Skip to main content

Feature Learning HyperNEAT: Evolving Neural Networks to Extract Features for Classification of Maritime Satellite Imagery

  • Conference paper
  • First Online:
Book cover Information Processing in Cells and Tissues (IPCAT 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9303))

Abstract

Imagery analysis represents a significant aspect of maritime domain awareness; however, the amount of imagery is exceeding human capability to process. Unfortunately, the maritime domain presents unique challenges for machine learning to automate such analysis. Indeed, when object recognition algorithms observe real-world data, they face hurdles not present in experimental situations. Imagery from such domains suffers from degradation, have limited examples, and vary greatly in format. These limitations are present satellite imagery because of the associated constraints in expense and capability. To this end, the Hypercube-based NeuroEvolution of Augmenting Topologies approach is investigated in addressing some such challenges for classifying maritime vessels from satellite imagery. Results show that HyperNEAT learns features from such imagery that allows better classification than Principal Component Analysis (PCA). Furthermore, HyperNEAT enables a unique capability to scale image sizes through the indirect encoding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aaltonen, T., et al.: Measurement of the top quark mass with dilepton events selected using neuroevolution at CDF. Phys. Rev. Lett. 102, 152001–152008 (2009)

    Article  Google Scholar 

  2. Bengio, Y., Courville, A., Vincent, P.: Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1798–1828 (2013)

    Article  Google Scholar 

  3. Buck, H., Sharghi, E., Guilas, C., Stastny, J., Morgart, W., Schalcosky, B., Pifko, K.: Enhanced ship detection from overhead imagery. In: SPIE Defense and Security Symposium, vol. 6945. International Society for Optics and Photonics (2008)

    Google Scholar 

  4. Cardamone, L., Loiacono, D., Lanzi, P.L.: On-line neuroevolution applied to the open racing car simulator. In: Proceedings of the IEEE CEC., Piscataway, NJ, USA. IEEE Press (2009)

    Google Scholar 

  5. Ciresan, D., Meier, U., Masci, J., Schmidhuber, J.: Multi-column deep neural network for traffic sign classification. Neural Netw. 32, 333–338 (2012)

    Article  Google Scholar 

  6. Coleman, O.J.: Evolving neural networks for visual processing. Ph.D. thesis, The University of New South Wales, Kensingtion, Austrailia (2010)

    Google Scholar 

  7. D’Ambroiso, D., Stanley, K.O.: Evolving policy geometry for scalable multiagent learning. In: Proceedings of the 9th AAMAS, New York, NY, USA, p. 8. ACM Press (2010)

    Google Scholar 

  8. D’Ambrosio, D.B., Stanley, K.O.: Generative encoding for multiagent learning. In: Proceedings of GECCO 2008, New York, NY. ACM Press (2008)

    Google Scholar 

  9. Eggers, J.: Plenary talk. In: ICCRTS (2013)

    Google Scholar 

  10. Gauci, J., Stanley, K.O.: Generating large-scale neural networks through discovering geometric regularities. In: Proceedings of GECCO 2007, New York, NY, p. 8. ACM (2007)

    Google Scholar 

  11. Gauci, J., Stanley, K.O.: A case study on the critical role of geometric regularity in machine learning. In: Proceedings of the 23rd AAAI Conference, Menlo Park, CA. AAAI Press (2008)

    Google Scholar 

  12. Gauci, J., Stanley, K.O.: Autonomous evolution of topographic regularities in artificial neural networks. Neural Comput. 22(7), 1860–1898 (2010)

    Article  MATH  Google Scholar 

  13. Hall, D., McCool, C., Dayoub, F., Sunderhauf, N., Upcroft, B.: Evaluation of features for leaf classification in challenging conditions. In: IEEE WACV, Waikola, HI, January 2015

    Google Scholar 

  14. Harguess, J., Parameswaran, S., Rainey, K., Stastny, J.: Vessel classification in overhead satellite imagery using learned dictionaries. In: SPIE Optical Engineering+ Applications, p. 84992F–84992F. International Society for Optics and Photonics (2012)

    Google Scholar 

  15. Harguess, J., Rainey, K.: Are face recognition methods useful for classifying ships? In: IEEE AIPR Workshop, 2011, pp. 1–7. IEEE (2011)

    Google Scholar 

  16. Hausknecht, M., Khandelwal, P., Miikkulainen, R., Stone, P.: Hyperneat-gpp: A hyperneat-based atari general game player. In: Proceedings of GECCO 2012, Philadelphia, Pennsylvania, p. 8. ACM Press, July 2012

    Google Scholar 

  17. Hinton, G.E., Osindero, S., Teh, Y.-W.: A fast learning algorithm for deep belief nets. Neural Comput. 18, 1527–1554 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classfication with deep convolutional neural networks. In: Advances in NIPS (2012)

    Google Scholar 

  19. Rainey, K., Parameswaran, S., Harguess, J.: Maritime vessel recognition in degraded satellite imagery. In: Proceedings of SPIE Automatic Target Recognition XXIV, vol. 9090. International Society for Optics and Photonics, June 2014

    Google Scholar 

  20. Rainey, K., Stastny, J.: Object recognition in ocean imagery using feature selection and compressive sensing. In: IEEE AIPR Workshop, pp. 1–6. IEEE (2011)

    Google Scholar 

  21. Rifai, S., Dauphin, Y.N., Vincent, P., Bengio, Y., Muller, X.: The manifold tangent classifer. In: Advances in NIPS (2011)

    Google Scholar 

  22. Stanley, K.O.: Compositional pattern producing networks: a novel abstraction of development. Genet. Program. Evolvable Mach. Spec. Issue Dev. Syst. 8(2), 131–162 (2007)

    Article  Google Scholar 

  23. Stanley, K.O., Bryant, B.D., Miikkulainen, R.: Real-time neuroevolution in the NERO video game. IEEE Trans. Evol. Comput. Spec. Issue Evol. Comput. Games 9(6), 653–668 (2005)

    Article  Google Scholar 

  24. Stanley, K.O., D’Ambrosio, D.B., Gauci, J.: A hypercube-based indirect encoding for evolving large-scale neural networks. Artif. Life 15, 185–212 (2009)

    Article  Google Scholar 

  25. Stanley, K.O., Miikkulainen, R.: A taxonomy for artificial embryogeny. Artif. Life 9(2), 93 (2003)

    Article  Google Scholar 

  26. Stanley, K.O., Miikkulainen, R.: Competitive coevolution through evolutionary complexification. J. Artif. Intell. Res. 21, 63 (2004)

    Google Scholar 

  27. Szerlip, P.A., Morse, G., Pugh, J.K., Stanley, K.O.: Unsupervised feature learning through divergent discriminative feature accumulation (2014). arXiv:1406.1833v2, abs/1406.1833

  28. Taylor, M.E., Whiteson, S., Stone, P.: Comparing evolutionary and temporal difference methods in a reinforcement learning domain. In: Proceedings of GECCO 2006, New York, NY, pp. 1321–1328. ACM Press, July 2006

    Google Scholar 

  29. Turing, A.M.: The chemical basis of Morphogenesis. R. Soc. Lond. Philos. Trans. Ser. B 237, 37–72 (1952)

    Article  Google Scholar 

  30. Verbancsics, P., Harguess, J.: Deep learning through generative and developmental system. In: Proceedings of the Genetic and Evolutionary Computation (GECCO 2014) companion, p. 103. ACM (2014)

    Google Scholar 

  31. Verbancsics, P., Harguess, J.: Image classification using generative neuroevolution for deep learning. In: IEEE Winter Conference on Applications of Computer Vision (WACV), Waikola, HI, January 2015

    Google Scholar 

  32. Verbancsics, P., Stanley, K.O.: Evolving static representations for task transfer. J. Mach. Learn. Res. 11, 1737–1769 (2010)

    MathSciNet  MATH  Google Scholar 

  33. Verbancsics, P., Stanley, K.O.: Constraining connectivity to encourage modularity in hyperneat. In: Proceedings of GECCO 2011, New York, NY. ACM Press (2011)

    Google Scholar 

  34. Whiteson, S.: Improving reinforcement learning function approximators via neuroevolution. In Proceedings of the 4th AAMAS, New York, NY, USA, pp. 1386–1386. ACM (2005)

    Google Scholar 

  35. Whiteson, S., Whiteson, D.: Stochastic optimization for collision selection in high energy physics. In: IAAI 2007, Vancouver, British Columbia, Canada. AAAI Press, July 2007

    Google Scholar 

Download references

Acknowledgments

This work was supported and funded by the SSC Pacific Naval Innovative Science and Engineering (NISE) Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Phillip Verbancsics .

Editor information

Editors and Affiliations

A Result Standard Deviations

A Result Standard Deviations

Table 3. Standard deviation of training and testing classification performance by normalization approach.

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Verbancsics, P., Harguess, J. (2015). Feature Learning HyperNEAT: Evolving Neural Networks to Extract Features for Classification of Maritime Satellite Imagery. In: Lones, M., Tyrrell, A., Smith, S., Fogel, G. (eds) Information Processing in Cells and Tissues. IPCAT 2015. Lecture Notes in Computer Science(), vol 9303. Springer, Cham. https://doi.org/10.1007/978-3-319-23108-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23108-2_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23107-5

  • Online ISBN: 978-3-319-23108-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics