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paweł Dworak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Dworak, P. (2016). On Dynamic Decoupling of MIMO Fractional Order Systems. In: Domek, S., Dworak, P. (eds) Theoretical Developments and Applications of Non-Integer Order Systems. Lecture Notes in Electrical Engineering, vol 357. Springer, Cham. https://doi.org/10.1007/978-3-319-23039-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23039-9_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23038-2

  • Online ISBN: 978-3-319-23039-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics