BPMN Task Instance Streaming for
Efficient Micro-Task Crowdsourcing Processes

Stefano Tranquillini®, Florian Daniel’*?, Pavel Kucherbaev', and Fabio Casati!

! University of Trento — DISI, Via Sommarive 9, I-38123, Povo (TN), Italy
{tranquillini,daniel, kucherbaev, casati}@disi.unitn.it
2 Tomsk Polytechnic University, Belinskya Street 30, 634050, Tomsk, Russia

Abstract. The Business Process Model and Notation (BPMN) is a stan-
dard for modeling and executing business processes with human or ma-
chine tasks. The semantics of tasks is usually discrete: a task has exactly
one start event and one end event; for multi-instance tasks, all instances
must complete before an end event is emitted. We propose a new task
type and streaming connector for crowdsourcing able to run hundreds or
thousands of micro-task instances in parallel. The two constructs provide
for task streaming semantics that is new to BPMN, enable the modeling
and efficient enactment of complex crowdsourcing scenarios, and are ap-
plicable also beyond the special case of crowdsourcing. We implement the
necessary design and runtime support on top of CrowdFlower, demon-
strate the viability of the approach via a case study, and report on a set
of runtime performance experiments.

Keywords: Crowdsourcing processes, task instance streaming, BPMN

1 Introduction

BPMN [15] is the most representative example of the state of the art in busi-
ness process modeling. Its core modeling constructs are tasks and control flow
connectors. Both constructs follow semantics that stem from their roots in office
automation: tasks are atomic. They express indivisible pieces of work that have
a well-defined start and end, and do not provide insight into what is going on
inside a task while in execution. In the basic setting, one task corresponds to one
runtime instance of the task. However, the notation also supports multi-instance
tasks that allow the execution of multiple runtime instances either in parallel or
in sequence. State-of-the-art engines commonly implement multi-instance tasks
following the same atomic start/end semantics of basic tasks (the end event fires
only when all instances have completed), although the BPMN specification [15]
also envisions intermediate instance termination events for complex behavior
definitions (p. 432).

There are however modeling scenarios that would benefit from more trans-
parency, in order to be executed more efficiently. This is, for instance, the case
of processes that run multiple instances of tasks in parallel. An extreme example
is crowdsourcing, that is, the outsourcing of a unit of work to a crowd of people

2 S. Tranquillini, F. Daniel, P. Kucherbaev, and F. Casati

via an open call for contributions [8]. Thanks to the availability of crowdsourc-
ing platforms, such as Amazon Mechanical Turk (https://www.mturk.com) or
CrowdFlower (http://www.crowdflower.com), the practice has experienced a
tremendous growth over the last years and demonstrated its viability in different
fields, such as data collection and analysis or human computation — all practices
that leverage on micro-tasks, which are tasks that ask workers to complete sim-
ple assignments (e.g., label an image or translate a sentence) in exchange for
an optional reward (e.g., few cents or dollars). The power of crowdsourcing is
represented by the crowd, which may be huge and span the World, and its ability
to process even thousands of task instances in short time in parallel.

However, not all types of work can easily be boiled down to simple micro-
tasks, most platforms still require significant amounts of manual work and con-
figuration, and there is only very limited support for structured work, that is,
work that requires the integration of different tasks and multiple actors, such
as machines, individuals and the crowd. We call these kinds of structured work
crowdsourcing processes, since they require the coordination of multiple tasks,
actors and operations inside an integrated execution logic [17].

Crowdsourcing processes therefore represent a problem where business pro-
cess management (BPM) is expected to excel. The modeling and efficient en-
actment of crowdsourcing process is however still not well supported [11]. In
particular, BPMN does not provide the right means to model processes that are
as simple as, for example, asking the crowd to upload a thousand images in one
task and then to label them in another task. The labeling task would start only
once all images have been uploaded, not benefiting from the evident paralleliza-
tion opportunities of the scenario. The tokens of Petri Nets [18] would allow one
to deal with this kind of dynamic state, but BPMN does not support tokens.

In [17], we proposed BPMN4Crowd, a BPMN extension for the modeling of
crowdsourcing processes that can be executed on our own crowdsourcing plat-
form, the Crowd Computer; the approach uses the standard task termination
semantics of BPMN. In this paper, we instead study the problem of micro-task
parallelization in generic BPMN engines, making the following contributions:

— An extension of BPMN with a new task and connector type that provides full
support for the streaming of outputs of completed micro-task instances to
subsequent micro-task instances without requiring an overall task end event.

— An implementation of a runtime environment for crowdsourcing processes
with micro-task instance streaming. The environment is distributed over a
BPMN engine for the coordination of work, a state-of-the-art crowdsourcing
platform for the micro-tasks, and an intermediate middleware.

— An implementation of a visual design environment with support for the
extended BPMN modeling notation and the translation of extended models
into standard BPMN for the engine and configuration instructions for the
crowdsourcing platform and the middleware.

— A demonstration of the viability of the approach via a concrete crowdsourc-
ing case study complemented by a performance analysis reporting on the
execution time improvements that can be achieved.

BPMN Task Instance Streaming for Crowdsourcing Processes 3

2 Crowdsourcing processes

2.1 Scenario: transcription of receipts

The reimbursement of a business trip, such as the attendance of a scientific
conference, is subject to the documentation of the incurred expenses. This doc-
umentation are the receipts that can be scanned and transcribed for the pro-
cessing of the reimbursement. Transcribing a receipt is a small task that can be
crowdsourced at low cost and with fast response times.

Let’s imagine we would like to support the following crowdsourcing process:
The admin reimbursing the travel expenses initiates the process by feeding it
with the receipts (e.g., 40) collected from traveling employees. This causes the
process to upload photos/images of the receipts onto an online crowdsourcing
platform and to instantiate a transcription request for each individual receipt.
Since the work by workers cannot be trusted in general, for each 2 transcriptions
the process creates another task for the crowd that asks workers to check the
transcriptions and fix them if necessary. Checking and fixing takes less time than
transcribing, so each worker can process 2 items. Another task is used to classify
the receipts, e.g., into flight tickets, hotel receipts, restaurant receipts, or similar.
Classifying is simple, and it is reasonable to ask a worker to classify 4 receipts.
The two tasks can be performed in parallel once transcriptions are available.
Upon completion, an automatic email notifies the admin about the results.

2.2 Crowdsourcing processes and streaming opportunities

The described scenario presents all the characteristics of a crowdsourcing process
as defined in the introduction, which indicates a process that, next to optional
human and machine tasks, also contains tasks executed by the crowd, so-called
crowd tasks. A crowd task represents a set of micro-tasks that are jointly per-
formed by the crowd via an online crowdsourcing platform. A micro-task is per-
formed by an individual worker, is commonly interpreted as a task that requires
limited skills and limited time (from seconds to few minutes), and is remunerated
with limited rewards (from cents to few dollars). Crowd tasks can be seen like
BPMN multi-instance tasks that typically require large numbers of instances to
be performed in parallel (we focus on micro-tasking and do not further study
the case of contest- or auction-based crowdsourcing models). For example, the
above scenario asks for 40 transcriptions, 20 controls of transcriptions (2 per
task), and 10 classifications of receipts (4 per task).

Figure 1 illustrates the dependencies among the crowd tasks of the scenario
and the benefits that could be achieved if the process supported the streaming
of micro-task instances. With the term micro-task instance streaming we denote
the streaming of micro-task instance end events while the respective crowd task
is still in execution, that is, other micro-task instances of the crowd task are still
in execution. Completed instances can be streamed, that is, their end events and
output data, from a crowd task A to a crowd task B, causing the instantiation
of micro-tasks of B as soon as the necessary number of micro-task instances of A

4 S. Tranquillini, F. Daniel, P. Kucherbaev, and F. Casati

4 transcriptions per task instance
Transcribe Classify receipt Check and fix |

1 receipt per X i
task instance ~ Check and fix Transcrioe :
2 transcriptions per Classify receipt
task instance !

(a) Process execution without streaming (b) Process execution with streaming

Fig. 1. The parallelization benefits of task instance streaming in crowdsourcing

have completed. For example, the transcription of 4 receipts causes the instan-
tiation of 1 classification and 2 checks. The number of instances to be created
thus depends on the data transformation logic between two crowd tasks: group-
ing outputs reduces the number of micro-task instances of the subsequent crowd
task; multiplying outputs or splitting grouped outputs increases the number of
micro-task instances of the subsequent crowd task. Data transformations may
be needed to accommodate the mismatch between output and input data sizes
of different crowd tasks, as exemplified in our reference scenario. The goal of
grouping/splitting is usually that of keeping the overall effort of a micro-task
constant in response to changing efforts required to process an input data item,
e.g., one transcription requires roughly the same effort as four classifications of
receipts. Multiplying outputs creates redundancy that can be used to increase
the quality of outputs, e.g., a same receipt can be given to two different workers
and their outputs can be checked for consistency.

3 Assumptions and approach

This work assumes that the crowdsourcer has working knowledge of both busi-
ness process modeling with BPMN and crowdsourcing with a micro-tasking
platform like CrowdFlower. Human and machine tasks are enacted by the busi-
ness process engine running the BPMN process; crowd tasks are enacted by the
crowdsourcing platform. The design of the Uls for the crowd tasks is done by
the crowdsourcer inside the crowdsourcing platform. The platform provides pro-
grammatic access (via API) to the following abstract micro-task management
functions: uploadData to associate micro-tasks with input data, startInstance
to instantiate micro-tasks, getInstanceStatus to query the runtime status of
micro-task instances, and getInstanceOutput to download results produced by
a worker. For instance, both CrowdFlower and Amazon Mechanical Turk provide
implementations of these abstract functions.

The approach to provide support for crowdsourcing processes is similar to the
one already successfully adopted in prior works [6]: In order to provide insight
into micro-task instance terminations, we extend the syntax and semantics of
BPMN with two new modeling constructs, a crowd task and a streaming connec-
tor, that are specifically tailored to the needs of crowdsourcing. The streaming
connector answers the need for a novel data passing technique that supports the

BPMN Task Instance Streaming for Crowdsourcing Processes 5

% crowd task name
crowdflower_task_id <name of event>, <function>, <param>
Crowd Task - - -| input_data_name
output_data_name |'|'| >

events (auto)

(a) Crowd task with configuration parameters (b) Streaming connector with event specification

Fig. 2. Proposed modeling convention for micro-task instance streaming in BPMN

grouping, splitting and multiplication of streaming data as well as the passing
of data between the process and the crowd tasks. We complement the language
with a visual editor that allows the crowdsourcer to model his crowdsourcing
process and equip the editor with a process deployment tool that transforms the
process model with extended semantics into (i) a standards-compliant BPMN
process and (ii) a set of configurations able to steer the crowdsourcing platform
and to establish a communication channel between the platform and the engine.
The extended BPMN process model contains the necessary logic for micro-task
and communication management. Data streaming among crowd tasks is imple-
mented via a simple middleware placed in between the BPMN engine and the
crowdsourcing platform and able to monitor micro-task instance completions and
to group, split or multiply respective output data. As soon as the monitor detects
an expected number of micro-task instance completions, it assembles the respec-
tive data and sends to the process engine a message that can be intercepted
by the process. Reacting to messages allows the process to create micro-task
instances of dependent crowd tasks and to progress.

The goal is to provide crowdsourcing support as an extension of existing
BPM practice, so as to be able to leverage on modeling conventions and software
infrastructure that are already familiar to the BPMN-skilled crowdsourcer.

4 Streaming crowd tasks

Next, we introduce the BPMN modeling constructs that enable the modeling
of crowsourcing processes, we discuss the options we have to transform crowd-
sourcing processes into standard BPMN processes, and we describe the concrete
runtime infrastructure we implemented to support process execution.

4.1 Modeling micro-task instance streaming

Modeling crowdsourcing processes requires expressing tasks for the crowd and
the propagation of outputs between workers. We propose to satisfy these require-
ments with two new constructs (Figure 2): crowd tasks and streaming connectors.

Crowd tasks are tasks that represent micro-tasks to be executed by workers
inside a crowdsourcing platform. We identify crowd tasks using a crowd logo
in the top left corner of the BPMN task construct. Crowd tasks cannot be
expressed as simple multi-instance tasks, since these do not provide insight into

6 S. Tranquillini, F. Daniel, P. Kucherbaev, and F. Casati

the completion of task instances and can therefore not be used to implement
the expected streaming logic. The deployment and execution of crowd tasks
further asks for a mediation between the process engine and the crowdsourcing
platform, an aspect that goes beyond the conventional semantics of tasks in
BPMN. We therefore opt for a new construct for crowd tasks that (i) provides
for the execution of multiple instances of micro-tasks equipped with respective
instance completion events, (ii) the deployment of the micro-tasks’ input data
on the crowdsourcing platform, and (iii) the start of the micro-task instances.

Streaming connectors connect two crowd tasks A
and B and express that they are “followed” multiple fiat | []
times at runtime. How many times, depends on the)

. . . multiply 11— 00
data transformation function (Figure 3). If A has [
micro-task instances and the connector groups m in- 9group H— (1]
stances, B has [/m micro-task instances; if it multi- gy 11— [0
plies instances of A by n (creating n copies by value)

B has | x n micro-task instances. If it splits the out- Fig.3. Streaming data
puts of A into its [items, B has [micro-task instances. transformation functions.
The flat function hands items over as they are.

The choice of a new type of connector is again justified by the need to express
a logic that is not yet captured by any of the other BPMN constructs: the con-
nector actually represents events (one for each individual data object generated
by the data transformation function) that can only be handled by the internal
logic of the subsequent crowd task B, which creates a micro-task for each event
it receives from A. In addition, the event carries the output data produced by
A, which task B uses to provide its micro-tasks with the necessary inputs. This
turns the streaming connector into a data streaming connector for crowd tasks.

With the help of these two new constructs and the common constructs of
BPMN, we are now able to model the crowdsourcing process described in our
reference scenario as illustrated in Figure 4. The process starts with a com-
mon human task for uploading the receipts, followed by a crowd task for their
transcription. The Check and improve and Classify receipt crowd tasks are
executed in parallel and followed by a machine task sending the notification email
with the results. The first crowd task takes as input the 40 receipts and produces
respective transcriptions as output. Similarly, the outputs of the checking and
classification crowd tasks are used as inputs of the final machine task. The very
novel aspect of the model is the use of the streaming connector from the first to
the other two crowd tasks. Check and improve is executed once for each couple
of transcriptions (note the annotation of the connector) and Classify receipt
once for each four transcriptions. Due to the data flow nature of the streaming
connector there is no need to explicitly model data objects exchanged between
crowd tasks. The data object in output of a crowd task (e.g., Transcriptions) is
filled during task execution and is ready only when the last instance of its micro-
tasks has completed, which also corresponds to the completion of the crowd task
itself. This complies with the conventional semantics of BPMN.

BPMN Task Instance Streaming for Crowdsourcing Processes 7

Check and

40 receipts Transcriptions Checked
m m 695}53 vl transcriptions

improve .
Y

S \\‘
% m transcribe_group_2, -
& Upload group, 2
; Transcribe .
<>_> receipts : transcnbe _group_4, <'I>_> Notify user .
/4

receipt W group, 4

L Classify

receipt Classlfled
transcriptions

Fig. 4. Extended BPMN model of the receipt transcription crowdsourcing process

End
Slngle
instance

Task end

Multi-instance O
End

______ {;.

Slngle Multl instance Instance !
instance \ Start end 1
i
Smgle ‘E —>| Smgle @ . i
instance instance i
777777777777777777777777777777)
(a) Multiple branches (b) Multi-instance sub-process (c) Sub-process with non-

blocking event subprocess

Fig. 5. Model transformation options

4.2 Model transformation

To provide BPMN modelers with an as familiar as possible modeling paradigm,
we leverage on a standard BPMN engine and let it manage all and only those
process execution aspects that are needed to coordinate the work of actors,
machines, and the crowd. To do so we transform the process model created
with abstract crowd tasks and streaming connectors into a BPMN-compliant
model that can be executed and managed by an engine extended with runtime
support for crowd tasks. The challenge is to overcome the mismatch between
the requirement of providing insight into the execution of micro-task instances
and the assumption that tasks are atomic. Next, we show how we approach the
model transformation, then we focus on propagating and transforming data.

Transforming the crowdsourcing-specific constructs into executable BPMN
constructs may be achieved in several ways. In particular, we identify the three
approaches depicted in Figure 5 to make explicit the multiplicity of task
instances at both model and execution level:

(a) Parallel branches: The straightforward option to execute several tasks inde-
pendently in parallel is to create multiple parallel branches, each one exe-
cuting a single crowd task instance in the crowdsourcing platform. The ter-
mination of instances can be captured via dedicated events by the streaming
middleware. This approach in principle gives access to the results of each
task instance individually. Yet, it is not convenient, since the number of
branches to be created is proportional to the number of micro-tasks of the

8 S. Tranquillini, F. Daniel, P. Kucherbaev, and F. Casati

crowd task, and the process model is only hard to read and manage. Espe-
cially the number of required instances may be large and can explode when
more than a single crowd task is to be streamed. The approach also makes
execution expensive, since all the branches are instantiated as soon as the
process execution reaches the preceding gateway.

(b) Multi-instance sub-processes: This transformation option overcomes the prob-
lem of having several branches with the same logic modeled in parallel. The
multi-instance sub-process behaves similar to the parallel branches: the full
number of expected sub-processes is instantiated together at runtime when
the first instance of the sub-process is started. However, the model is more
modular, uses only one event type, and is better readable and maintainable.

(¢) Non-blocking event sub-processes: To limit the number of parallel instances of
sub-processes, it is possible to use a sub-process with a non-blocking event
sub-process. The event sub-process is instantiated only upon a respective
start event, and it does not block or alter the execution of the parent process.
The start events can be generated dynamically at runtime as soon as the
necessary input data are available; the Instance end event communicates
task instance completions, the Task end event terminates the parent sub-
process when all the instances have been processed.

Option (c) stands out as the most efficient transformation of the streaming
constructs. However, although part of the BPMN standard, non-blocking event
sub-processes are not (yet) reliably supported by state-of-the-art BPMN engines
(our implementation is based on the open-source BPM platform Activiti). We
therefore follow option (b), the multi-instance sub-processes, to transform models
into executable format.

Given the resulting event-based nature of micro-task instance streaming,
propagating data among crowd tasks requires (i) having access to the data items
produced by each micro-task instance, (ii) enabling the grouping/splitting/multipli-
cation of data items, and (iii) progressing the process based on events. Figure 6(a)
shows a model pattern making use of the streaming connector; Figure 6(b) shows
its transformed, executable model. Connector-crowd task pairs are mapped
depending on their nature (streaming connectors connect crowd tasks only):

— Standard control flow connectors followed by a crowd task are transformed
into one crowd task representing the execution of the micro-tasks inside the
crowdsourcing platform and a multi-instance sub-process intercepting the
respective micro-task instance terminations. The events to be intercepted
are generated by the streaming middleware and contain the output data
of the terminated micro-tasks. The Store variables script task takes the
received data items and stores them in the global data object (if needed).

— Streaming connectors followed by a crowd task are transformed into a multi-
instance sub-process that first intercepts instance terminations of the preced-
ing micro-tasks and then runs the own micro-task instances and intercepts
their terminations. Again, upon reception of each event the two script tasks
store the respective data into a data object. The first script task uses a local
data object, the second one fills again the global data object.

BPMN Task Instance Streaming for Crowdsourcing Processes 9

Transcriptions

Transcribe receipt sub-process

transcnbe _flat
. Store
variables

e
Transcribe
receipt
L | instances
G . = ¥ Check and improve N
—| Transcribe j— Check and . g transcribed receipts
receipt \ improve Sub-process I N
\

! \ transcribe. group - check ﬂat
! transcribe_group, Store S1ore
Einstances] group. 9 variables Check and variables O

lll
I/g instances

Transcriptions Checked transcriptions ha

—>|

4 A

Checked

(a) A streaming connector with a transcriptions

data transformation function (b) Compilation of (a) into BPMN with support for event management

Fig. 6. Implementing micro-task instance streaming with data transformations

Note how the source sequence of crowd tasks is transformed into parallel
branches of sub-processes that are synchronized via events. Incidentally, this
resembles the streaming logic illustrated in Figure 1(b) also graphically.

In the executable model, crowd tasks have the following execution semantics:
(i) read the data items specified as input, (ii) upload data to crowdsourcing
platform, (iii) bind micro-task completions to suitable events in the middleware,
(iv) start micro-tasks for each data item. The middleware and crowdsourcing
platform start execution in parallel to the process engine. The engine waits for
events from the middleware and processes them as specified in the model.

The model transformation logic further provides a convenient way to imple-
ment the data transformation functions illustrated in Figure 3. The key lies
in the sensible use of events and the configuration of the streaming middleware:

— Flat: Micro-task instances are streamed as they terminate without apply-
ing any data transformation. This requires the generation and handling of
one event for each termination. For instance, the transcribe_flat event in
Figure 6(b) intercepts all instances of the Transcribe receipt micro-task.

— Group: Micro-task instance terminations are streamed only in groups. This
requires the middleware to buffer instance terminations till the required num-
ber of terminations is reached and to emit an event that carries the collection
of data items produced by the grouped instances. The process reacts to group
events, like in the case of the transcribe_group event in Figure 6(b).

— Split: Micro-task instances are streamed as they terminate and their output
data collections are split into their constituent elements, requiring the mid-
dleware to emit multiple events per termination. This function only applies to
micro-tasks that produce collections of data items in output, as for instance
the task Classify receipt in our reference scenario (four classifications).

— Multiply: The implementation of this data transformation function is similar
to the split function, with the difference that data items are forwarded as
they are, yet multiple events with data copied by value are generated and
handled as separated events in the process.

10 S. Tranquillini, F. Daniel, P. Kucherbaev, and F. Casati

Service User
> >
adapter Interface

Web-service Human actor

BPMN engine IDE
Runtime - I __1 Modeling -
‘ extension ‘ m extension

Model Developer
transformation

Process
model

Streaming middleware]

Event buffer Micro-task

launcher

Message handler

CrowdFlower I l

Data ‘ API ‘ Tasks %%
repository tlea T;F;_ %

Workers

Fig. 7. Architecture of runtime environment for crowdsourcing processes with stream-
ing support. The middleware deploys micro-tasks and manages events and data.

Thanks to this mapping logic, it is further possible to compute at transfor-
mation time the number of instances of each sub-process in the final model,
starting from the number of micro-tasks of the first crowd task in the source
model. We already discussed the necessary arithmetic in Section 4.1.

For a complete understanding of the proposed transformation logic, it is im-
portant to recall that the streaming connector can only be used between two
crowd tasks and to note that a crowd task followed by a standard control flow
connector implements the standard semantics of BPMN: the control flow con-
nector is enacted only once all the micro-task instances of the preceding crowd
task have terminated. This convention may lead to independent “islands” of
streaming areas inside a process if multiple crowd tasks are separated by stan-
dard control flow constructs. For example, the crowdsourcing process modeled
in Figure 4 could make use of other crowd tasks after the notification of the user
about the completion of the transcription of the receipts. Each of these islands
is transformed into a set of parallel branches and woven into the regular control
flow structure of the source model as exemplified in Figure 6.

4.3 Runtime environment

Figure 7 illustrates the software architecture we implemented to run crowdsourc-
ing processes. It is composed of three main blocks: (i) a BPMN engine where
the processes are executed; (ii) a streaming middleware that manages the events
and transforms data; and (iii) CrowdFlower, the crowdsourcing platform where
micro-tasks are deployed and executed. To model a crowdsourcing process, the
developer uses the IDE (an extension of the Activiti Modeler) that supports
the modeling extensions presented previously. The process model is then trans-
formed into an executable process and deployed into the BPMN engine. The
engine is equipped with a runtime extension for the interaction with the mid-

BPMN Task Instance Streaming for Crowdsourcing Processes 11

dleware. Human actors and Web services are managed by the engine (Activiti,
http://activiti.org) using its own user interface and service adapters.

The streaming middleware is composed of three blocks: The micro-task launch-
er deploys micro-tasks via the CrowdFlower API, given a task identifier, respec-
tive input data (if any), and a task template. The message handler and event
buffer receive webhook calls from the CrowdFlower API when a task instance is
completed, buffer output data, and create events for the BPMN engine.

CrowdFlower is the crowdsourcing platform where the streaming middleware
deploys the micro-tasks for execution by the crowd. To enable the runtime de-
ployment in CrowdFlower, task templates are designed at process modeling time
and linked via suitable parameters to the crowd tasks in the BPMN model. Each
template has to be designed to handle the correct number of data items in in-
put. For example, the Check and improve template has two forms, one for each
receipt to be processed. At runtime, the launcher feeds the templates with data
from the BPMN engine, which are then available to workers as micro-tasks.

5 Case study and evaluation

5.1 Modeling and implementation

Modeling the process shown in Figure 4 in the extended Activity Modeler is a
conventional BPMN modeling exercise with three exceptions: First, the crowd
tasks make use of a new, dedicated modeling construct that allows the modeler
to clearly identify them inside the model and to configure it’s internal logic (re-
member Figure 2(a)). Second, streaming connectors are modeled as control flow
connectors with a suitable annotation, as shown in Figure 2(b). The annotation
turns the connector into a streaming connector. Third, the input and output
data objects of each crowd task are set again via suitable parameters. The re-
sulting model is almost identical to Figure 4, except for the missing notation for
the streaming connector and the data objects that are referenced via parameters.
One of the key configurations of the crowd tasks is their binding with their
task templates in CrowdFlower. This requires creating three task templates for
the process and setting the crowdflower_task_id for each crowd task. The tem-
plates are created to accept as input and to provide as output the correct data
expected by the process execution. The screen shots in Figure 8 show an ex-
cerpt of the three templates instantiated with concrete receipts. For all the tree
templates we set the reward to 10 dollar cents, which is high for this type of
micro-task, so as to attract more workers and have results in a short time.
Given the process model and the implemented task templates, it is pos-
sible to transform the process into its executable form. Specifically, Figure 9
shows the transformed model of Figure 4. In line with the transformation logic
described previously, the three crowd tasks are transformed into three parallel
branches containing the sub-processes managing the instances of the micro-tasks
completed in CrowdFlower. The topmost branch corresponds to the original
Transcribe receipt task and feeds the other two branches with events that

12 S. Tranquillini, F. Daniel, P. Kucherbaev, and F. Casati

(a) Transcribe receipt (b) Check and improve (c) Classify receipt

The Foodnan Cafe
250 Walnut Street
Englewood, NJ 07631
201-568-8056
08/07/2010 9:30AM CHECK NO:01001
TABLE:A PERSONS 102
SERVER :BERT
oty Price
1 Foodnan Burger/ 15.00

Mediun Rare/Onions/
Lettuce/French Fries

1 Cappucino 2.00
1 Choc Rasp. Truffles 1.50
1 Grilled Chicken/ 7.95
Beefsteak Tonatoes/ rBers
Bacon/French Bread
Subtetal >> 29.35
Tax > 2.2
Pay this Anount >> 31.77
Use these two lines for advertisements,

special announcements, etc. . -

1 K
2 PARESAN STDECAR ®®
1 41N G0 nm
TAX 58,70

TOTAL DUE B45.70

1 F ESTS
Roost___ dcted Gratuste

2

Company name Company name) laa :—t“

Address Address Spending type
Transportation

Date Date Accommodation
Meal

Total Total Other

Fig. 8. Screen shots of the three micro-task pages as rendered in CrowdFlower

group two and four micro-task completions, respectively. The numbers of in-
stances are also computed, and the process is ready for execution.

5.2 Performance evaluation

To evaluate the performances of this implementation, we performed a set of ex-
periments in which we focused on the crowd tasks only (the process without the
Upload receipts and Notify user tasks). We uploaded the 40 receipts man-
ually, and ran the process 6 times: 3 times without streaming and 3 times with
streaming (as illustrated in Figure 1). We ran the two settings on two different
days (Thursday and Friday, 19/20 March, 2015) in three different batches at
12:00, 16:00, and 20:00 CET, and stopped micro-tasks after max 1.5 hours of
execution. Independently of streaming or not, our experience has shown that a
same micro-task can be executed within very different times (from minutes to
hours). In order to prevent overlapping batches, we applied the cut-off time and
manually completed outstanding instances. The cost of each execution was of
approximately 8 USD, with a reward of 0.10 USD per micro-task instance.

The runtime behavior of the process executions is illustrated in Figure 10,
which plots the histogram of micro-task instances performed per time unit (2:25
minutes, for best readability) for each crowd task. In all tasks, the majority
of micro-task instances is completed during the productivity peak immediately
after deployment, and almost all instances are completed within one hour. How-
ever, in some runs the last one or two instances took several hours to complete,
and the figure applies the cutoff of 1.5 hours (for presentation purposes). We did
not compare the quality of outputs between the streaming and non-streaming
conditions, which is out of the scope of this work (speed).

BPMN Task Instance Streaming for Crowdsourcing Processes 13
(Transcribe receipt sub-process
(@ﬁ Eranscnbe ﬂaﬂ //,m Transcriptions
Transcribe
. Store
--v|__receipt J ‘ ‘ O variables O
40receipts |-
- W
i oimsince] B

Checkandimprove 5y o oo
[iranscrive. group.2] , %
pload > N (=4 <> Noti O
. otify user
‘ receipts ¥ ‘ Store Check and S1ore ¥ 4
variables variables
improve 4
[20 inslances]
(Classity receipt 4 transcribed _m Classified
sub-process eceipts transcriptions
K c\asswfy ﬂat
Eanscvibs,gvoupﬂ s
L \ g —
Store Store
y Classlfy
variables variables
receipt
o]

Fig. 9. Transformed BPMN process model with the micro-task instance streaming logic
resolved into a set of crowd tasks for micro-task deployment and event handlers and
multi-instance sub-processes for instance management and data transformation.

batch [/ 12007 16:00[/]20:00
No streaming Streaming

o 20
@ 15-
@ 10- 1. Transcribe
S 5o
£ o L - L, = E 4
8 20-
@ 15-
§ 10- J]]: 2. Check and fix
s 5 . - fh. =
£ 20-
2 3. Classify receipt
% 10~ . Classify recei
2 L y receip

o] L. E i: q

0000 0030 01:00 01:30 0200 02:30 0300 0000 00:30 0100 0180 0200 0230 03:00

ime

Fig. 10. Performance analysis of no streaming vs. streaming. The colored vertical lines
indicate the end of the respective micro-task execution (the deployed batches).

The charts clearly show the benefit of streaming: approximately 90% of all
receipts passed through all three crowd tasks within the first 10 minutes of
execution, while in the no streaming condition the same amount of receipts
passed only through the transcription task. With streaming, it takes only a
couple of minutes to transcribe, check and fix, and classify the first receipt;
without streaming it takes about one and a half hours. The two peaks in the no
streaming condition happen in correspondence of the respective terminations of
the prior transcription task. Note that without streaming almost all micro-task
instances are processed very fast, while with streaming the last few instances
are more dispersed in time. This is in line with the findings by Chilton et al. [5]
that workers tend to select micro-tasks (i) that appear on the first two pages
in the crowdsourcing platform and (ii) that have a high number of instances.

14 S. Tranquillini, F. Daniel, P. Kucherbaev, and F. Casati

The last few instances of a micro-task, especially in the streaming setting where
micro-tasks are deployed at the rate of individual instances, the last condition
is not met. With hundreds or thousands of instances, the benefits of streaming
however clearly outweigh this shortcoming.

6 Related work

The need for support for crowdsourcing processes is acknowledged by the recent
emergence of a set of advanced crowdsourcing approaches: Turkit [13] and Au-
toMan [3] propose dedicated programming languages (a JavaScript-like language
and Scala, respectively) that allow one to programmatically deploy micro-tasks
on Mechanical Turk and to pass data among them. AutoMan, in particular, al-
lows the crowdsourcer to define confidence levels for the quality of results and
automatically manages the scheduling and pricing of micro-tasks as well as the
acceptance and rejection of results. Jabberwocky [1] is a MapReduce-based hu-
man computation framework that consists of (i) a human and machine resource
layer (Dormouse), (ii) a parallel programming framework (ManReduce), and (iii)
a high-level scripting language for micro-task definition (Dog). CrowdDB [7] is an
SQL-extension that allows one to embed crowd interrogations into SQL queries.
Based on schemas and annotations of tables in a database, it transforms queries
into workflows of crowd tasks for Mechanical Turk, generates appropriate user
interfaces, and manages data integration. AskSheet [16] is a Google Spreadsheet
extension with functions that allow the spreadsheet to leverage on crowdsourced
work. For instance, data enrichment micro-tasks deployed on Mechanical Turk
can be used to check prices or products in given grocery stores. Turkomatic [12]
delegates not only work to the crowd but also work management operations. The
crowdsourcer and workers alike can arbitrarily split micro-tasks into subtasks,
aggregate subtasks, or perform them. The result is a self-managed workflow ex-
ecuted in Mechanical Turk. CrowdForge [10] is a Django-based crowdsourcing
framework for composite tasks similar to Turkomatic that however follows the
Partition-Map-Reduce approach. Each step in the resulting process is a crowd
task performed on Mechanical Turk. CrowdSearcher [4] is a crowdsourcing sys-
tem that leverages on reusable design patterns and on tasks performed by ma-
chines or people on crowdsourcing platforms or on Facebook.

In the specific context of business process management, CrowdLang [14] is a
BPMN-inspired programming language with crowdsourcing-specific constructs.
It helps one to design and run composite tasks using tasks performed by both
machines and people sourced from various crowdsourcing platforms. Similarly,
CrowdWeaver [9] allows the crowdsourcer to visually design workflows of both
crowd tasks deployed on CrowdFlower and machine tasks. Finally, in our own
prior work we proposed Crowd Computer [17], a BPMN-based design and run-
time environment for complex crowdsourcing processes and the design of custom
crowdsourcing models (e.g., from micro-tasking to auctions and contests). Com-
posite tasks are expressed graphically as business processes and may make use
of human, crowd and machine tasks as well as the full power of BPMN.

BPMN Task Instance Streaming for Crowdsourcing Processes 15

None of these approaches, however, supports the streaming of micro-task
instances. To the best of our knowledge, only Appel et al. [2] focused on event
stream processing in the context of BPMN. The focus of their work is on so-called
event stream processing units that represent machine tasks processing real-time
data streams. The focus of our work is specifically on the peculiarities of crowd
work and the typical data transformations that characterize that domain.

7 Conclusion

The work described in this paper advances the state of the art in business process
management with three contributions: an extension of BPMN for the modeling
of streaming crowdsourcing processes, a BPMN engine with support for crowd
tasks, and a streaming middleware able to overcome the impedance mismatch
between the business process engine and the crowdsourcing platform. The ana-
lyzed case study demonstrates the convenience of the new modeling constructs
and the runtime performance gains that can be achieved.

One of the limitations of the implementation so far is the lack of support
for non-blocking event sub-processes, due to the lack of a respective implemen-
tation in the BPMN engine we used as starting point. Without being able to
dynamically create sub-process instances at runtime, the modeler must guaran-
tee at design time that all data transformations (splitting and grouping) can be
mapped to a correct number of respective runtime events, e.g., the process in
Figure 4 requires multiples of 4 data items in input. From a modeling point of
view, it is currently possible to branch streaming connectors but not to join them
again (joins can be implemented using the standard control flow connectors of
BPMN). This limitation is due to the fact that this kind of join is no longer a
simple join of the control flow but a join of data streams. Joining them asks for
joining data items with different multiplicities or group sizes. This asks for logics
to deal with redundancy (e.g., averaging outputs) and the correlation of data
items. Another limitation that is intrinsic to the approach is that we can control
only those aspects of the process execution that are handled by the BPMN en-
gine; we do not have control over the execution semantics of the crowdsourcing
platform, e.g., of how micro-tasks are instantiated, managed, canceled, assigned
to workers, etc. We can thus not manage exceptions that are internal to the
crowdsourcing platform, e.g., micro-tasks that are never completed.

In our future work, we intend to solve these shortcomings and to support
the joining of data streams using different join logics, to provide for a model
transformation that is fully integrated into the modeling environment, and to
integrate support for micro-task instance streaming into our prior work on the
Crowd Computer. We intend to conduct additional experiments with hundreds or
thousands of micro-tasks to stress-test and fine-tune the runtime environment. In
order to attack the high variance of micro-task durations, we want to understand
better the reasons for slow durations, so as to dynamically re-deploy problematic
micro-tasks and to speed up overall execution times.

16

S. Tranquillini, F. Daniel, P. Kucherbaev, and F. Casati

The data and streaming middleware of this work are open-sourced on https:

//github.com/Crowdcomputer/ and can be adapted to different BPM engines,
crowdsourcing platforms, and application domains.

Acknowledgment. This work was partially supported by the project “Evaluation and

enhancement of social, economic and emotional wellbeing of older adults” under the
agreement no. 14.7250.310029, Tomsk Polytechnic University.

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

S. Ahmad, A. Battle, Z. Malkani, and S. Kamvar. The jabberwocky programming
environment for structured social computing. In UIST’11, pages 53-64, 2011.

S. Appel, S. Frischbier, T. Freudenreich, and A. P. Buchmann. Event Stream
Processing Units in Business Processes. In BPM 2013, pages 187-202, 2013.

D. W. Barowy, C. Curtsinger, E. D. Berger, and A. McGregor. Automan: a
platform for integrating human-based and digital computation. SIGPLAN Not.,
47(10):639-654, Oct. 2012.

A. Bozzon, M. Brambilla, S. Ceri, A. Mauri, and R. Volonterio. Pattern-based
specification of crowdsourcing applications. In ICWE 2014, pages 218-235, 2014.
L. B. Chilton, J. J. Horton, R. C. Miller, and S. Azenkot. Task Search in a Human
Computation Market. In HCOMP 2010, pages 1-9, 2010.

. F. Daniel, S. Soi, S. Tranquillini, F. Casati, C. Heng, and L. Yan. Distributed

orchestration of user interfaces. Inf. Syst., 37(6):539-556, 2012.

M. J. Franklin, D. Kossmann, T. Kraska, S. Ramesh, and R. Xin. CrowdDB:
Answering Queries with Crowdsourcing. In SIGMOD 2011, pages 61-72, 2011.

J. Howe. Crowdsourcing: why the power of the crowd is driving the future of busi-
ness. Crown Publishing Group, New York, NY, USA, 1st edition, 2008.

A. Kittur, S. Khamkar, P. André, and R. Kraut. Crowdweaver: visually managing
complex crowd work. In CSCW 12, pages 1033—-1036, 2012.

A. Kittur, B. Smus, S. Khamkar, and R. E. Kraut. Crowdforge: crowdsourcing
complex work. In UIST’11, pages 43-52, 2011.

P. Kucherbaev, F. Daniel, S. Tranquillini, and M. Marchese. Composite crowd-
sourcing processes: challenges, approaches, and opportunities. IEEE Internet Com-
puting, conditionally accepted: http://bit.ly/1BtjMTy, 2015.

A. Kulkarni, M. Can, and B. Hartmann. Collaboratively crowdsourcing workflows
with Turkomatic. In CSCW 2012, pages 1003-1012, 2012.

G. Little, L. B. Chilton, M. Goldman, and R. C. Miller. Turkit: human computation
algorithms on mechanical turk. In UIST 2010, pages 57-66, 2010.

P. Minder and A. Bernstein. Crowdlang: a programming language for the sys-
tematic exploration of human computation systems. In SocInfo, pages 124-137.
2012.

O. M. G. (OMG). Business Process Model and Notation (BPMN) version 2.0.
http://wuw.omg.org/spec/BPMN/2.0, 2011.

A. J. Quinn and B. B. Bederson. AskSheet: efficient human computation for
decision making with spreadsheets. In CSCW 2012, pages 1456-1466, 2012.

S. Tranquillini, F. Daniel, P. Kucherbaev, and F. Casati. Modeling, Enacting and
Integrating Custom Crowdsourcing Processes. ACM Trans. Web, 9(2), May 2015.
W. M. P. van der Aalst. The Application of Petri Nets to Workflow Management.
Journal of Circuits, Systems, and Computers, 8(1):21-66, 1998.

