
Multiscale blood vessel delineation using
B-COSFIRE filters

Nicola Strisciuglio1,2, George Azzopardi1,3, Mario Vento2, and Nicolai Petkov1

1 Johann Bernoulli Institute for Mathematics and Computer Science,
University of Groningen, The Netherlands

2 Dept. of Computer Eng. and Electrical Eng. and Applied Mathematics,
University of Salerno, Italy

3 Intelligent Computer Systems, University of Malta, Malta
{n.strisciuglio,g.azzopardi,n.petkov}@rug.nl,mvento@unisa.it

Abstract. We propose a delineation algorithm that deals with bar-like structures
of different thickness. Detection of linear structures is applicable to several fields
ranging from medical images for segmentation of vessels to aerial images for de-
lineation of roads or rivers. The proposed method is suited for any delineation
problem and employs a set of B-COSFIRE filters selective for lines and line-
endings of different thickness. We determine the most effective filters for the ap-
plication at hand by Generalized Matrix Learning Vector Quantization (GMLVQ)
algorithm. We demonstrate the effectiveness of the proposed method by applying
it to the task of vessel segmentation in retinal images. We perform experiments on
two benchmark data sets, namely DRIVE and STARE. The experimental results
show that the proposed delineation algorithm is highly effective and efficient. It
can be considered as a general framework for a delineation task in various appli-
cations.

1 Introduction

The automatic delineation of linear structures in images has gained interest in the image
processing community, due to its applicability to several problems in different fields. In
medical image analysis, for instance, the automatic segmentation of blood vessels from
retinal fundus images, x-ray fluoroscopy images or angiography images, among others,
is a basic step before proceeding with further processing for the diagnosis of several
pathologies. Other applications involve the quantification of length and width of cracks
in walls (Fig. 1c) [17] for earthquake damage estimation or for monitoring the flow of
rivers in order to prevent flooding disasters (Fig. 1d) [25].

In this paper we focus on the delineation of blood vessels in retinal fundus images
(Fig.1a), which is a fundamental step for further analysis for the formulation of a di-
agnostic hypothesis. The manual inspection of such images is a time-consuming and
expensive process. Therefore, mass screening is only possible if it is assisted by com-
puter aided systems. The effective segmentation of the vascular tree and the background
is very important because the tree contains significant information about the geometri-
cal structure of the vessels; furthermore, any lesions in the background can be analysed
better after the vessels are segmented.
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Fig. 1: Few examples where delineation algorithms are applicable: (a) blood vessels in a retinal
fundus image, (b) x-ray fluoroscopy image, (c) cracks in walls and (d) a river in an aerial image.

Several methods have been proposed to automatically delineate the blood vessel
tree. They can be generally divided into two categories: (i) non-supervised, based on
filtering or template matching, and (ii) supervised, based on machine learning tech-
niques.

Among the non-supervised methods, matched filtering techniques model the pro-
file of a vessel by a 2D-Gaussian kernel [6, 9, 1]. Vessel tracking methods, instead,
start from an initial set of points chosen either automatically or manually, to segment
the vessels by following their center-line [13, 26, 7]. Other methods use mathemati-
cal morphology and a-priori knowledge on the vessel tree structure [24, 16]. In [15],
a vessel growing procedure based on multiscale information about vessels’ width, size
and orientation is proposed. A multiconcavity modeling approach with differentiable
concavity measure was proposed in [12].

Supervised methods share a common methodology: they treat the matter as a two-
class problem, form pixel-wise feature vectors by some feature extraction methods and
learn a classification model based on vessel and non-vessel training feature vectors.
The responses of multiscale Gaussian filter and ridge detectors have been used as pixel-
wise features together with a k-NN classifier in [18] and [23], respectively. In [22], a
Bayesian classifier is combined with features obtained through multiscale analysis of
Gabor wavelets. A rotation-invariant line operator in combination with a support vector
machine (SVM) is proposed in [20], while in [14] a multilayer neural network has been
applied to classify pixels based on moment-invariant features. An ensemble of bagged
and boosted decision trees is employed in [8].

Supervised methods usually employ high-dimensional pixel-wise feature vectors
and the choice of the features is usually influenced by domain knowledge. They are
designed to overcome specific problems of retinal fundus images. In [8], for instance,
morphological transformations and multiscale Gabor filters are used to eliminate bright
and dark lesions, respectively.

We propose to address the problem of delineating bar-like structures (i.e. vessels) of
different thickness by employing a set of B-COSFIRE filters of the type proposed in [5],
configured to be selective for vessels of different thickness. In [5], a bar detector and a
bar-ending detector have been combined by summing up their responses. The configu-
ration parameters of the line-ending detector have been determined to complement the
performance of a line detector. This implies a chain of dependency in the construction
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Fig. 2: Configuration of a B-COSFIRE filter. (a) A vertical line is processed by (b) a DoG filter.
Then, (c) the positions of strong DoG responses along a set of concentric circles around the
interest point (labeled with ‘1’) are determined.

of the filters whose complexity increases with increasing number of filters. In this work,
instead, we determine a subset of B-COSFIRE filters by means of a learning process.
In particular, we use the Generalized Matrix Learning Vector Quantization (GMLVQ)
method that determines a weight called relevance for each filter and we select the ones
with the highest relevances.

The rest of the paper is organized as follows: in Section 2 we explain the proposed
approach for filter selection. In Section 3 we present the experimental results. After a
discussion of the results and comparison with the state of the art methods in Section 4,
we draw conclusions in Section 5.

2 Method

The proposed delineation algorithm is based on automatic selection of the B-COSFIRE
filters with the highest relevances. We configure a set of B-COSFIRE filters selective
for lines of different thickness (i.e. scale). Instead of manually setting the scale of the
filters, we determine them by means of a learning process. Such procedure allows to
select those filters that give highest contribution to the delineation task.

2.1 B-COSFIRE filter

A B-COSFIRE filter, originally proposed in [5], takes as input the responses of a group
of Difference-of-Gaussians (DoG) filters at certain positions with respect to the cen-
ter of its area of support. Such positions are determined in an automatic configura-
tion process performed on a prototype pattern, Fig. 2. We use a synthetic line as pro-
totype pattern (Fig. 2a) and process it with a DoG filter (Fig. 2b). We consider the
DoG filter responses along a number of concentric circles around the center point
(labeled with ‘1’ in Fig. 2c). The result of the configuration is a set of 3−tuples:
S = {(σi, ρi, φi) | i = 1, . . . , n}, where σi represents the standard deviation of the
outer DoG function4, while (ρi, φi) are the polar coordinates of the i-th DoG response
with respect to the support center of the filter.

4 The standard deviation of the inner Gaussian function is 0.5σi
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Fig. 3: (a) A retinal fundus image from the DRIVE data set and (e) its segmented vessel tree (used
as a ground truth). In the second column the responses of small-scale (b) line and (f) line-ending
filters are depicted. In the third and forth columns, the responses of (c,g) medium-scale and (d,h)
large-scale filters are shown, respectively.

We compute the output of a B-COSFIRE filter as the geometric mean of the re-
sponses of the concerned DoG filters at the positions determined in the configuration
step:

rS(x, y)
def
=

 |S|∏
i=1

(sσi,ρi,φi(x, y))

1/|S|

(1)

where sσi,ρi,φi(x, y) is the blurred DoG filter response with scale σi. We blur the i-
th DoG response by taking the maximum response in a local neighborhood weighted
by a Gaussian function centered in (ρi, φi). The standard deviation of such Gaussian
function is a linear function of the distance ρi: σ′ = σ′0 + αρi.

In order to achieve rotation-tolerance, we first manipulate the parameter φi, obtain-
ing a new set Rψ(S) = {(σi, ρi, φi + ψ) | i = 1, . . . , n} with orientation preference
ψ. Then, we take the maximum across the responses of B-COSFIRE filters selective for
different orientation preferences:

r̂S(x, y)
def
= max

ψ∈Ψ

{
rRψ(S)(x, y)

}
(2)

where Ψ = {πi12 | i = 0 . . . 11}. In this work, we use the publicly available Matlab
implementation of a B-COSFIRE filter5.

5 http://www.mathworks.com/matlabcentral/fileexchange/49172
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2.2 A bank of B-COSFIRE filters

To overcome the intrinsic delineation error at bar-endings due to the multiplicative char-
acter of B-COSFIRE filters, we employ two kinds of filter: line and line-ending detector.
In order to also account for the different thickness of vessels in a given image we design
a bank of 21 line ({S1, . . . S21}) and 21 line-ending ({S22, . . . S42}) B-COSFIRE filters
of varying scale σ.

As an example, in Fig. 3 we show the responses of line and line-ending B-COSFIRE
filters selective for thin (second column), medium (third column) and thick (forth col-
umn) vessels. It is evident how the small-scale filters respond better along thin vessels
(Fig. 3b and Fig. 3f) but are more sensitive to background noise. Large-scale filters,
instead, show higher responses along thicker vessels (Fig. 3d and Fig. 3h) and are more
robust to noise.

In this way, we characterize a pixel at location (x, y) by the 42 responses of B-
COSFIRE filters plus the intensity value of the green channel of the RGB image (further
details about this choice are given in Section 3.2), which results in a 43-element feature
vector denoted by v(x, y):

v(x, y) =
[
G(x, y), r̂S1(x, y), . . . , r̂S42(x, y)

]T
(3)

where G(x, y) is the intensity value of the green channel and r̂Si(x, y) is the response
of a B-COSFIRE filter Si.

2.3 Filters selection

We use the Generalized Matrix LVQ algorithm (GMLVQ) [21] in order to select filters.
The GMLVQ is a supervised prototype-based learning algorithm that, given a feature
space, determines the most representative prototypes for each class in the data set. Be-
sides learning the prototypes, it computes the individual and pair-wise relevances of all
involved features in the distance metric.

We form feature vectors composed by the responses of a bank of B-COSFIRE filters
together with the classes of the corresponding pixels (vessel or background) as input to
the GMLVQ algorithm. Next, GMLVQ computes a full matrix (43 × 43) of the rele-
vances of all pairs of filters. The values on the diagonal of the resulting matrix, depicted
in Fig 4, give an indication of the most relevant filters for the classification problem
at hand. The higher the coefficient the more relevant that filter is in comparison to the
others. In this work, we consider the relevances of the single B-COSFIRE filters, and
select only the ones that achieve local relevance maximum along the space dimension,
Fig 4. The dimensionality of the initial feature vectors is thus reduced and the overall
processing time is substantially improved.

2.4 Classification

Finally, we use the training feature vectors composed of the responses of the selected
filters to train a SVM classifier with a linear kernel, which is particularly suited for
binary classification problems and has high generalization capabilities [10].
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3 Experimental results

3.1 Data sets

We evaluate the proposed method on the benchmark data sets DRIVE [23] and
STARE [9], that come with manually segmented images to be used as ground truth.

The DRIVE data set contains 40 images (of size 565× 584 pixels), equally divided
into a training and a test set. The images in the training set are manually segmented
by one human observer, while the images in the test set are segmented by two other
observers. The second observer segmentation is normally used to compute the human
performance results. All the images come with a binary mask that indicate the field of
view (FOV). The STARE data set consists of 20 color retinal fundus images (of size
700 × 605 pixels), 10 of which contain signs of pathologies. Each image is manually
segmented by two different observers.

We measure the performance of our method by comparing the automatically gener-
ated binary images with the ground truth provided by the first observer.

3.2 Preprocessing

We only consider the green channel of the color retinal images because it shows the
highest contrast between vessels and background [23, 16]. In order to smoothen the
high contrast along the border of the field of view (FOV) of the retina we employ the
preprocessing algorithm proposed in [22]. It consists in a procedure that iteratively
enlarges the region of interest delimited by the FOV. Finally, we enhance the image by
using the contrast-limited adaptive histogram equalization (CLAHE) algorithm [19].
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Fig. 4: The relevances of the features as obtained by the GMLVQ algorithm for the training im-
ages of the DRIVE data set. The local maxima of the relevances (white bars) represent the filters
selected for classification.
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3.3 Training

For the DRIVE data set we randomly select 20000 vessel pixels (1000 from each image)
and 20000 non-vessel pixels (1000 from each image) from the images in the training set.
The STARE data set does not have separate training and test sets. Thus, we construct
the training set by randomly choosing 40000 pixels from all the 20 images in the data
set (1000 vessel pixels and 1000 non-vessel pixels from each image). As suggested
in [20, 8], since the size of the selected training set is very small (< 0.5% of the entire
data set), we evaluate the performance on the whole set of images.

For each pixel we generate a 43-element feature vector as described in Section 2.2.
We configure the line-selective B-COSFIRE filters with the following σ values: {1.4 +
0.1j | 0≤ j≤ 20} for DRIVE and {1.7 + 0.1j | 0≤ j≤ 20} for STARE. For the line-
ending-selective B-COSFIRE filters we use the following σ values: {0.9 + 0.1j | 0≤
j≤20} for DRIVE and {1.4 + 0.1j | 0≤j≤20} for STARE.

In order to reduce the skewness in the data, for each element vi in a feature vector
we apply the inverse hyperbolic sine transformation function [11], defined as:

f(vi, θ) = sinh−1(θvi)/θ (4)

For large values of vi and θ > 0 it behaves like a log transformation6. As θ → 0,
f(vi, θ)→ vi.

We then use the resulting feature vectors and their class labels as input to the GM-
LVQ algorithm, which determines the relevance of each filter. The bar plot in Fig. 4
shows the relevances Γi of every B-COSFIRE filter used for the training images in the
DRIVE data set. We select the filters whose responses correspond to local maxima in
the relevance landscape to form the feature vectors. For the DRIVE data set, we select
three line (at scales σ1 = 1.6, σ2 = 2.2 and σ3 = 3.4) and two line-ending (at scales
σ4 = 1.7 and σ5 = 2.9) B-COSFIRE filters. For the STARE data set, instead, we select
two line (σ1 = 3 and σ2 = 3.7) and three line-ending (σ3 = 2, σ4 = 2.7 and σ5 = 3.4)
B-COSFIRE filters. For both data sets, we discard the pixel value of the green channel,
since it has very low relevance. In this way the final representation results in a 5-element
vector, for both data sets. It is worth noting that the different values of σ automatically
selected for the two data sets depend on the different resolution and thickness of the
vessels in the images in such data sets.

3.4 Evaluation and results

The output of the SVM classifier is a probability score that indicates the vesselness
of each pixel: 1 and 0 represent a vessel pixel and a background pixel with absolute
certainty, respectively. We threshold the output of the SVM classifier to obtain the final
binary vessel map. The threshold divides the pixels into two classes: vessel and non-
vessel pixels. We compare the resulting binary map with the corresponding ground
truth and compute the following measures: true positives (TP), false positives (FP), true
negatives (TN) and false negatives (FN). We consider only the pixels inside the FOV for

6 The value of θ has been experimentally determined on some training images and set to 1000
for both the DRIVE and STARE data sets.



8 N. Strisciuglio, G. Azzopardi, M. Vento, N. Petkov

DRIVE STARE

[5] Proposed method [5] Proposed method

Accuracy 0.9442 0.9467 0.9497 0.9537

AUC 0.9616 0.9588 0.9563 0.9629

Specificity 0.9704 0.9724 0.9701 0.9717

Sensitivity 0.7655 0.7731 0.7716 0.8011

MCC 0.7475 0.7566 0.7335 0.7452

Processing time 10 s 60 s 10 s 60 s

Table 1: Experimental results achieved by the proposed supervised method on the DRIVE and
STARE data sets in comparison to the ones achieved in [5] by using unsupervised B-COSFIRE
filters. The average processing time is also reported.

the evaluation. In order to compare the performance of the proposed method with other
state of the art algorithms, we calculate the accuracy (Acc), sensitivity (Se), specificity
(Sp) and Matthews correlation coefficient (MCC). These metrics are defined as follows:

Acc =
TP + TN

N
, Se =

TP

TP + FN
, Sp =

TN

TN + FP
,

MCC =
TP/N − S × P√

P × S × (1− S)× (1− P )
,

where N = TN + TP + FN + FP , S = (TP + FN)/N and P = (TP + FP )/N .
The MCC measures the quality of a binary classification, taking into account the un-

balanced cardinality of the two classes. The MCC value varies from−1 for a completely
wrong prediction to 1 for a perfect classification system. A value of 0 corresponds to
random prediction.

We compare the performance of the proposed method with others by also computing
the receiving operator characteristics (ROC) curve and its underlying area (AUC). It
allows the evaluation of the overall performance of the algorithms by considering the
trade-off between sensitivity and specificity. The closer the ROC curve to the top-left
corner, the better the classification is. In the case of a perfect system the ROC curve has
a point (0, 1).

We compute the sensitivity, specificity and accuracy for each data set for a spe-
cific value of threshold t, the one that contributes to the maximum average MCC value
on the corresponding data set. In Table 1 we report the results achieved by the pro-
posed supervised method on the DRIVE and STARE data sets, compared with the ones
obtained by the original unsupervised approach that used B-COSFIRE filters [5]. The
performance improvement is attributable to the learning ability of combining the re-
sponses of B-COSFIRE filters that are selective for tiny and large vessels, as well as for
vessel-endings.
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4 Discussion

The performance results that we achieve on the DRIVE and STARE data sets are bet-
ter than many of other methods and confirm the effectiveness of the proposed method
(Table 2). For comparison purposes, we move along the ROC curve and compare the
performance of the proposed method with the ones of other supervised methods. For
the STARE data set and for the same specificity values reported in [22], [14] and [8]
(Sp = 0.9747, Sp = 0.9819 and Sp = 0.9763) we achieve better sensitivity: 0.7806,
0.7316 and 07697, respectively. Similarly, for the DRIVE data set and for the same
specificity reported in [22] (Sp = 0.9782) and in [14] (Sp = 0.9801) we achieve bet-
ter sensitivity: 0.7425 and 0.7183, respectively. For the same specificity reported in [8]
(Sp = 9807) we achieve a lower value of the sensitivity (Se = 0.7181).

The main contribution of the proposed method concerns the features extraction and
selection procedure. Indeed, the employed filters are domain-independent. The pro-
posed algorithm can be considered as a general framework for the delineation of any
bar-like structures. Moreover, the filter selection process by GMLVQ is very effective
to choose a small subset of filters that give a significant contribution. This generaliza-
tion ability is attributable to the trainable character of B-COSFIRE filters, in that they
are automatically configured by some vessel-like prototype patterns. In contrast, other
methods use hand-crafted features which require domain knowledge. For instance, the
features proposed in [8] are specifically designed to deal with particular issues of the
retinal fundus images, such as bright and dark lesions or non-uniform illumination of
the FOV.

The feature set may also be expanded by adding the responses of filters selective for
other kinds of patterns such as bifurcations and crossovers [3, 2]. In future we aim to
investigate the addition of the inhibition mechanism proposed in [4], which significantly
improves signal-to-noise ratio in contour detection.

Besides achieving high effectiveness, the proposed methodology is also very effi-
cient. In practice, an image from the DRIVE (565×584 pixels) or the STARE (700×605
pixels) data set is processed (preprocessing and feature extraction followed by classifi-
cation and thresholding) in less than 60 seconds, which is faster than all the other su-
pervised approaches (15 minutes [23], 3 minutes [22], 1.5 minutes [14], 2 minutes [8]).
We measured this duration by running a sequential Matlab implementation on a note-
book with a 1.8 GHz processor. Since the B-COSFIRE feature extraction method relies
on independent computations, the proposed methodology can become even faster by a
parallel implementation.

5 Conclusion

The delineation method that we propose is highly effective and efficient for the segmen-
tation of vessel trees in retinal fundus images. In particular, this method is very effective
in the detection of tiny vessels. The results that we achieve on two publicly available
benchmark data sets, DRIVE (Se = 0.7731, Sp = 0.9724) and STARE (Se = 0.8011,
Sp = 0.9717) are comparable with many of the existing methods, while showing higher
time efficiency.
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The proposed methodology can be considered as a general delineation framework
and could be used in other applications that require the segmentation of vessel-like
structures. This is mainly attributable to the trainable B-COSFIRE filters coupled with
the automatic feature selection performed by GMLVQ.
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