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Abstract

Most of the computational study of election problems hasmagsl that each voter’s pref-
erences are, or should be extended to, a total order. Hovieymactice voters may have
preferences with ties. We study the complexity of manipugedictions on elections where vot-
ers can have ties, extending the definitions of the electistems (when necessary) to handle
voters with ties. We show that for natural election systetimsvéng ties can both increase and
decrease the complexity of manipulation and bribery, andtate a general result on the effect
of voters with ties on the complexity of control.

1 Introduction

Elections are commonly used to reach a decision when pesbavith the preferences of several
agents. This includes political domains as well as multiaggstems. In an election agents can
have an incentive to cast a strategic vote in order to affecotitcome. An important negative result
from social-choice theory, the Gibbard-Satterthwaitletem, states that every reasonable election
system is susceptible to strategic voting (a.k.a. manijauip[16, 26].

Although every reasonable election system can be manguljlgtmay be computationally in-
feasible to determine if a successful manipulation exiBtrtholdi et al. [1] introduced the notion
of exploring the computational complexity of the manipidatproblem. They expanded on this
work by introducing and analyzing the complexity of conti2]. Control models the actions of an
election organizer, referred to as the chair, who has cbater the structure of the election (e.g.,
the voter set) and wants to ensure that a preferred candidage Faliszewski et all [11] introduced
the model of bribery. Bribery is closely related to manipigla, but instead of asking if voters can
cast strategic votes to ensure a preferred outcome brilségyifia subcollection of the voters can
be paid to change their vote to ensure a preferred outcome.

It is important that we understand the complexity of thegset&n problems on votes that allow
ties, since in practical settings voters often have tiewdeh some of the candidates. This is seen
in the online preference repositonrREFLIB, which contains several election datasets containing
votes with ties, ranging from political elections to elecs created from rating data [23]. Most
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of the computational study of election problems for partiates has assumed that each voter's
preferences should be extended to a total order (see eegpotisible and necessary winner prob-
lems [21]). However an agent may view two options as expligijual and it makes sense to view
these preferences as votes with ties, instead of as pantikings that can be extended.

Election systems are sometimes even explicitly defined dtere with ties. Both the Kemeny
rule [20] and the Schulze rule [27] are defined for votes tbatain ties. Also, there exist variants
of the Borda count that are defined for votes that contain@s

The computational study of the problems of manipulatiomticil, and bribery has largely been
restricted to elections that contain voters with tie-freéeg. Important recent work by Narodytska
and Walsh[[2b] studies the computational complexity of thenipulation problem for top orders,
i.e., votes where the candidates ranked last are all tiedendtherwise total orders. The manipu-
lation results in this paper can be seen as an extension @fdHeby Narodytska and Walsh. We
consider orders that allow a voter to state ties at eachiposif his or her preference order, i.e.,
weak orders. We mention that in contrast to the work by Nad@dyand Walsh [25], we give an
example of a natural case where manipulation becomes hagd gikien votes with ties, while it
is in P for total orders. Additionally, we are the first to sgutie complexity of the standard mod-
els of control and bribery for votes that contain ties. Hogrewe mention here that Baumeister
et al. consider a different version of bribery called extemsribery, for top orders (there called
top-truncated votes) [3].

The organization of this paper is as follows. In Secfibn 2 wagesthe formal definitions and
problem statements needed for our results. The resultsdtioB8& are split into three sections,
each showing a different behavior of voting with ties. Int88d3.1 we give examples of election
systems where the problems of manipulation, bribery, amdrgbincrease in complexity from P
to NP-complete. Conversely, in Section]3.2 we give exampledection systems where the com-
plexity of manipulation and bribery becomes easier, an staeneral result about the complexity
of control. In Sectiorhl_3]3 we solve an open question from Mgiska and Walsh [25] and give
examples of election systems whose manipulation comj@exitre unaffected by voters with ties.
Additionally, we completely characterize 3-candidate €apd* coalitional weighted manipula-
tion for rational and irrational voters with ties. We dissuslated work in Sectidd 4 and our general
conclusions and open directions in Secfibn 5.

2 Preliminaries

An dlection consists of a finite set of candidatésand a collection of voter¥’, also referred to

as a preference profile. Each voterlinis specified by its preference order. We consider voters
with varying amounts of ties in their preferences.todal order is a linear ordering of all of the
candidates from most to least preferredwgak order is a transitive, reflexive, and antisymmetric
ordering where the indifference relation{") is transitive. In general, a weak order can be viewed
as a total order with ties. As usual, we will colloquially eeto indifference as ties throughout this
paper since the indifference relation specifies the prataref two elements being equal. tép
order is a weak order with all tied candidates ranked last, abdti@mm order is a weak order with

all tied candidates ranked first. In Exampple 1 below we priesseaimples of each of the orders, with



and without ties, examined in this paper.

Example 1 Given the candidate set {a,b,c,d}, a > b ~ ¢ > disaweakorder,a ~ b > ¢ > d
isa bottom order, a« > b > ¢ ~ disatoporder,and a > b > ¢ > d isatotal order. Notice that
every bottom order and every top order is also a weak order, and that every total order isalso a top,
bottom, and weak order.

An €election system, £, maps an election, i.e., a finite candidate Seind a collection of voters
V, to a set of winners, where the winner set can be any subséedfandidate set. The voters
in an election can sometimes have an associated weight \aherter with weightw counts asv
unweighted voters.

We examine two important families of election systems, that fieing scoring rules. A scoring
rule uses a vector of the forfay, . .., s,,), wherem denotes the number of candidates, to determine
each candidate’s score when given a preference profile. \ffiegoreferences are all total orders, a
candidate at positiofnin the preference order of a voter receives a scorg &bm that voter. The
candidate(s) with the highest total score win. We considerfdllowing three scoring rules.

Plurality: with scoring vector1,0, ... ,0).
Borda: with scoring vectokm — 1, m — 2,...,1,0).

t-Approval: with scoring vector1,...,1,0,...,0).
t

To properly handle voters with ties in their preference mdee define several natural exten-
sions which generalize the extensions from Baumeister. §&]ednd Narodytska and Walsh [25].

Write a preference order with ties &5 > Go > --- > G, where each’; is a set of tied
candidates. For each g8, letk; = Z;;ll |G, be the number of candidates strictly preferred to
every candidate in the set. See the caption of Table 1 for ample.

We now introduce the following scoring-rule extensionsjalitas stated above, generalize pre-
viously used scoring-rule extensions [3] 25]. In Tdhle 1 wespnt an example of each of these
extensions for Borda.

Min: Each candidate itr; receives a score 6, g, -

Max: Each candidate it7; receives a score o, ;1.

Round down: Each candidate it¥; receives a score 6f,, ;.
Average: Each candidate it; receives a score of

ki+|G;l|
Zj:ki+1 Sj
1Gill



Table 1: The score of each candidate for preference arder b ~ ¢ > d using Borda with
each of our scoring-rule extensions. We write this ordef@s> {b,c} > {d}, i.e.,G; = {a},
Go = {b,c}, andG3 = {d}. Note thatk; = 0, k; = 1, andks = 3.

Borda | score(a) | score(b) | score(c) | score(d)
Min 3 1 1 0
Max 3 2 2 0
Round down 2 1 1 0
Average 3 15 1.5 0

The optimistic and pessimistic models from the work by Baistee et al. [3] are the same
as our max and min extensions respectively, for top ordetkofAhe scoring-rule extensions for
top orders found in Narodytska and Walsh|[25] can be real®edur definitions above, with our
round down and average extensions yielding the same sanr&pforders as their round down and
average extensions. With the additional modification that= 0 our min scoring-rule extension
yields the same scores for top orders as round up in Narcalyisét Walsh[[25].

Notice that plurality using the max scoring-rule extensfon bottom orders is the same as
approval voting, where each voter indicates either approwvdisapproval of each candidate and
the candidate with the most approvals win. For examplengilie set of candidates:, b, ¢, d}, an
approval vector that approves @fandc, and a preference order~ ¢ > b > d yield the same
scores for approval and plurality using max respectively.

In addition to scoring rules, elections can be defined by #ieyise majority elections between
the candidates. One important example is Copéldiati(where« is a rational number between 0
and 1), which is scored as follows. Each candidate receimespoint for each pairwise majority
election he or she wins and receivegoints for each tie. We also mention that Copelaistbften
referred to, and will be throughout this paper, as LIull [IWe apply the definition of Copelafid
to weak orders in the obvious way (as was done for top ordd; 2B]).

We sometimes look at voters whose preferences need notidwealaind we refer to those voters
as “irrational.” This simply means that for every unordepadt a, b of distinct candidates, the voter
hasa > b orb > a. For example, a voter’s preferences could(be> b,b > ¢,c¢ > a). We also
look at irrational votes with ties.

When discussing elections defined by pairwise majorityteles we sometimes refer to the
induced majority graph of a preference profile. A preference profifewhere each voter has prefer-
ences over the set of candidatéinduces the majority graph with a vertex set equal to the idabel
set and an edge set defined as follows. For ewebye C' the graph contains the edge— b if
more voters have > bthanb > a.

2.1 Election Problems

We examine the complexity of the following election probkem
The coalitional manipulation problem (where a coalitionn@mdinipulators seeks to change the
outcome of the election) for weighted voters, first studigcConitzer et al.[[6], is described below.



Name: £-CWCM

Given: A candidate sef’, a collection of nonmanipulative voter¥swhere each voter has a positive
integral weight, a preferred candidatec C', and a collection of manipulative vote¥g.

Question: Is there a way to set the votes of the manipulators suchztlistan £ winner of the
election(C,V uWw)?

Electoral control is the problem of determining if it is pims for an election organizer with
control over the structure of an election, whom we refer tdhaselection chair, to ensure that a
preferred candidate wins![2]. We formally define the spedifintrol action of constructive control
by adding voters (CCAV) below. CCAV is one of the most natwades of electoral control and it
models scenarios such as targeted voter registrationsdniiere voters whose votes will ensure the
goal of the chair are added to the election.

Name: £-CCAV

Given: A candidate set’, a collection of voter$’, a collection of unregistered votdis a preferred
candidatep € (', and an add limif: € N.

Question: Is there a subcollection of the unregistered votétsC U such that|U’|| < k andp is
an& winner of the electiofC, vV U U")?

Bribery is the problem of determining if it is possible to olga the votes of a subcollection
of the voters, within a certain budget, to ensure that a pedecandidate wins [11]. The case for
unweighted voters is defined below, but we also considerdke tor weighted voters.

Name: &-Bribery

Given: A candidate sef’, a collection of voterd/, a preferred candidage € C, and a bribe limit
ke N.

Question: Is there a way to change the votes of at miost the voters in/ so thatp is an€ winner?

2.2 Computational Complexity
We use the following NP-complete problems in our proofs ofédipleteness.
Name: Exact Cover by 3-Sets

Given: A nonempty set of element8 = {b1,...,bs;} and a collectionS = {S;,...,S,} of
3-element subsets @.

Question: Does there exist a subcollectidii of S such that every element @ occurs in exactly
one member of’?

Name: Partition



Given: A nonempty set of positive integets, . .., k; such thathz1 k; = 2K.

Question: Does there exist a subsétof &y, ..., k; such thady A = KE

Some of our results utilize the following variation of Paom, referred to as Partitiépfor which
we prove NP-completeness by a reduction from Partition.

Name: Partitiorf
Given: A nonempty set of positive even integérs . . ., k; and a positive even integé?.

Question: Does there exist a partitio, B, C) of kq,...,k; suchtha A =>"B + K?
Theorem 1 Partition’ is NP-complete.

Proof. The construction here is similar to the first part of the reiducto a different version of
Partition from Faliszewski et al. [11].

Givenky, ..., k; such thatzf:1 k; = 2K, corresponding to an instance of Partition, we con-
struct the following instance’, ..., k., ¢,,..., ¢, K of Partitior. Letk] = 4% + 4141k, ¢/ = 4,
andK = 41K + Zle 4*. (Note that in Faliszewski et al, [11] “3”s were used, but vee t4”"s
here so that when we add a subsetof... .k}, 01, ..., ¢, K, we never have carries in the last 1
digits base 4, and we set the last digit to 0 to ensure thatiailers are even.)

If there exists a partitioiA, B, C) of k..., k|, ¢,,...,¢, such thafy"A = YB + K, then
Vi, 1 < i <t [(3SA)/4 | mod 4 = |(XB + K)/4'| mod 4. Note that| (3>A4)/4%| mod 4 =
1AN{k,, €3], [(XB)/4'] mod 4 = | BN{k,, £}, and| K /4| mod 4 = 1. So, || AN{k],£}}|| =
| B N {Kk,, ¢;}|| + 1. It follows that exactly one ok, or £ is in A and neither is inB. Since this is
the case for every, it follows thatB = (). Now look at allk; such that:] is in A. That set will add
up to K, and so our original Partition instance is a positive instan

For the converse, itis immediate that a suligeif k4, . . . , k; that adds up td{ can be converted
into a solution for our Partitidninstance, namely, by putting in A for everyk; in D, putting ¢;
in A for everyk; not in D, letting B = (), and putting all other elements &f,... &k}, ¢,...,¢;
inC. O

3 Reaults

3.1 Complexity GoesUp

The related work on the complexity of manipulation of toparsd[25] did not find a natural case
where manipulation complexity increases when moving frotaltorders to top orders. We will
show such cases in this section.

'Here and elsewhere we wri}€ A to denote>_, _ , a.



Single-peakedness is a restriction on the preferenceseofdters introduced by Blackl[4].
Given a total orderd over the candidates, referred to as an axis, a collectiorotefry is single-
peaked with respect td if each voter has preferences that strictly increase to & pad then
strictly decrease, only strictly increase, or only styictbcrease with respect th

For our purposes we consider the model of top order singigmness introduced by Lack-
ner [22] where given an axid, a collection of voters is single-peaked with respecttib no voter
has preferences that strictly decrease and then striathgaise with respect td. Notice that for
total orders, if a preference profile is single-peaked wabpect to Black’s model [4] it is also
single-peaked with respect to Lackner’'s model [22].

For single-peaked preferences we follow the model of mdaimn from Walsh[[28] where the
axis is given and both the nonmanipulators and the maniprslail cast votes that are single-peaked
with respect to the given axis. 3-candidate Borda CWCM isakméo be in P for single-peaked
voters [12].

Theorem 2 [[12] 3-candidate Borda CWCM for single-peaked total ordersisin P.

We now consider the complexity of 3-candidate Borda CWCMtéqr orders that are single-
peaked. In all of our reductions the axisas< 4 p <4 b. Single-peakedness with respect to this
axis allows the following top order votest > p > b, a ~p ~b, a >p ~b, p>a > b,
p>b>a, p>a~b b>p>a, andb>p~a.ltdoesnotallons >b>porb>a>p.

Theorem 3 3-candidate Borda CWCM for single-peaked top orders using max is NP-complete.

Proof. Given a nonempty set of positive integéxs. . . , k; such tha@ﬁzl k; = 2K we construct
the following instance of manipulation.

Let the set of candidates li¢ = {a,b,p}. We have two nonmanipulators with the following
weights and votes.

e One weight3 K nonmanipulator voting > p ~ b.
e One weight3 X nonmanipulator voting > p ~ a.

From the nonmanipulatorsgore(p) = 6K, while score(a) andscore(b) are bothO K.

Let there be manipulators, each with weight corresponding to an intégen the instance of
Partition. Without loss of generality, all of the manipwaleg putp first. Thenp receives a score of
10K overall. Howeverg andb can score at mogk each from the votes of the manipulators, for
p to be a winner. So the manipulators must split their votediaba subcollection of manipulators
with weight K votesp > a > b and a subcollection with weighit” votesp > b > a. Notice that
these are the only votes possible to ensurethains and that the manipulators cannot simply all
votep > a ~ b since botha andb receive a point from that vote (since we are using max) and we
have no points to spare. O

The above argument for max does not immediately apply to ther gscoring-rule extensions.
In particular, for min the optimal vote for the manipulatessalways to rankp first and to rank
the remaining candidates tied and less preferred théas in Proposition 3 of Narodytska and
Walsh [25]). So that case is in P, with an optimal manipulattde ofp > a ~ b.
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For round down and average the reduction from the proof obféra[3 will not work since
having all manipulators vote > a ~ b will make p a winner. It is not hard to modify the reduction
for max to work for the round-down case.

Theorem 4 3-candidate Borda CWCM for single-peaked top orders using round-down is
NP-complete.

The average scoring-rule extension case is more comlicitee it is less close to Partition
than the previous cases. We will still be able to show NP-detapess, but we have to reduce from
the special, restricted version of Partition that we defimeiously in Sectioh 212 as Partitidh

Theorem 5 3-candidate Borda CWCM for single-peaked top orders using average is NP-complete.

Proof. Letky,..., ks, K be an instance of PartitianWe are asking whether there exists a parti-
tion (A, B,C) of k1, ...,k suchthad A => "B+ K. Recall that all numbers involved are even.
Letkq,...,k: sum to2K. Without loss of generality, assume tHat< 2K.

Let the candidate§’ = {a, b, p}. We have two nonmanipulators with the following weights and
votes.

e One weightt K + K nonmanipulator voting > p ~ b.
e One weightt K — K nonmanipulator voting > p ~ a.

From the nonmanipulatorsgore(p) is 6K, score(a) +score(b) = 30K andscore(a) —score(b) =
3K.

Let there be manipulators, with weight8k, . .., 3k;.

First suppose there exists a partitioh, B, C') of ky, ...,k such thaty A = >"B + K. For
everyk; € A, let the weight3k; manipulator vote» > b > a. For everyk; € B, let the weight3k;
manipulator voter > a > b. For everyk; € C, let the weight3k; manipulator votep > a ~ b.
Notice that after this manipulation thatore(p) = 18K, score(a) = score(b), andscore(a) +
score(b) = 30K + 6K. It follows thatscore(p) = score(a) = score(b) = 18K.

For the converse, suppose thatan be made a winner. Without loss of generality, assume that
p is ranked uniquely first by all manipulators. The&wre(p) = score(a) = score(b) = 18K. Let
A’ be the set of manipulator weights that vete- b > a, let B’ be the set of manipulator weights
that votep > a > b, and letC’ be the set of manipulator weights that vete> a ~ b. No other
votes are possible. Let = {k; | 3k; € A'}, B = {k; | 3k; € B'}, andC = {k; | 3k; € C'}.
Therefore(A, B, C) corresponds to a partition &f , . .. , k;. Note thaty A = > B + K. O

We now consider the complexity of CCAV, which is one of the tmuetural models of control
and known to be in P for plurality for total ordefs [2].

Theorem 6 [2] Plurality CCAV for total ordersisin P.

2A similar situation occurred in the proof of Proposition SNiarodytska and Walsh [25], where a (very different)
specialized version of Subset Sum was constructed to phate3tcandidate Borda CWCM (in the non-single-peaked
case) for top orders using average remained NP-complete.



However below we show two cases where CCAV for plurality is-&dnplete for bottom orders
and weak orders.

As mentioned in the Preliminaries, plurality using max fattbm orders is the same as ap-
proval voting. So the theorem below immediately followsnirthe proof of Theorem 4.43 from
Hemaspaandra et al. [19].

Theorem 7 Plurality CCAV for bottom orders and weak orders using max is NP-compl ete.

We now show that the case of plurality for bottom orders andknarders using average is
NP-complete.

Theorem 8 Plurality CCAV for bottom orders and weak orders using average is NP-complete.

Proof. LetB = {by,...,bs;} and a collectior§ = {51, ...S,} of 3-element subsets @& be an
instance of Exact Cover by 3-Sets, where efigh= {b;,,b;,, b;, }. Without loss of generality let
be divisible by 4 and let = 3k/4. We construct the following instance of control by addingevs.
Let the candidate§’ = {p} U B. Let the addition limit bet. Let the collection of registered
voters consist of the following3k? + 9k)/4 voters. (When - .” appears at the end of a vote the
remaining candidates fromfY are ranked lexicographically. For example, given the aiatdi set

{a,b,c,d}, the voteb > - - - denotes the vote > a > ¢ > d.)
e Foreach, 1 <i </, k+ 3voters votingb; ~ by ~ bi1op ~ bjrgp > -+-.
e One voter votingy > - - -.

Let the collection of unregistered voters consist of théofeing n voters.
e For eachS; € S, one voter voting ~ b;, ~ bj, ~ bj, > ---.

Notice that from the registered voters, the score of éadandidate igk — 1)/4 greater than the
score ofp. Thus the chair must add voters from the collection of urstegéd voters so that rig
candidate receives more thajd more points, whilep must gaink/4 points. Therefore the chair
must add the voters that correspond to an exact cover. O

We now present a case where the complexity of bribery goas fRofor total orders to
NP-complete for votes with ties.

Theorem 9 [[11] Unweighted bribery for plurality for total ordersisin P.

The proof that bribery for plurality for bottom orders andakeorder using max is NP-complete
immediately follows from the proof of Theorem 4.2 from Fabsvski et al.[[11], which showed
bribery for approval to be NP-complete.

Theorem 10 Unweighted bribery for plurality for bottom orders and weak orders using max is
NP-complete.



3.2 Complexity Goes Down

Narodytska and Walsh [25] show that the complexity of caaiel manipulation can go down when
moving from total orders to top orders. In particular, thbpw that the complexity of coalitional
manipulation (weighted or unweighted) for Borda goes froRtddmplete to P for top orders using
round-up. This is because in round-up an optimal manipulaite is to pup first and have all other
candidates tied for last.

In contrast, notice that the complexity of a (standard) mratction cannot decrease when more
lenient votes are allowed. This is because the votes thatechard instances of control are still able
to be cast when more general votes are possible. The elatti@inis not able to directly change
votes, except in a somewhat restricted way in candidateaargses, but it is clear to see how this
does not affect the statement below.

Observation 11 If a (standard) control problemis hard for a type of vote with ties, it remains hard
for votes that allow more ties.

What about bribery? Bribery can be viewed as a two-phaseractnsisting of control by
deleting voters followed by manipulation. Hardness for ibdmy problem is typically caused by
hardness of the corresponding deleting voters problemeocdiresponding manipulation problem.
If the deleting voters problem is hard, this problem rem&iad for votes that allow ties, and it is
likely that the bribery problem remains hard as well. Ourtlobsince of finding a bribery problem
that is hard for total orders and easy for votes with ties isoblpm whose manipulation problem is
hard, but whose deleting voters problem is easy. Such prabéist, e.g., all weighted-candidate
t-approval systems except plurality and triviaﬁty.

Theorem 12 [[11] Weighted bribery for m-candidate t-approval for all ¢ > 2 and m > tis
NP-complete.

For m-candidatet-approval elections (except plurality and triviality) therresponding weighted
manipulation problem was shown to be NP-complete by Henzasppa and Hemaspaandra |[18]
and the corresponding deleting voters problem was showa o B by Faliszewski et al. [9].

Theorem 13 Weighted bribery for m-candidate ¢t-approval for weak orders and for top ordersusing
minisinP.

Proof Sketch. To perform an optimal bribery, we cannot simply perform amiropl deleting
voter action followed by an optimal manipulation actionr Egample, if the score dfis already at
most the score af, it does not make sense to delete a voter with ¥atep ~ a. But in the case of
bribery, we would change this voter o> a ~ b, which could be advantageous.

However, the weighted constructive control by deletingev®t(WCCDV) algorithm from[[9]
still basically works. Sincen is constant, there are only a constant number of differetgsvo
possible. And we can assume without loss of generality tleabmbe only the heaviest voters of
each vote-type and that each bribed voter is bribed tp fitdt and have all other candidates tied for

3By triviality we mean a scoring rule with a scoring vectorttgives each candidate the same score.
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last. In order to find out if there exists a successful brilwéry voters, we look at all the ways we can
distribute thisk among the different types of votes. We then manipulate thwibst voters of each
type to putp first and have all other candidates tied for last, and seaifrttakes a winner. [

3.3 Complexity Remainsthe Same

Narodytska and Walsh [25] show that 4-candidate Cop&la@WCM remains NP-complete for
top orders. They conjecture that this is also the case fondidates and point out that the reduc-
tion that shows this for total orders from Faliszewski et[&B] won't work. We will prove their
conjecture, with a reduction similar to the proof of Theofsth

Theorem 14 3-candidate Copeland® CWCM remains NP-complete for top orders, bottom orders,
and weak orders, for all rational « € [0, 1) in the nonunique winner case (our standard model).

Proof. Letks,..., ks and K be an instance of Partitiqrwhich asks whether there exists a parti-
tion (A, B,C) of ky,...,k; such thaty A =SB+ K.

Letkq,...,k sum to2K and without loss of generality assume théat< 2. We now con-
struct an instance of CWCM. Let the candidate@et {a, b, p} and let the preferred candidate be
p. Let there be two nonmanipulators with the following weghahd votes.

e One weightK + R’/2 nonmanipulator voting > b > p.

e One weightK — IA{/2 nonmanipulator voting > a > p.

From the votes of the nonmanipulatosgpre(a) = 2, score(b) = 1, andscore(p) = 0. In the
induced majority graph, there is the edge» b with weight K, the edge: — p with weight2K,
and the edgé — p with weight2K . Let there be manipulators with weight&, . .., k;.

Suppose that there exists a partitionkef . . ., k; into (A, B,C') such thaty _A = > B + K.
Then for eachk; € A, have the manipulator with weight votep > b > a, for eachk; € B, have
the manipulator with weighk; vote p > a > b, and for eachk; € C have the manipulator with
weightk; votep > a ~ b. From the votes of the nonmanipulators and manipulaterge(a) =
score(b) = score(p) = 2a.

For the other direction, suppose thatan be made a winner. When all of the manipulatorgpput
first thenscore(p) = 2« (the highest score thatcan achieve). Since < 1, the manipulators must
have voted such that andb tie. This means that a subcollection of the manipulatoré wieight
K votedp > b > a, a subcollection with weighk — K votedp > a > b, and a subcollection with
weightf? votedp > a ~ b. No other votes would caugeanda to tie. Notice that the weights of
the manipulators in the three different subcollectionsnfer partition(A, B, C) of k4, ..., k; such
that>"A =SB + K. O

3-candidate CopelaffldCWCM is unusual in that the complexity can be different if weK at
the unigue winner case instead of the nonunique winner casestandard model). We can prove
that the only 3-candidate Copeland CWCM case that is harthéounique winner model remains
hard using a very similar approach.

“Menon and Larson independently proved the top order caseedbtiowing theorem[24].
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Theorem 15 3-candidate Copeland® CWCM remains NP-complete for top orders, bottom orders,
and weak orders, in the unique winner case.

Proof. Letks,..., ks and K be an instance of Partitiqrwhich asks whether there exists a parti-
tion (4, B,C) of ky,...,k; such thaty . A =SB+ K.

Letkq,...k; sumto2 K and without loss of generality assume that< 2K . We now construct
an instance of CWCM. Let the candidate et {a, b, p}. Let the preferred candidate bec C.
Let there be two honmanipulators with the following weigatsl votes.

e One weightK + R’/2 nonmanipulator voting > p > b.
e One weightK — R’/2 nonmanipulator voting > a > p.

From the votes of the nonmanipulatersre(a) = 2, score(b) = 0, andscore(p) = 1. The induced
majority graph contains the edge— b with Weightl?, the edgex — p with weight2K, and the
edgep — bwith weightf(. Let there be manipulators with weights,, . . ., k;.

Suppose that there exists a partitionkef . . ., k; into (A, B,C') such thaty"A = > B + K.
Then for eachlk; € A have the manipulator with weighkt votep > b > a, for eachk; € B have the
manipulator with weight; votep > a > b, and for eacl; € C' have the manipulator with weight
k; votep > a ~ b. From the votes of the nonmanipulators and the manipulatote(p) = 1 and
score(a) = score(b) = 0.

For the other direction, suppose thatan be made a unique winner. When all of the manipu-
lators putp first thenscore(p) = 1. So the manipulators must have voted so thahdb tie, since
otherwise eithet or b would tie withp andp would not be a unique winner. Therefore a subcollec-
tion of the manipulators with weight” votedp > b > a, a subcollection with weighk™ — K voted
p > a > b, and a subcollection with Weigbﬁ’ votedp > a ~ b. No other votes would causeand
b to tie. O

Theorem 16 3-candidate Copeland® CWCM remainsin P for top orders, bottom orders, and weak
orders, for o = 1 for the nonunique winner case and for all rational « € (0, 1] in the unique winner
case.

The proof of this theorem follows using the same argumenth@proof of the case without ties
from Faliszewski et al/ [13].

Tournament result

We now state a general theorem on two-voter tournamentofeswvith ties. See Brandt et all [5]
for related work on tournaments constructed from a fixed remobvoters with total orders.

Theorem 17 A majority graph can be induced by two weak orders if and only if it can be induced
by two total orders.
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Proof Sketch.  Given two weak orders; andw, that describe preferences over a candidaté’'set
we construct two total orders; andv}, iteratively as follows.

For each pair of candidatesb € C andi € {1,2}, if a > bin v; then setz > b in v].

For each pair of candidatesb € C, if a > bin vy (v2) anda ~ b in vy (v1) then the majority
graph induced by, andv, contains the edge — b. To ensure that the majority graph induced by
v} andvj contains the edge — b we must set. > b in v} (v}).

After performing the above steps there may still be a set néliceatesC’ C C such thatv,
andwvy are indifferent between each pair of candidate€'inFor each pair of candidatesb € C’,

a ~ bin vy andvsy, which implies the majority graph does not contain and edgy@bens: andb. To
ensure that majority graph induced Byandv), does not contain an edge betweeandb, w.l.0.g.
setv] to strictly prefer the lexicographically smaller to theisographically larger candidate and
the reverse in,.

The process described above constructs two orgesadv’, and ensures that the majority graph
induced byv; andv, is the same as the majority graph inducedvbyandvj,. Since for each pair
of candidates:, b € C' andi € {1,2} we consider each possible case where b is in v; and set
eithera > b orb > a in the corresponding ordet, it is clear that; andv), are total orders. [

Observe that as a consequence of Thegrém 17 we get a trahisfesmrdness from total orders
to weak orders for two manipulators when the result depentisan the induced majority graph.
The proofs for Copelartdunweighted manipulation for two manipulators for all rabo for total
orders depend only on the induced majority graph [13, 14fys@an state the following corollary
to Theorent 117.

Corollary 18 Copeland® unweighted manipulation for two manipulators for all rational « # 0.5
for weak ordersis NP-complete.

Irrational voter Copeland results

As mentioned in the preliminaries, another way to give masilfllity to voters is to let the voters
be irrational. A voter with irrational preferences caneatateferences that are not necessarily tran-
sitive and as mentioned in Faliszewski et [al.][10] a voteikisly to posses preferences that are not
transitive when making a decision based on multiple cateri

Additionally, the preferences of voters can include tiewa# as irrationality. When voters
are able to state preferences that can contain irratigratitl ties they can represent all possible
pairwise preferences that they may have over all of the daels.

It is known that unweighted Copelathdnanipulation is NP-complete for total orders for all
rational« except 0.5[[13, 14]. For irrational voters, this problemnis?ifora = 0, 0.5, and1, and
NP-complete for all othet [14]. Weighted manipulation for Copelarfdhas not been studied for
irrational voters. We will do so here.

Theorem 19 3-candidate Copeland® CWCM remains in P for irrational voters with or without

ties, for o = 1 for the nonunique winner case and for all rational o € (0, 1] in the unique winner
case.
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Theorem 20 3-candidate Copeland® CWCM remains NP-complete for irrational voters with or
without ties, for o = 0 in the unique winner case and for all rational « € [0, 1) in the nonunique
winner case.

The proofs of the above two theorems follow from the argusienthe proofs of the corresponding
rational cases, i.e., the proofs of Theorem 4.1 and 4.2 fralisZzewski et al.[[13] for the case of
voters without ties and the proofs of Theorémb[14, 15[ ahdb@efor the case of voters with ties.

Whena = 1, also known as Llull, interesting things happen. It is knothiat 4-candidate
Llull CWCM is in P for the unique and nonunique winner cases].[1For larger fixed numbers
of candidates, this is open. Though it is known that unweidhhanipulation for Llull (with an
unbounded number of candidates) is NP-complete in the nguermnwinner case [14]. In contrast,
we will show now that for irrational voters, all these prabkeare in P.

Theorem 21 Llull CWCM isin P for irrational voters with or without ties, in the nonunique winner
case and in the unique winner case.

Proof. Given a set of candidateS, a collection of voterd/, k£ manipulators, and a preferred
candidatep € C, the preferences of the manipulators will always contain « for all candidates
a # p. This determines the score pf In addition, let the initial preferences of the maniputato
bea > b for each pair of candidates b € C' — {p} such thatz defeats in V" or such that tiesb

in V anda is lexicographically smaller thaln Note that, ifk > 0, there are no pairwise ties in the
election with the manipulators set in this way and that tha@imadators all have strict preferences
between every pair of candidates (i.e., no ties in theirguegfces). For every # p, letscoreg(a)
be the score af with the manipulators set as above.

Construct the following flow network. The nodes are: a soutca sinkt, and all candidates
other tharp. For everya € C' — {p}, add an edge with capacityorey(a) from s to a and add an
edge with capacitycore(p) froma to t. For everya, b € C' — {p}, add an edge from candidai¢o
candidateh with capacity 1 if, when all manipulators set> a, the score of, decreases by 1 (and
the score ob increases by 1).

If there is manipulation such thais a winner, then for every candidate= C'—{p}, score(a) <
score(p) so there is a network flow that saturates all edges that goamt4.

If there is a network flow that saturates all edges that goroat & then for everys, b € C'—{p}
such that there is a unit of flow fromto b, changex > bto b > a in all manipulators.

This construction can be adapted to the unique winner casetting the capacity of the edge
from a to t bescore(p) — 1 instead okcore(p). 0

4 Related Work

The recent work by Narodytska and Walsh|[25] was the first papestudy the complexity of
manipulation for top orders and is very influential to our @utational study of more general votes
with ties. They studied several extensions for electioriesys for top orders, which we further
extend for weak orders.
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Most of the related work in the computational study of emtproblems assumes that the partial
or tied preferences of the voters must be extended to tadarer We mention the important work
on partial orders by Konczak and Lamng [21] that introducesaibssible and necessary winner prob-
lems. Given a preference profile of partial votes, a possifit@er is a candidate that wins in at least
one extension of the votes to total orders, while a necessarner wins in every extension [21].

Baumeister et all [3] introduced the problem of extensiobdry, where given voters with pref-
erences that are top truncated, voters are paid to exteimdobeto ensure that a preferred candidate
wins. We do not consider the problem of extension briberyjrisiead we use the standard model of
bribery introduced by Faliszewski et al. [11]. In this motte briber can set the entire preferences
of a subcollection of voters to ensure that a preferred ciateiwins[[11].

5 Conclusions and Future Work

We examined the computational complexity of the three mostmonly studied manipulative at-
tacks on elections when voting with ties. We found a natusslecfor manipulation where the
complexity increases for voters with ties, whereas it isydastotal orders. For bribery we found
examples where the complexity increases and where it daxsedVe examined the complexity of
Copelané elections with voters with ties and even irrational votethvaind without ties. It would
be interesting to see how the complexity of other electiavblams are affected by voters with
ties, specifically weak orders, which we consider to be arahtnodel for preferences in practical
settings.
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