Skip to main content

Verification in Attack-Incomplete Argumentation Frameworks

  • Conference paper
  • First Online:
Algorithmic Decision Theory (ADT 2015)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9346))

Included in the following conference series:

Abstract

We tackle the problem of expressing incomplete knowledge about the attack relation in abstract argumentation frameworks. In applications, incomplete argumentation frameworks may arise as intermediate states in an elicitation process, when merging different beliefs about an argumentation framework’s state, or in cases where the complete information cannot be fully obtained. To this end, we employ a model introduced by Cayrol et al. [10] and analyze the question of whether certain justification criteria are possibly (or necessarily) fulfilled, i.e., whether they are fulfilled in some (or in every) completion of the incomplete argumentation framework. We formally extend the definition of existing criteria to these incomplete argumentation frameworks and provide characterization and complexity results for variants of the verification problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Besides four faculties of HHU Düsseldorf and the Fachhochschule für öffentliche Verwaltung NRW, the practice partners of this project include registered societies, limited liability companies, and the municipal councils of Köln, Bonn, and Münster, among others. We refer to the website http://www.fortschrittskolleg.de for more details.

  2. 2.

    Other models of incomplete-information settings in voting include dynamic social choice with evolving preferences [29] and online manipulation in sequential elections [21].

  3. 3.

    In addition to these semantics we also use conflict-freeness and admissibility as criteria. While these are generally not considered to be semantics, we will not always explicitly distinguish between semantics and basic properties for the sake of conciseness.

  4. 4.

    Unlike the concepts of credulous and skeptical acceptance in the related literature, which denote membership of arguments in, respectively, some and all extensions of a specific argumentation framework, our notions of properties holding possibly and necessarily describe criteria holding in, respectively, some and all argumentation frameworks (i.e., completions), and are therefore settled one level of abstraction higher.

  5. 5.

    A set of arguments is \( RI \) -preferred if it is maximal among all necessarily admissible sets, where \( R \widehat{=} \mathscr {R}^{+}\) and \( I \widehat{=} \mathscr {R}^{?}\) in our notation.

  6. 6.

    For formal definitions of these criteria, see their work [10].

References

  1. Baumeister, D., Rothe, J.: Preference aggregation by voting (chapter 4). In: Rothe, J. (ed.) Economics and Computation: An Introduction to Algorithmic Game Theory, Computational Social Choice, and Fair Division, pp. 197–325. Springer, Heidelberg (2015). doi:10.1007/978-3-662-47904-9_4

  2. Baumeister, D., Roos, M., Rothe, J.: Computational complexity of two variants of the possible winner problem. In: Proceedings of AAMAS 2011, pp. 853–860. IFAAMAS (2011)

    Google Scholar 

  3. Baumeister, D., Roos, M., Rothe, J., Schend, L., Xia, L.: The possible winner problem with uncertain weights. In: Proceedings of ECAI 2012, pp. 133–138. IOS Press (2012)

    Google Scholar 

  4. Baumeister, D., Erdélyi, G., Erdélyi, O., Rothe, J.: Complexity of manipulation and bribery in judgment aggregation for uniform premise-based quota rules. Math. Soc. Sci. 76, 19–30 (2015)

    Article  MathSciNet  Google Scholar 

  5. Baumeister, D., Rothe, J., Schadrack, H.: Verification in argument-incomplete argumentation frameworks. In: Walsh, T. (ed.) ADT 2015. LNCS (LNAI), vol. 9346, pp. xx–yy. Springer, Heidelberg (2015)

    Google Scholar 

  6. Boella, G., Kaci, S., van der Torre, L.: Dynamics in with single extensions: abstraction principles and the grounded extension. In: Sossai, C., Chemello, G. (eds.) ECSQARU 2009. LNCS, vol. 5590, pp. 107–118. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  7. Boutilier, C., Rosenschein, J.: Incomplete information and communication in voting (chapter 10). In: Brandt, F., Conitzer, V., Endriss, U., Lang, J., Procaccia, A. (eds.) Handbook of Computational Social Choice. Cambridge University Press, Cambridge (2015)

    Google Scholar 

  8. Bouveret, S., Endriss, U., Lang, J.: Fair division under ordinal preferences: computing envy-free allocations of indivisible goods. In: Proceedings of ECAI 2010, pp. 387–392. IOS Press (2010)

    Google Scholar 

  9. Brandt, F., Conitzer, V., Endriss, U.: Computational social choice. In: Weiß, G. (ed.) Multiagent Systems, 2nd edn, pp. 213–283. MIT Press, Cambridge (2013)

    Google Scholar 

  10. Cayrol, C., Devred, C., Lagasquie-Schiex, M.C.: Handling ignorance in argumentation: semantics of partial argumentation frameworks. In: Mellouli, K. (ed.) ECSQARU 2007. LNCS (LNAI), vol. 4724, pp. 259–270. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  11. Cayrol, C., de Saint-Cyr, F., Lagasquie-Schiex, M.: Revision of an argumentation system. In: Proceedings of KR 2008, pp. 124–134. AAAI Press (2008)

    Google Scholar 

  12. Cayrol, C., de Saint-Cyr, F., Lagasquie-Schiex, M.: Change in abstract argumentation frameworks: adding an argument. J. Artif. Intell. Res. 38, 49–84 (2010)

    Article  MathSciNet  Google Scholar 

  13. Chevaleyre, Y., Lang, J., Maudet, N., Monnot, J., Xia, L.: New candidates welcome! Possible winners with respect to the addition of new candidates. Math. Soc. Sci. 64(1), 74–88 (2012)

    Article  MathSciNet  Google Scholar 

  14. Coste-Marquis, S., Konieczny, S., Mailly, J., Marquis, P.: On the revision of argumentation systems: minimal change of arguments statuses. In: Proceedings of KR 2014. AAAI Press (2014)

    Google Scholar 

  15. Dimopoulos, Y., Torres, A.: Graph theoretical structures in logic programs and default theories. Theoret. Comput. Sci. 170(1), 209–244 (1996)

    Article  MathSciNet  Google Scholar 

  16. Doder, D., Woltran, S.: Probabilistic argumentation frameworks – a logical approach. In: Straccia, U., Calì, A. (eds.) SUM 2014. LNCS, vol. 8720, pp. 134–147. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  17. Dung, P.: On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and \(n\)-person games. Artif. Intell. 77(2), 321–357 (1995)

    Article  MathSciNet  Google Scholar 

  18. Dunne, P., Wooldridge, M.: Complexity of abstract argumentation (chapter 5). In: Rahwan, I., Simari, G. (eds.) Argumentation in Artificial Intelligence, pp. 85–104. Springer, New York (2009)

    Chapter  Google Scholar 

  19. Fazzinga, B., Flesca, S., Parisi, F.: On the complexity of probabilistic abstract argumentation. In: Proceedings of IJCAI 2013, pp. 898–904. AAAI Press/IJCAI (2013)

    Google Scholar 

  20. Fazzinga, B., Flesca, S., Parisi, F.: Efficiently estimating the probability of extensions in abstract argumentation. In: Liu, W., Subrahmanian, V.S., Wijsen, J. (eds.) SUM 2013. LNCS, vol. 8078, pp. 106–119. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  21. Hemaspaandra, E., Hemaspaandra, L., Rothe, J.: The complexity of online manipulation of sequential elections. J. Comput. Syst. Sci. 80(4), 697–710 (2014)

    Article  MathSciNet  Google Scholar 

  22. Hunter, A.: Probabilistic qualification of attack in abstract argumentation. Int. J. Approximate Reasoning 55(2), 607–638 (2014)

    Article  MathSciNet  Google Scholar 

  23. Konczak, K., Lang, J.: Voting procedures with incomplete preferences. In: Proceedings of Multidisciplinary IJCAI 2005 Workshop on Advances in Preference Handling, pp. 124–129 (2005)

    Google Scholar 

  24. Lang, J., Rey, A., Rothe, J., Schadrack, H., Schend, L.: Representing and solving hedonic games with ordinal preferences and thresholds. In: Proceedings of AAMAS 2015. IFAAMAS (2015)

    Google Scholar 

  25. Li, H., Oren, N., Norman, T.J.: Probabilistic argumentation frameworks. In: Modgil, S., Oren, N., Toni, F. (eds.) TAFA 2011. LNCS, vol. 7132, pp. 1–16. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  26. Liao, B., Jin, L., Koons, R.: Dynamics of argumentation systems: a division-based method. Artif. Intell. 175(11), 1790–1814 (2011)

    Article  MathSciNet  Google Scholar 

  27. Meyer, A., Stockmeyer, L.: The equivalence problem for regular expressions with squaring requires exponential space. In: Proceedings of FOCS 1972, pp. 125–129. IEEE Press (1972)

    Google Scholar 

  28. Papadimitriou, C.: Computational Complexity, 2nd edn. Addison-Wesley, New York (1995). Reprinted with corrections

    MATH  Google Scholar 

  29. Parkes, D., Procaccia, A.: Dynamic social choice with evolving preferences. In: Proceedings of AAAI 2013, pp. 767–773. AAAI Press (2013)

    Google Scholar 

  30. Rahwan, I., Simari, G. (eds.): Argumentation in Artificial Intelligence. Springer, New York (2009)

    Google Scholar 

  31. Rienstra, T.: Towards a probabilistic Dung-style argumentation system. In: Proceedings of AT 2012, pp. 138–152 (2012)

    Google Scholar 

  32. Rothe, J.: Complexity Theory and Cryptology: An Introduction to Cryptocomplexity. EATCS Texts in Theoretical Computer Science. Springer, Heidelberg (2005)

    MATH  Google Scholar 

  33. Stockmeyer, L.: The polynomial-time hierarchy. Theoret. Comput. Sci. 3(1), 1–22 (1976)

    Article  MathSciNet  Google Scholar 

  34. Xia, L., Conitzer, V.: Determining possible and necessary winners given partial orders. J. Artif. Intell. Res. 41, 25–67 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

We thank the anonymous reviewers for their helpful comments. This work was supported in part by an NRW grant for gender-sensitive universities and the project “Online Participation,” both funded by the NRW Ministry for Innovation, Science, and Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Neugebauer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Baumeister, D., Neugebauer, D., Rothe, J. (2015). Verification in Attack-Incomplete Argumentation Frameworks. In: Walsh, T. (eds) Algorithmic Decision Theory. ADT 2015. Lecture Notes in Computer Science(), vol 9346. Springer, Cham. https://doi.org/10.1007/978-3-319-23114-3_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23114-3_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23113-6

  • Online ISBN: 978-3-319-23114-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics