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Abstract

Most of the computational study of election problems has assumed that each voter’s pref-
erences are, or should be extended to, a total order. Howeverin practice voters may have
preferences with ties. We study the complexity of manipulative actions on elections where vot-
ers can have ties, extending the definitions of the election systems (when necessary) to handle
voters with ties. We show that for natural election systems allowing ties can both increase and
decrease the complexity of manipulation and bribery, and westate a general result on the effect
of voters with ties on the complexity of control.

1 Introduction

Elections are commonly used to reach a decision when presented with the preferences of several
agents. This includes political domains as well as multiagent systems. In an election agents can
have an incentive to cast a strategic vote in order to affect the outcome. An important negative result
from social-choice theory, the Gibbard-Satterthwaithe theorem, states that every reasonable election
system is susceptible to strategic voting (a.k.a. manipulation) [16, 26].

Although every reasonable election system can be manipulated, it may be computationally in-
feasible to determine if a successful manipulation exists.Bartholdi et al. [1] introduced the notion
of exploring the computational complexity of the manipulation problem. They expanded on this
work by introducing and analyzing the complexity of control[2]. Control models the actions of an
election organizer, referred to as the chair, who has control over the structure of the election (e.g.,
the voter set) and wants to ensure that a preferred candidatewins. Faliszewski et al. [11] introduced
the model of bribery. Bribery is closely related to manipulation, but instead of asking if voters can
cast strategic votes to ensure a preferred outcome bribery asks if a subcollection of the voters can
be paid to change their vote to ensure a preferred outcome.

It is important that we understand the complexity of these election problems on votes that allow
ties, since in practical settings voters often have ties between some of the candidates. This is seen
in the online preference repository PREFL IB, which contains several election datasets containing
votes with ties, ranging from political elections to elections created from rating data [23]. Most
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of the computational study of election problems for partialvotes has assumed that each voter’s
preferences should be extended to a total order (see e.g., the possible and necessary winner prob-
lems [21]). However an agent may view two options as explicitly equal and it makes sense to view
these preferences as votes with ties, instead of as partial rankings that can be extended.

Election systems are sometimes even explicitly defined for voters with ties. Both the Kemeny
rule [20] and the Schulze rule [27] are defined for votes that contain ties. Also, there exist variants
of the Borda count that are defined for votes that contain ties[8].

The computational study of the problems of manipulation, control, and bribery has largely been
restricted to elections that contain voters with tie-free votes. Important recent work by Narodytska
and Walsh [25] studies the computational complexity of the manipulation problem for top orders,
i.e., votes where the candidates ranked last are all tied andare otherwise total orders. The manipu-
lation results in this paper can be seen as an extension of thework by Narodytska and Walsh. We
consider orders that allow a voter to state ties at each position of his or her preference order, i.e.,
weak orders. We mention that in contrast to the work by Narodytska and Walsh [25], we give an
example of a natural case where manipulation becomes hard when given votes with ties, while it
is in P for total orders. Additionally, we are the first to study the complexity of the standard mod-
els of control and bribery for votes that contain ties. However, we mention here that Baumeister
et al. consider a different version of bribery called extension bribery, for top orders (there called
top-truncated votes) [3].

The organization of this paper is as follows. In Section 2 we state the formal definitions and
problem statements needed for our results. The results in Section 3 are split into three sections,
each showing a different behavior of voting with ties. In Section 3.1 we give examples of election
systems where the problems of manipulation, bribery, and control increase in complexity from P
to NP-complete. Conversely, in Section 3.2 we give examplesof election systems where the com-
plexity of manipulation and bribery becomes easier, and state a general result about the complexity
of control. In Section 3.3 we solve an open question from Narodytska and Walsh [25] and give
examples of election systems whose manipulation complexities are unaffected by voters with ties.
Additionally, we completely characterize 3-candidate Copelandα coalitional weighted manipula-
tion for rational and irrational voters with ties. We discuss related work in Section 4 and our general
conclusions and open directions in Section 5.

2 Preliminaries

An election consists of a finite set of candidatesC and a collection of votersV , also referred to
as a preference profile. Each voter inV is specified by its preference order. We consider voters
with varying amounts of ties in their preferences. Atotal order is a linear ordering of all of the
candidates from most to least preferred. Aweak order is a transitive, reflexive, and antisymmetric
ordering where the indifference relation (“∼”) is transitive. In general, a weak order can be viewed
as a total order with ties. As usual, we will colloquially refer to indifference as ties throughout this
paper since the indifference relation specifies the preference of two elements being equal. Atop
order is a weak order with all tied candidates ranked last, and abottom order is a weak order with
all tied candidates ranked first. In Example 1 below we present examples of each of the orders, with
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and without ties, examined in this paper.

Example 1 Given the candidate set {a, b, c, d}, a > b ∼ c > d is a weak order, a ∼ b > c > d
is a bottom order, a > b > c ∼ d is a top order, and a > b > c > d is a total order. Notice that
every bottom order and every top order is also a weak order, and that every total order is also a top,
bottom, and weak order.

An election system, E , maps an election, i.e., a finite candidate setC and a collection of voters
V , to a set of winners, where the winner set can be any subset of the candidate set. The voters
in an election can sometimes have an associated weight wherea voter with weightw counts asw
unweighted voters.

We examine two important families of election systems, the first being scoring rules. A scoring
rule uses a vector of the form〈s1, . . . , sm〉, wherem denotes the number of candidates, to determine
each candidate’s score when given a preference profile. Whenthe preferences are all total orders, a
candidate at positioni in the preference order of a voter receives a score ofsi from that voter. The
candidate(s) with the highest total score win. We consider the following three scoring rules.

Plurality: with scoring vector〈1, 0, . . . , 0〉.

Borda: with scoring vector〈m− 1,m− 2, . . . , 1, 0〉.

t-Approval: with scoring vector〈1, . . . , 1︸ ︷︷ ︸
t

, 0, . . . , 0〉.

To properly handle voters with ties in their preference orders we define several natural exten-
sions which generalize the extensions from Baumeister et al. [3] and Narodytska and Walsh [25].

Write a preference order with ties asG1 > G2 > · · · > Gr where eachGi is a set of tied
candidates. For each setGi, let ki =

∑i−1

j=1
‖Gj‖ be the number of candidates strictly preferred to

every candidate in the set. See the caption of Table 1 for an example.
We now introduce the following scoring-rule extensions, which as stated above, generalize pre-

viously used scoring-rule extensions [3, 25]. In Table 1 we present an example of each of these
extensions for Borda.

Min: Each candidate inGi receives a score ofski+‖Gi‖.

Max: Each candidate inGi receives a score ofski+1.

Round down: Each candidate inGi receives a score ofsm−r+i.

Average: Each candidate inGi receives a score of

∑ki+‖Gi‖
j=ki+1

sj

‖Gi‖
.
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Table 1: The score of each candidate for preference ordera > b ∼ c > d using Borda with
each of our scoring-rule extensions. We write this order as{a} > {b, c} > {d}, i.e.,G1 = {a},
G2 = {b, c}, andG3 = {d}. Note thatk1 = 0, k2 = 1, andk3 = 3.

Borda score(a) score(b) score(c) score(d)

Min 3 1 1 0
Max 3 2 2 0
Round down 2 1 1 0
Average 3 1.5 1.5 0

The optimistic and pessimistic models from the work by Baumeister et al. [3] are the same
as our max and min extensions respectively, for top orders. All of the scoring-rule extensions for
top orders found in Narodytska and Walsh [25] can be realizedby our definitions above, with our
round down and average extensions yielding the same scores for top orders as their round down and
average extensions. With the additional modification thatsm = 0 our min scoring-rule extension
yields the same scores for top orders as round up in Narodytska and Walsh [25].

Notice that plurality using the max scoring-rule extensionfor bottom orders is the same as
approval voting, where each voter indicates either approval or disapproval of each candidate and
the candidate with the most approvals win. For example, given the set of candidates{a, b, c, d}, an
approval vector that approves ofa andc, and a preference ordera ∼ c > b > d yield the same
scores for approval and plurality using max respectively.

In addition to scoring rules, elections can be defined by the pairwise majority elections between
the candidates. One important example is Copelandα [7] (whereα is a rational number between 0
and 1), which is scored as follows. Each candidate receives one point for each pairwise majority
election he or she wins and receivesα points for each tie. We also mention that Copeland1 is often
referred to, and will be throughout this paper, as Llull [17]. We apply the definition of Copelandα

to weak orders in the obvious way (as was done for top orders in[3, 25]).
We sometimes look at voters whose preferences need not be rational and we refer to those voters

as “irrational.” This simply means that for every unorderedpaira, b of distinct candidates, the voter
hasa > b or b > a. For example, a voter’s preferences could be(a > b, b > c, c > a). We also
look at irrational votes with ties.

When discussing elections defined by pairwise majority elections we sometimes refer to the
induced majority graph of a preference profile. A preference profileV where each voter has prefer-
ences over the set of candidatesC induces the majority graph with a vertex set equal to the candidate
set and an edge set defined as follows. For everya, b ∈ C the graph contains the edgea → b if
more voters havea > b thanb > a.

2.1 Election Problems

We examine the complexity of the following election problems.
The coalitional manipulation problem (where a coalition ofmanipulators seeks to change the

outcome of the election) for weighted voters, first studied by Conitzer et al. [6], is described below.
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Name: E-CWCM

Given: A candidate setC, a collection of nonmanipulative votersV where each voter has a positive
integral weight, a preferred candidatep ∈ C, and a collection of manipulative votersW .

Question: Is there a way to set the votes of the manipulators such thatp is anE winner of the
election(C, V ∪W )?

Electoral control is the problem of determining if it is possible for an election organizer with
control over the structure of an election, whom we refer to asthe election chair, to ensure that a
preferred candidate wins [2]. We formally define the specificcontrol action of constructive control
by adding voters (CCAV) below. CCAV is one of the most naturalcases of electoral control and it
models scenarios such as targeted voter registration drives where voters whose votes will ensure the
goal of the chair are added to the election.

Name: E-CCAV

Given: A candidate setC, a collection of votersV , a collection of unregistered votersU , a preferred
candidatep ∈ C, and an add limitk ∈ N.

Question: Is there a subcollection of the unregistered votersU ′ ⊆ U such that‖U ′‖ ≤ k andp is
anE winner of the election(C, V ∪ U ′)?

Bribery is the problem of determining if it is possible to change the votes of a subcollection
of the voters, within a certain budget, to ensure that a preferred candidate wins [11]. The case for
unweighted voters is defined below, but we also consider the case for weighted voters.

Name: E-Bribery

Given: A candidate setC, a collection of votersV , a preferred candidatep ∈ C, and a bribe limit
k ∈ N.

Question: Is there a way to change the votes of at mostk of the voters inV so thatp is anE winner?

2.2 Computational Complexity

We use the following NP-complete problems in our proofs of NP-completeness.

Name: Exact Cover by 3-Sets

Given: A nonempty set of elementsB = {b1, . . . , b3k} and a collectionS = {S1, . . . , Sn} of
3-element subsets ofB.

Question: Does there exist a subcollectionS ′ of S such that every element ofB occurs in exactly
one member ofS ′?

Name: Partition
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Given: A nonempty set of positive integersk1, . . . , kt such that
∑t

i=1
ki = 2K.

Question: Does there exist a subsetA of k1, . . . , kt such that
∑

A = K?1

Some of our results utilize the following variation of Partition, referred to as Partition′, for which
we prove NP-completeness by a reduction from Partition.

Name: Partition′

Given: A nonempty set of positive even integersk1, . . . , kt and a positive even integer̂K.

Question: Does there exist a partition(A,B,C) of k1, . . . , kt such that
∑

A =
∑

B + K̂?

Theorem 1 Partition′ is NP-complete.

Proof. The construction here is similar to the first part of the reduction to a different version of
Partition from Faliszewski et al. [11].

Givenk1, . . . , kt such that
∑t

i=1
ki = 2K, corresponding to an instance of Partition, we con-

struct the following instancek′1, . . . , k
′
t, ℓ

′
1, . . . , ℓ

′
t, K̂ of Partition′. Let k′i = 4i + 4t+1ki, ℓ′i = 4i,

andK̂ = 4t+1K +
∑t

i=1
4i. (Note that in Faliszewski et al. [11] “3”s were used, but we use “4”s

here so that when we add a subset ofk′1, . . . , k
′
t, ℓ

′
1, . . . , ℓ

′
t, K̂, we never have carries in the lastt+1

digits base 4, and we set the last digit to 0 to ensure that all numbers are even.)
If there exists a partition(A,B,C) of k′1, . . . , k

′
t, ℓ

′
1, . . . , ℓ

′
t such that

∑
A =

∑
B + K̂, then

∀i, 1 ≤ i ≤ t, ⌊(
∑

A)/4i⌋ mod 4 = ⌊(
∑

B + K̂)/4i⌋ mod 4. Note that⌊(
∑

A)/4i⌋ mod 4 =
‖A∩{k′i, ℓ

′
i}‖, ⌊(

∑
B)/4i⌋ mod 4 = ‖B∩{k′i, ℓ

′
i}‖, and⌊K̂/4i⌋ mod 4 = 1. So,‖A∩{k′i, ℓ

′
i}‖ =

‖B ∩ {k′i, ℓ
′
i}‖ + 1. It follows that exactly one ofk′i or ℓ′i is in A and neither is inB. Since this is

the case for everyi, it follows thatB = ∅. Now look at allki such thatk′i is in A. That set will add
up toK, and so our original Partition instance is a positive instance.

For the converse, it is immediate that a subsetD of k1, . . . , kt that adds up toK can be converted
into a solution for our Partition′ instance, namely, by puttingk′i in A for everyki in D, putting ℓ′i
in A for everyki not in D, letting B = ∅, and putting all other elements ofk′1, . . . , k

′
t, ℓ

′
1, . . . , ℓ

′
t

in C. ❑

3 Results

3.1 Complexity Goes Up

The related work on the complexity of manipulation of top orders [25] did not find a natural case
where manipulation complexity increases when moving from total orders to top orders. We will
show such cases in this section.

1Here and elsewhere we write
∑

A to denote
∑

a∈A
a.
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Single-peakedness is a restriction on the preferences of the voters introduced by Black [4].
Given a total orderA over the candidates, referred to as an axis, a collection of voters is single-
peaked with respect toA if each voter has preferences that strictly increase to a peak and then
strictly decrease, only strictly increase, or only strictly decrease with respect toA.

For our purposes we consider the model of top order single-peakedness introduced by Lack-
ner [22] where given an axisA, a collection of voters is single-peaked with respect toA if no voter
has preferences that strictly decrease and then strictly increase with respect toA. Notice that for
total orders, if a preference profile is single-peaked with respect to Black’s model [4] it is also
single-peaked with respect to Lackner’s model [22].

For single-peaked preferences we follow the model of manipulation from Walsh [28] where the
axis is given and both the nonmanipulators and the manipulators all cast votes that are single-peaked
with respect to the given axis. 3-candidate Borda CWCM is known to be in P for single-peaked
voters [12].

Theorem 2 [12] 3-candidate Borda CWCM for single-peaked total orders is in P.

We now consider the complexity of 3-candidate Borda CWCM fortop orders that are single-
peaked. In all of our reductions the axis isa <A p <A b. Single-peakedness with respect to this
axis allows the following top order votes:a > p > b, a ∼ p ∼ b, a > p ∼ b, p > a > b,
p > b > a, p > a ∼ b, b > p > a, and b > p ∼ a. It does not allowa > b > p or b > a > p.

Theorem 3 3-candidate Borda CWCM for single-peaked top orders using max is NP-complete.

Proof. Given a nonempty set of positive integersk1, . . . , kt such that
∑t

i=1
ki = 2K we construct

the following instance of manipulation.
Let the set of candidates beC = {a, b, p}. We have two nonmanipulators with the following

weights and votes.

• One weight3K nonmanipulator votinga > p ∼ b.

• One weight3K nonmanipulator votingb > p ∼ a.

From the nonmanipulators,score(p) = 6K, while score(a) andscore(b) are both9K.
Let there bet manipulators, each with weight corresponding to an integerfrom the instance of

Partition. Without loss of generality, all of the manipulators putp first. Thenp receives a score of
10K overall. However,a andb can score at mostK each from the votes of the manipulators, for
p to be a winner. So the manipulators must split their votes so that a subcollection of manipulators
with weightK votesp > a > b and a subcollection with weightK votesp > b > a. Notice that
these are the only votes possible to ensure thatp wins and that the manipulators cannot simply all
votep > a ∼ b since botha andb receive a point from that vote (since we are using max) and we
have no points to spare. ❑

The above argument for max does not immediately apply to the other scoring-rule extensions.
In particular, for min the optimal vote for the manipulatorsis always to rankp first and to rank
the remaining candidates tied and less preferred thanp (as in Proposition 3 of Narodytska and
Walsh [25]). So that case is in P, with an optimal manipulatorvote ofp > a ∼ b.
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For round down and average the reduction from the proof of Theorem 3 will not work since
having all manipulators votep > a ∼ b will makep a winner. It is not hard to modify the reduction
for max to work for the round-down case.

Theorem 4 3-candidate Borda CWCM for single-peaked top orders using round-down is
NP-complete.

The average scoring-rule extension case is more complicated since it is less close to Partition
than the previous cases. We will still be able to show NP-completeness, but we have to reduce from
the special, restricted version of Partition that we definedpreviously in Section 2.2 as Partition′.2

Theorem 5 3-candidate Borda CWCM for single-peaked top orders using average is NP-complete.

Proof. Let k1, . . . , kt, K̂ be an instance of Partition′. We are asking whether there exists a parti-
tion (A,B,C) of k1, . . . , kt such that

∑
A =

∑
B + K̂. Recall that all numbers involved are even.

Let k1, . . . , kt sum to2K. Without loss of generality, assume thatK̂ ≤ 2K.
Let the candidatesC = {a, b, p}. We have two nonmanipulators with the following weights and

votes.

• One weight6K + K̂ nonmanipulator votinga > p ∼ b.

• One weight6K − K̂ nonmanipulator votingb > p ∼ a.

From the nonmanipulators,score(p) is 6K, score(a)+ score(b) = 30K andscore(a)− score(b) =
3K̂.

Let there bet manipulators, with weights3k1, . . . , 3kt.
First suppose there exists a partition(A,B,C) of k1, . . . , kt such that

∑
A =

∑
B + K̂. For

everyki ∈ A, let the weight3ki manipulator votep > b > a. For everyki ∈ B, let the weight3ki
manipulator votep > a > b. For everyki ∈ C, let the weight3ki manipulator votep > a ∼ b.
Notice that after this manipulation thatscore(p) = 18K, score(a) = score(b), andscore(a) +
score(b) = 30K + 6K. It follows thatscore(p) = score(a) = score(b) = 18K.

For the converse, suppose thatp can be made a winner. Without loss of generality, assume that
p is ranked uniquely first by all manipulators. Thenscore(p) = score(a) = score(b) = 18K. Let
A′ be the set of manipulator weights that votep > b > a, let B′ be the set of manipulator weights
that votep > a > b, and letC ′ be the set of manipulator weights that votep > a ∼ b. No other
votes are possible. LetA = {ki | 3ki ∈ A′}, B = {ki | 3ki ∈ B′}, andC = {ki | 3ki ∈ C ′}.
Therefore(A,B,C) corresponds to a partition ofk1, . . . , kt. Note that

∑
A =

∑
B + K̂. ❑

We now consider the complexity of CCAV, which is one of the most natural models of control
and known to be in P for plurality for total orders [2].

Theorem 6 [2] Plurality CCAV for total orders is in P.

2A similar situation occurred in the proof of Proposition 5 inNarodytska and Walsh [25], where a (very different)
specialized version of Subset Sum was constructed to prove that 3-candidate Borda CWCM (in the non-single-peaked
case) for top orders using average remained NP-complete.
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However below we show two cases where CCAV for plurality is NP-complete for bottom orders
and weak orders.

As mentioned in the Preliminaries, plurality using max for bottom orders is the same as ap-
proval voting. So the theorem below immediately follows from the proof of Theorem 4.43 from
Hemaspaandra et al. [19].

Theorem 7 Plurality CCAV for bottom orders and weak orders using max is NP-complete.

We now show that the case of plurality for bottom orders and weak orders using average is
NP-complete.

Theorem 8 Plurality CCAV for bottom orders and weak orders using average is NP-complete.

Proof. LetB = {b1, . . . , b3k} and a collectionS = {S1, . . . Sn} of 3-element subsets ofB be an
instance of Exact Cover by 3-Sets, where eachSj = {bj1 , bj2 , bj3}. Without loss of generality letk
be divisible by 4 and letℓ = 3k/4. We construct the following instance of control by adding voters.

Let the candidatesC = {p} ∪ B. Let the addition limit bek. Let the collection of registered
voters consist of the following(3k2 + 9k)/4 voters. (When “· · · ” appears at the end of a vote the
remaining candidates fromC are ranked lexicographically. For example, given the candidate set
{a, b, c, d}, the voteb > · · · denotes the voteb > a > c > d.)

• For eachi, 1 ≤ i ≤ ℓ, k + 3 voters votingbi ∼ bi+ℓ ∼ bi+2ℓ ∼ bi+3ℓ > · · · .

• One voter votingp > · · · .

Let the collection of unregistered voters consist of the following n voters.

• For eachSj ∈ S, one voter votingp ∼ bj1 ∼ bj2 ∼ bj3 > · · · .

Notice that from the registered voters, the score of eachbi candidate is(k − 1)/4 greater than the
score ofp. Thus the chair must add voters from the collection of unregistered voters so that nobi
candidate receives more than1/4 more points, whilep must gaink/4 points. Therefore the chair
must add the voters that correspond to an exact cover. ❑

We now present a case where the complexity of bribery goes from P for total orders to
NP-complete for votes with ties.

Theorem 9 [11] Unweighted bribery for plurality for total orders is in P.

The proof that bribery for plurality for bottom orders and weak order using max is NP-complete
immediately follows from the proof of Theorem 4.2 from Faliszewski et al. [11], which showed
bribery for approval to be NP-complete.

Theorem 10 Unweighted bribery for plurality for bottom orders and weak orders using max is
NP-complete.
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3.2 Complexity Goes Down

Narodytska and Walsh [25] show that the complexity of coalitional manipulation can go down when
moving from total orders to top orders. In particular, they show that the complexity of coalitional
manipulation (weighted or unweighted) for Borda goes from NP-complete to P for top orders using
round-up. This is because in round-up an optimal manipulator vote is to putp first and have all other
candidates tied for last.

In contrast, notice that the complexity of a (standard) control action cannot decrease when more
lenient votes are allowed. This is because the votes that create hard instances of control are still able
to be cast when more general votes are possible. The electionchair is not able to directly change
votes, except in a somewhat restricted way in candidate control cases, but it is clear to see how this
does not affect the statement below.

Observation 11 If a (standard) control problem is hard for a type of vote with ties, it remains hard
for votes that allow more ties.

What about bribery? Bribery can be viewed as a two-phase action consisting of control by
deleting voters followed by manipulation. Hardness for a bribery problem is typically caused by
hardness of the corresponding deleting voters problem or the corresponding manipulation problem.
If the deleting voters problem is hard, this problem remainshard for votes that allow ties, and it is
likely that the bribery problem remains hard as well. Our best chance of finding a bribery problem
that is hard for total orders and easy for votes with ties is a problem whose manipulation problem is
hard, but whose deleting voters problem is easy. Such problems exist, e.g., all weightedm-candidate
t-approval systems except plurality and triviality.3

Theorem 12 [11] Weighted bribery for m-candidate t-approval for all t ≥ 2 and m > t is
NP-complete.

For m-candidatet-approval elections (except plurality and triviality) thecorresponding weighted
manipulation problem was shown to be NP-complete by Hemaspaandra and Hemaspaandra [18]
and the corresponding deleting voters problem was shown to be in P by Faliszewski et al. [9].

Theorem 13 Weighted bribery for m-candidate t-approval for weak orders and for top orders using
min is in P.

Proof Sketch. To perform an optimal bribery, we cannot simply perform an optimal deleting
voter action followed by an optimal manipulation action. For example, if the score ofb is already at
most the score ofp, it does not make sense to delete a voter with voteb > p ∼ a. But in the case of
bribery, we would change this voter top > a ∼ b, which could be advantageous.

However, the weighted constructive control by deleting voters (WCCDV) algorithm from [9]
still basically works. Sincem is constant, there are only a constant number of different votes
possible. And we can assume without loss of generality that we bribe only the heaviest voters of
each vote-type and that each bribed voter is bribed to putp first and have all other candidates tied for

3By triviality we mean a scoring rule with a scoring vector that gives each candidate the same score.
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last. In order to find out if there exists a successful briberyof k voters, we look at all the ways we can
distribute thisk among the different types of votes. We then manipulate the heaviest voters of each
type to putp first and have all other candidates tied for last, and see if that makesp a winner. ❑

3.3 Complexity Remains the Same

Narodytska and Walsh [25] show that 4-candidate Copeland0.5 CWCM remains NP-complete for
top orders. They conjecture that this is also the case for 3 candidates and point out that the reduc-
tion that shows this for total orders from Faliszewski et al.[13] won’t work. We will prove their
conjecture, with a reduction similar to the proof of Theorem5.4

Theorem 14 3-candidate Copelandα CWCM remains NP-complete for top orders, bottom orders,
and weak orders, for all rational α ∈ [0, 1) in the nonunique winner case (our standard model).

Proof. Let k1, . . . , kt andK̂ be an instance of Partition′, which asks whether there exists a parti-
tion (A,B,C) of k1, . . . , kt such that

∑
A =

∑
B + K̂.

Let k1, . . . , kt sum to2K and without loss of generality assume thatK̂ ≤ 2K. We now con-
struct an instance of CWCM. Let the candidate setC = {a, b, p} and let the preferred candidate be
p. Let there be two nonmanipulators with the following weights and votes.

• One weightK + K̂/2 nonmanipulator votinga > b > p.

• One weightK − K̂/2 nonmanipulator votingb > a > p.

From the votes of the nonmanipulators,score(a) = 2, score(b) = 1, andscore(p) = 0. In the
induced majority graph, there is the edgea → b with weightK̂, the edgea → p with weight2K,
and the edgeb → p with weight2K. Let there bet manipulators with weightsk1, . . . , kt.

Suppose that there exists a partition ofk1, . . . , kt into (A,B,C) such that
∑

A =
∑

B + K̂.
Then for eachki ∈ A, have the manipulator with weightki votep > b > a, for eachki ∈ B, have
the manipulator with weightki vote p > a > b, and for eachki ∈ C have the manipulator with
weightki votep > a ∼ b. From the votes of the nonmanipulators and manipulators,score(a) =
score(b) = score(p) = 2α.

For the other direction, suppose thatp can be made a winner. When all of the manipulators putp
first thenscore(p) = 2α (the highest score thatp can achieve). Sinceα < 1, the manipulators must
have voted such thata andb tie. This means that a subcollection of the manipulators with weight
K votedp > b > a, a subcollection with weightK − K̂ votedp > a > b, and a subcollection with
weightK̂ votedp > a ∼ b. No other votes would causeb anda to tie. Notice that the weights of
the manipulators in the three different subcollections form a partition(A,B,C) of k1, . . . , kt such
that

∑
A =

∑
B + K̂. ❑

3-candidate Copelandα CWCM is unusual in that the complexity can be different if we look at
the unique winner case instead of the nonunique winner case (our standard model). We can prove
that the only 3-candidate Copeland CWCM case that is hard forthe unique winner model remains
hard using a very similar approach.

4Menon and Larson independently proved the top order case of the following theorem [24].
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Theorem 15 3-candidate Copeland0 CWCM remains NP-complete for top orders, bottom orders,
and weak orders, in the unique winner case.

Proof. Let k1, . . . , kt andK̂ be an instance of Partition′, which asks whether there exists a parti-
tion (A,B,C) of k1, . . . , kt such that

∑
A =

∑
B + K̂.

Let k1, . . . kt sum to2K and without loss of generality assume thatK̂ ≤ 2K. We now construct
an instance of CWCM. Let the candidate setC = {a, b, p}. Let the preferred candidate bep ∈ C.
Let there be two nonmanipulators with the following weightsand votes.

• One weightK + K̂/2 nonmanipulator votinga > p > b.

• One weightK − K̂/2 nonmanipulator votingb > a > p.

From the votes of the nonmanipulatorsscore(a) = 2, score(b) = 0, andscore(p) = 1. The induced
majority graph contains the edgea → b with weight K̂, the edgea → p with weight2K, and the
edgep → b with weightK̂. Let there bet manipulators with weightsk1, . . . , kt.

Suppose that there exists a partition ofk1, . . . , kt into (A,B,C) such that
∑

A =
∑

B + K̂.
Then for eachki ∈ A have the manipulator with weightki votep > b > a, for eachki ∈ B have the
manipulator with weightki votep > a > b, and for eachki ∈ C have the manipulator with weight
ki votep > a ∼ b. From the votes of the nonmanipulators and the manipulatorsscore(p) = 1 and
score(a) = score(b) = 0.

For the other direction, suppose thatp can be made a unique winner. When all of the manipu-
lators putp first thenscore(p) = 1. So the manipulators must have voted so thata andb tie, since
otherwise eithera or b would tie withp andp would not be a unique winner. Therefore a subcollec-
tion of the manipulators with weightK votedp > b > a, a subcollection with weightK − K̂ voted
p > a > b, and a subcollection with weight̂K votedp > a ∼ b. No other votes would causea and
b to tie. ❑

Theorem 16 3-candidate Copelandα CWCM remains in P for top orders, bottom orders, and weak
orders, for α = 1 for the nonunique winner case and for all rational α ∈ (0, 1] in the unique winner
case.

The proof of this theorem follows using the same arguments asthe proof of the case without ties
from Faliszewski et al. [13].

Tournament result

We now state a general theorem on two-voter tournaments for votes with ties. See Brandt et al. [5]
for related work on tournaments constructed from a fixed number of voters with total orders.

Theorem 17 A majority graph can be induced by two weak orders if and only if it can be induced
by two total orders.
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Proof Sketch. Given two weak ordersv1 andv2 that describe preferences over a candidate setC,
we construct two total orders,v′1 andv′2 iteratively as follows.

For each pair of candidatesa, b ∈ C andi ∈ {1, 2}, if a > b in vi then seta > b in v′i.
For each pair of candidatesa, b ∈ C, if a > b in v1 (v2) anda ∼ b in v2 (v1) then the majority

graph induced byv1 andv2 contains the edgea → b. To ensure that the majority graph induced by
v′1 andv′2 contains the edgea → b we must seta > b in v′2 (v′1).

After performing the above steps there may still be a set of candidatesC ′ ⊆ C such thatv1
andv2 are indifferent between each pair of candidates inC ′. For each pair of candidatesa, b ∈ C ′,
a ∼ b in v1 andv2, which implies the majority graph does not contain and edge betweena andb. To
ensure that majority graph induced byv′1 andv′2 does not contain an edge betweena andb, w.l.o.g.
setv′1 to strictly prefer the lexicographically smaller to the lexicographically larger candidate and
the reverse inv′2.

The process described above constructs two ordersv′1 andv′2 and ensures that the majority graph
induced byv1 andv2 is the same as the majority graph induced byv′1 andv′2. Since for each pair
of candidatesa, b ∈ C andi ∈ {1, 2} we consider each possible case wherea ∼ b is in vi and set
eithera > b or b > a in the corresponding orderv′i, it is clear thatv′1 andv′2 are total orders. ❑

Observe that as a consequence of Theorem 17 we get a transfer of NP-hardness from total orders
to weak orders for two manipulators when the result depends only on the induced majority graph.
The proofs for Copelandα unweighted manipulation for two manipulators for all rationalα for total
orders depend only on the induced majority graph [13, 14], sowe can state the following corollary
to Theorem 17.

Corollary 18 Copelandα unweighted manipulation for two manipulators for all rational α 6= 0.5
for weak orders is NP-complete.

Irrational voter Copeland results

As mentioned in the preliminaries, another way to give more flexibility to voters is to let the voters
be irrational. A voter with irrational preferences can state preferences that are not necessarily tran-
sitive and as mentioned in Faliszewski et al. [10] a voter is likely to posses preferences that are not
transitive when making a decision based on multiple criteria.

Additionally, the preferences of voters can include ties aswell as irrationality. When voters
are able to state preferences that can contain irrationality and ties they can represent all possible
pairwise preferences that they may have over all of the candidates.

It is known that unweighted Copelandα manipulation is NP-complete for total orders for all
rationalα except 0.5 [13, 14]. For irrational voters, this problem is in P forα = 0, 0.5, and1, and
NP-complete for all otherα [14]. Weighted manipulation for Copelandα has not been studied for
irrational voters. We will do so here.

Theorem 19 3-candidate Copelandα CWCM remains in P for irrational voters with or without
ties, for α = 1 for the nonunique winner case and for all rational α ∈ (0, 1] in the unique winner
case.
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Theorem 20 3-candidate Copelandα CWCM remains NP-complete for irrational voters with or
without ties, for α = 0 in the unique winner case and for all rational α ∈ [0, 1) in the nonunique
winner case.

The proofs of the above two theorems follow from the arguments in the proofs of the corresponding
rational cases, i.e., the proofs of Theorem 4.1 and 4.2 from Faliszewski et al. [13] for the case of
voters without ties and the proofs of Theorems 14, 15, and 16 above for the case of voters with ties.

Whenα = 1, also known as Llull, interesting things happen. It is knownthat 4-candidate
Llull CWCM is in P for the unique and nonunique winner cases [15]. For larger fixed numbers
of candidates, this is open. Though it is known that unweighted manipulation for Llull (with an
unbounded number of candidates) is NP-complete in the nonunique winner case [14]. In contrast,
we will show now that for irrational voters, all these problems are in P.

Theorem 21 Llull CWCM is in P for irrational voters with or without ties, in the nonunique winner
case and in the unique winner case.

Proof. Given a set of candidatesC, a collection of votersV , k manipulators, and a preferred
candidatep ∈ C, the preferences of the manipulators will always containp > a for all candidates
a 6= p. This determines the score ofp. In addition, let the initial preferences of the manipulators
bea > b for each pair of candidatesa, b ∈ C − {p} such thata defeatsb in V or such thata tiesb
in V anda is lexicographically smaller thanb. Note that, ifk > 0, there are no pairwise ties in the
election with the manipulators set in this way and that the manipulators all have strict preferences
between every pair of candidates (i.e., no ties in their preferences). For everya 6= p, let score0(a)
be the score ofa with the manipulators set as above.

Construct the following flow network. The nodes are: a sources, a sinkt, and all candidates
other thanp. For everya ∈ C − {p}, add an edge with capacityscore0(a) from s to a and add an
edge with capacityscore(p) from a to t. For everya, b ∈ C −{p}, add an edge from candidatea to
candidateb with capacity 1 if, when all manipulators setb > a, the score ofa decreases by 1 (and
the score ofb increases by 1).

If there is manipulation such thatp is a winner, then for every candidatea ∈ C−{p}, score(a) ≤
score(p) so there is a network flow that saturates all edges that go out from s.

If there is a network flow that saturates all edges that go out froms then for everya, b ∈ C−{p}
such that there is a unit of flow froma to b, changea > b to b > a in all manipulators.

This construction can be adapted to the unique winner case byletting the capacity of the edge
from a to t bescore(p)− 1 instead ofscore(p). ❑

4 Related Work

The recent work by Narodytska and Walsh [25] was the first paper to study the complexity of
manipulation for top orders and is very influential to our computational study of more general votes
with ties. They studied several extensions for election systems for top orders, which we further
extend for weak orders.
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Most of the related work in the computational study of election problems assumes that the partial
or tied preferences of the voters must be extended to total orders. We mention the important work
on partial orders by Konczak and Lang [21] that introduces the possible and necessary winner prob-
lems. Given a preference profile of partial votes, a possiblewinner is a candidate that wins in at least
one extension of the votes to total orders, while a necessarywinner wins in every extension [21].

Baumeister et al. [3] introduced the problem of extension bribery, where given voters with pref-
erences that are top truncated, voters are paid to extend their vote to ensure that a preferred candidate
wins. We do not consider the problem of extension bribery, but instead we use the standard model of
bribery introduced by Faliszewski et al. [11]. In this modelthe briber can set the entire preferences
of a subcollection of voters to ensure that a preferred candidate wins [11].

5 Conclusions and Future Work

We examined the computational complexity of the three most commonly studied manipulative at-
tacks on elections when voting with ties. We found a natural case for manipulation where the
complexity increases for voters with ties, whereas it is easy for total orders. For bribery we found
examples where the complexity increases and where it decreases. We examined the complexity of
Copelandα elections with voters with ties and even irrational votes with and without ties. It would
be interesting to see how the complexity of other election problems are affected by voters with
ties, specifically weak orders, which we consider to be a natural model for preferences in practical
settings.
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