Skip to main content

Biological Immunity and Software Resilience: Two Faces of the Same Coin?

  • Conference paper
  • First Online:
Software Engineering for Resilient Systems (SERENE 2015)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 9274))

Included in the following conference series:

Abstract

Biological systems modeling and simulation is an important stream of research for both biologists and computer scientists. On the one hand, biologists ask for systemic approaches to model biological systems to the purpose of simulating them on a computer and predicting their behavior, which is resilient by nature. This would limit as much as possible the number of experiments in laboratory, which are known to be expensive, often impracticable, hardly reproducible, and slow. On the other hand, beyond facing the development challenges related to the achievement of the resilience to be offered by biological system simulators, computer scientists ask for a well-established engineering methodology to systematically deal with the peculiarities of software resilient systems, in their more general sense. In line with this, in this paper we report on our preliminary study of immune systems (a particular kind of biological systems) aimed at devising software abstractions that enable the systematic modeling of resilient systems and their automated treatment. We propose a bio-inspired concept architecture for structuring resilient systems based on the Akka implementation of the widely-known Actor Model, which supports scalable and resilient concurrent computation. To the best of our knowledge, this work represents a first preliminary step towards devising a bio-inspired paradigm for engineering the development of resilient software systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 44.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://akka.io/.

  2. 2.

    http://akka.io.

References

  1. Bio-pepa: A framework for the modelling and analysis of biological systems. Theoretical Computer Science, 410(33–34), 3065–3084 (2009)

    Google Scholar 

  2. Armstrong, J.: Erlang. Commun. ACM 53(9), 68–75 (2010)

    Article  Google Scholar 

  3. Chandra, A.: Synergy between biology and systems resilience, master’s thesis, missouri university of science and technology (2010)

    Google Scholar 

  4. Chaouiya, C.: Petri net modelling of biological networks. Briefings Bioinform. 8(4), 210–219 (2007)

    Article  Google Scholar 

  5. Cheng, B.H.C., et al.: Software engineering for self-adaptive systems: a research roadmap. In: Cheng, B.H.C., de Lemos, R., Giese, H., Inverardi, P., Magee, J. (eds.) Software Engineering for Self-Adaptive Systems. LNCS, vol. 5525, pp. 1–26. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  6. Danos, V., Feret, J., Fontana, W., Harmer, R., Krivine, J.: Rule-Based modelling, symmetries, refinements. In: Fisher, J. (ed.) FMSB 2008. LNCS (LNBI), vol. 5054, pp. 103–122. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  7. Deeds, E.J., Krivine, J., Feret, J., Danos, V., Fontana, W.: Combinatorial complexity and compositional drift in protein interaction networks. PLoS ONE 7(3), 03 (2012)

    Article  Google Scholar 

  8. Dematté, L., Priami, C., Romanel, A.: The blenx language: a tutorial. In: Bernardo, M., Degano, P., Zavattaro, G. (eds.) SFM 2008. LNCS, vol. 5016, pp. 313–365. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  9. Faeder, J., Blinov, M., Hlavacek, W.: Rule-based modeling of biochemical systems with bionetgen. In: Maly, I.V. (ed.) Systems Biology, volume 500 of Methods in Molecular Biology, pp. 113–167. Humana Press (2009)

    Google Scholar 

  10. Farmer, J., Packard, N.H., Perelson, A.S.: The immune system, adaptation, and machine learning. Physica D 22(13), 187–204 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  11. Feret, J., Danos, V., Krivine, J., Harmer, R., Fontana, W.: Internal coarse-graining of molecular systems. Proc. Nat. Acad. Sci. 106(16), 6453–6458 (2009)

    Article  Google Scholar 

  12. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81(25), 2340–2361 (1977)

    Article  Google Scholar 

  13. Haller, P., Odersky, M.: Scala actors: unifying thread-based and event-based programming. Theoret. Comput. Sci. 410(2–3), 202–220 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  14. Hardy, S., Robillard, P.N.: Pn: Modeling and simulation of molecular biology systems using petri nets: modeling goals of various approaches. J. Bioinform. Comput. Biol. 2–4, 2004 (2004)

    MATH  Google Scholar 

  15. Hewitt, C., Bishop, P., Steiger, R.: A universal modular ACTOR formalism for artificial intelligence. In: Proceedings of the 3rd International Joint Conference on Artificial Intelligence. pp. 235–245. Standford, CA, August 1973

    Google Scholar 

  16. Hofmeyr, S.A.: An interpretative introduction to the immune system. In: Design Principles for the Immune System and Other Distributed Autonomous Systems, pp. 3–26. Oxford University Press (2000)

    Google Scholar 

  17. Höller, A., Kajtazovic, N., Preschern, C., Kreiner, C.: Formal fault tolerance analysis of algorithms for redundant systems in early design stages. In: Majzik, I., Vieira, M. (eds.) SERENE 2014. LNCS, vol. 8785, pp. 71–85. Springer, Heidelberg (2014)

    Google Scholar 

  18. Majzik, I., Vieira, M. (eds.): SERENE 2014. LNCS, vol. 8785. Springer, Heidelberg (2014)

    Google Scholar 

  19. Janeway Jr., C., Travers, P., Walport, M., et al.: Immunobiology: The Immune System in Health and Disease, 5th edn. Garland Science, USA (2013)

    Google Scholar 

  20. Klamt, S., Saez-Rodriguez, J., Lindquist, J.A., Simeoni, L., Gilles, E.D.: A methodology for the structural and functional analysis of signaling and regulatory networks. BMC Bioinform. 7, 56 (2006)

    Article  Google Scholar 

  21. Krepska, E., Bonzanni, N., Feenstra, A., Fokkink, W.J., Kielmann, T., Bal, H.E., Heringa, J.: Design issues for qualitative modelling of biological cells with petri nets. In: Fisher, J. (ed.) FMSB 2008. LNCS (LNBI), vol. 5054, pp. 48–62. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  22. Laibinis, L., Klionskiy, D., Troubitsyna, E., Dorokhov, A., Lilius, J., Kupriyanov, M.: Modelling resilience of data processing capabilities of CPS. In: Majzik, I., Vieira, M. (eds.) SERENE 2014. LNCS, vol. 8785, pp. 55–70. Springer, Heidelberg (2014)

    Google Scholar 

  23. Lawen, A.: Apoptosisan introduction. BioEssays 25(9), 888–896 (2003)

    Article  Google Scholar 

  24. Morris, M.K., Saez-Rodriguez, J., Sorger, P.K., Lauffenburger, D.A.: Logic-based models for the analysis of cell signaling networks. Biochem. 49(15), 3216–3224 (2010)

    Article  Google Scholar 

  25. Nieh, J.C.: A negative feedback signal that is triggered by peril curbs honey bee recruitment. Curr. Biol. 20(4), 310–315 (2010)

    Article  Google Scholar 

  26. Papin, J.A., Palsson, B.O.: Topological analysis of mass-balanced signaling networks: a framework to obtain network properties including crosstalk. J. Theoret. Biol. 227(2), 283–297 (2004)

    Article  Google Scholar 

  27. Sackmann, A., Heiner, M., Koch, I.: Application of petri net based analysis techniques to signal transduction pathways, BMC Bioinform. 7–482 (2006)

    Google Scholar 

  28. Sneddon, M.W., Faeder, J.R., Emonet, T.: Efficient modeling, simulation and coarse-graining of biological complexity with NFsim. Nat. Meth. 8(2), 177–183 (2011)

    Article  Google Scholar 

  29. Srivastavawz, R., Youw, L., Summersy, J., Yin, J.: on stochastic vs. deterministic modeling of intracellular viral kinetics (2002)

    Google Scholar 

  30. Wang, R.-S., Saadatpour, A., Albert, R.: Boolean modeling in systems biology: an overview of methodology and applications. Phys. Biol. 9(5) (2012)

    Google Scholar 

  31. Watanabe, Y., Ishiguro, A., Shirai, Y., Uchikawa, Y.: Emergent construction of behavior arbitration mechanism based on the immune system. In: The 1998 IEEE International Conference on Evolutionary Computation Proceedings, IEEE World Congress on Computational Intelligence, pp. 481–486 (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Gallo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Autili, M., Di Salle, A., Gallo, F., Perucci, A., Tivoli, M. (2015). Biological Immunity and Software Resilience: Two Faces of the Same Coin?. In: Fantechi, A., Pelliccione, P. (eds) Software Engineering for Resilient Systems. SERENE 2015. Lecture Notes in Computer Science(), vol 9274. Springer, Cham. https://doi.org/10.1007/978-3-319-23129-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23129-7_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23128-0

  • Online ISBN: 978-3-319-23129-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics