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Abstract. Engineering modern many-core systems is a challenging task be-

cause of their scale and complexity. We cannot focus on ensuring their depend-

ability without understanding its interplay with performance and energy con-

sumption. This calls for developing new structuring mechanisms that step away 

from the traditional ways systems are developed (such as strict layering, strong 

encapsulation, abstractions, hiding). The paper reports on the initial steps of a 

PhD work focusing on development methods and tools for architecting cross-

layer fault tolerance in many-core systems in which error detection and error 

recovery are applied at several system layers in a concerted coordinated fashion 

to ensure the overall system efficiency.  
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1 Introduction 

Fault tolerance [1] is the means of dependability, allowing us to prevent system fail-

ures in the presence of faults. To achieve this after an error is detected in a component 

of a computer system (e.g. hardware, operating system or software), an error recovery 

mechanism returns the system to the full or reduced system functionality. 

Term cross-layer interaction [2] was introduced to refer to the idea that it is better 

suited to ensure system efficiency with respect to various non-functional characteris-

tics by reasoning about system layers together, rather than by completely abstracting 

the functionality of individual layers and trying to improve the efficiency of each of 

them in isolation. The examples of such characteristics are resource usage, reliability, 

performance and power consumption.  

Many-core systems are likely to become the predominant type of the architectures 

used in the future. According to [3] the number and variety of cores will be continual-

ly increasing. One of the challenges in the area is that there is a need to understand the 

trade-off between reliability and energy-consumption, as more energy is necessary to 

support the operation of redundant cores. Another challenge is that fault tolerance is 
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typically developed on one system layer even though these systems are always built 

as multilayer architectures. 

Developing a useful and general support to help in engineering cross-layer fault 

tolerance is a challenge. The main problem is that in this work one needs to develop 

techniques that assist in breaking the conventional way the abstractions are created. 

This paper reports on the initial work in the PhD study conducted by the first author 

in the area of developing methods and tools to support engineering of cross-layer fault 

tolerance for the many-core systems. 

2 TCP/IP as a motivating example 

The TCP/IP stack (see Fig. 1) provides an excellent example of cross-layer fault tol-

erance applied to ensure fault tolerance and improved performance. All layers of the 

TCP/IP stack participate in error detection and recovery in a concerted fashion.  

The Link layer, the lowest layer of the TCP/IP stack, is used to transmit the packets 

between the Internet layer interfaces of two nodes inside a local network segment. 

The Transport layer provides host-to-host communication for the Application layer. 

The Application layer supports data exchange between processes on different hosts 

over the network connection supported by the lower layers. 

 

 

Fig. 1. TCP/IP Stack 

TCP provides reliable packets transmission, even though the packets may be lost, 

corrupted or delivered out-of-order. At the Link layer, the Ethernet frame contains a 

CRC-32 checksum: a received frame with an incorrect checksum is discarded. The 

main protocol at the Internet layer is IP (Internet Protocol), which has two implemen-

tations, IPv4 and IPv6. The header of the IPv4 packet is protected by CRC-16 check-

sum. The IP packets with wrong checksums are dropped by the receiver. The IPv6 

header does not contain a checksum, assuming that Link layer provides an adequate 

error detection. The UDP and TCP packets of the Transport Layer have CRC-16 

checksums, which protect the payload and addressing information.  

TCP sends Acknowledgement to the sender to confirm the correct receipt or Nega-

tive Acknowledgement if the packet checksum is incorrect. In the latter case, the Au-

tomatic Repeat reQuest (ARQ) method is used to retransmit the corrupted packet. If 



the sender receives neither Acknowledgement nor Negative acknowledgement by 

timeout, it resends the packet. Such situation can happen when the packet is lost or 

rejected by the lower layers due to incorrect checksum. In addition, a TCP packet 

contains a sequence number, which allows the receiver to discard duplicate packets 

and sequence reordered packets. This, in particular, shows that the errors of the lower 

layers are detected and recovered by concerted efforts at several layers.  

At the Application layer, the developer can choose an appropriate Transport layer: 

either the connection oriented and reliable TCP or the connectionless UDP. The de-

veloper’s choice between reliable data delivery and data delivery in time depends on 

the application requirements. If UDP was chosen, than it might be necessary to im-

plement error detection and error recovery at the application layer by adding redun-

dant data e.g. status code or encryption. 

To conclude, TCP/IP is a useful example of how fault tolerance can be applied in 

coordination at several system layers. This was done to ensure its efficiency and flex-

ibility. In our opinion the main factor contributing to the success of this protocol is the 

way the fault tolerance was designed and engineered. 

3 Many-core systems 

Computer systems with tens, hundreds or thousands processor cores are called many-

core systems [4], whereas multi-core systems have typically only 2-8 cores. It is ex-

pected that these systems will replace multi-core systems in the near future and that 

they will become widely used in the safety-critical applications. Many-core architec-

ture uses low performance small cores each of which alone is less productive than a 

large core, however hundred or thousand of small cores deliver better performance 

than ten large cores. Even though we can expect that the throughput will increase with 

the increasing number of cores, the performance growth is restricted by the percent-

age of serial code in the application (Amdahl’s Law). Engineering of the efficient 

many-core systems is now an area of active research focusing on developing scalable 

methods for structuring complex many-core applications and for efficient paralleliza-

tion at the OS and hardware layers. 

Another challenge in developing these systems is ensuring their fault tolerance. 

The first problem is that when voltage and frequency scaling is applied to reduce 

power consumption the reliability is affected when near-threshold values are used. So 

we need to understand the interplay between energy and reliability. Moreover the 

modern semiconductors are more vulnerable to faults or negative effects like ageing 

and variation due to their extra small sizes. Many-core systems can provide redundan-

cy to deal with these problems (e.g. some cores can be used to provide error detection 

and error recovery for other cores). Our analysis shows that in many-core systems 

fault tolerance is typically applied at the individual layers such as OS, application, 

communication middleware, memory, etc.  

Ensuring high performance, low energy consumption, efficient resource utilisation 

and high reliability, as well as understanding their interplays are the main challenges 



for all types of many-core systems ranging from the large-scale systems, like data 

centres to the small-scale systems, like mobile devices. 

4 Layered fault tolerance 

Computer-based systems are prone to faults at different layers of the system stack, 

starting from circuitry degradation at the hardware layer to the bugs in the application 

source code. In designing large systems substantial efforts are being made to mitigate 

the effects of errors caused by faults at all layers of the system stack. Traditionally, 

the errors are handled at the layers where they are detected. Such an approach, reduc-

ing the complexity of system engineering, is very convenient for the developers and 

for the teams of developers as it simplifies system composition, reuse, maintenance 

and modification. This situation illustrates the predominance of convenience over the 

system efficiency in run time.  

Let us look first into several examples of how fault tolerance of system compo-

nents is typically ensured. Triple modular redundancy is a form of N-modular redun-

dancy when three components perform the same operation and a single output is pro-

duced by a majority-voting system. The recovery block [5] works with several im-

plementations of the same algorithm: after executing the primary variant, an ac-

ceptance test verifies the results. If the acceptance test fails, the system is rolled back 

and the secondary variant is tried. Eventually, either a variant passes the test or an 

exception handler is invoked. The N-version programming [6] is an approach aiming 

to reduce the probability of software faults by developing two or more functionally 

equivalent program versions independently in accordance with the same initial speci-

fication. These versions are executed concurrently and a special voting algorithm 

choses the correct output.  

The two typical approaches used to ensuring fault tolerance at several layers are 

action nesting and extending component interfaces with exceptions. The best exam-

ples of the former are exception handling and nested ACID (Atomicity, Consistency, 

Isolation, Durability) transactions. The latter are best represented by F. Cristian’s 

approach to providing recovery for modular software [7] and the idealised fault toler-

ance component pattern [8]. Even though these techniques support layered system 

structuring for fault tolerance they do not support concerted cross-layer fault tolerance 

at multiple layers when the decision to apply error detection and recovery is made for 

all layers together. 

The substantial disadvantage of the layered approach is that the system layers are 

considered separately. Under such circumstances, it is impossible to adjust the layers 

in order to achieve optimal system operation in terms of performance, energy effi-

ciency or resource utilization. Unnecessary error corrections are possible when the 

upper layer cannot specify the required quality of service of the bottom layer. 

For example, let us consider a many-core system where the fault rate of one core is 

significantly larger than the rate of another core. When an error is detected, the error 

recovery could be achieved by re-executing the calculations on the same core making 

it slower. If there were a special cross-layer mechanism, which can make a decision 



that under some fault rate value, hardware layer error recovery should be applied, but 

after exceeding this value, it is necessary to inform OS about the faulty core, than the 

system fault tolerance as a whole would be more efficient. In the latter case, OS 

would be capable to hide the faulty core from the applications for some time. 

The optimality and the effectiveness of the system fault tolerance could be 

achieved only when all the layers of the system are considered together. This is unfea-

sible when the strict layered approach is used.  

5 Cross-layer fault tolerance 

The cross-layer fault tolerance assumes that fault tolerance mechanisms are distribut-

ed among all layers of the system stack and designed together (see Fig. 2). The final 

decision is made according to the whole system state rather than to the states of the 

individual layers separately. 

 

 

Fig. 2. Cross-layer fault tolerance  

The Cross-Layer Reliability Visioning Study [2] proposes that it is necessary to use 

a cross-layer, full-system-design approach to reliability. The authors argue that in a 

cross-layer reliable system the entire system stack needs to collaborate in order to 

recover the errors and tolerate variations. This will be achieved because the relevant 

information about the system state is shared across the layers. In addition, the applica-

tion domain of the system should always be taken into account, since different do-

mains have various reliability requirements.  

Study [2] introduces the cross-layer approach to the reliable system design, fore-

casting that the electronics industry is about to approach two inflection points that 

require drastic changes in integrated circuits design. The first point is reliability and 

predictability. In the fabrication technologies less than 65nm gate leakage became a 

serious problem that led to reliability deterioration. This will push the designers to 

alter the assumptions that semiconductors and other microelectronic elements will 

operate without fails during the whole system lifetime. The second point is energy 

consumption, which is a crucial issue for contemporary computer systems. Paper [9] 



states that nowadays the entire Information and Communication Technologies sector 

consumes about 10% of the energy generated in the whole world.  

As mentioned in section 2, the TCP/IP stack illustrates the practical usage of cross-

layer approach to ensure system fault tolerance. The cross-layer design is now widely 

used in the area of the wireless sensor networks (WSNs). Since reliability, perfor-

mance and energy consumption are crucial factors for these systems, the optimal op-

eration of the whole system can only be guaranteed when the layers are considered 

together. Single layer approach cannot share important information among different 

layers. Consequently, each layer does not have complete information and it is impos-

sible to achieve the optimal system operation. In addition, the single layer approach is 

incapable of adapting to the environmental change. Paper [10] discusses cross-layer 

adaptivity techniques, which leverage functionalities at different layers of the protocol 

stack. The application layer is frequently involved in these activities, supporting cur-

rent system operation in accordance with measurements and forecasts of the moni-

tored system. Study [11] proposes a new routing protocol based on the cross-layer 

principle in order to manage faults in wireless sensor networks, decrease signalling 

overhead and power consumption. A cross-layer data delivery protocol for de-

lay/fault-tolerant mobile sensor networks was developed in [12]. The protocol aims to 

optimize energy consumption in the light of throughput requirement, stable connectiv-

ity of the sensor nodes and sufficient channel bandwidth.  

The on-going work on cross-layer fault tolerance is patchy and is mainly focusing 

on the area of WSNs. Cross-layer fault tolerance is not applied in many-core systems, 

which will be the predominant architecture in the future. Unfortunately, development 

of cross-layer fault tolerance complicates the system design and it breaks the abstrac-

tions and needs a holistic approach. To make it practical the developers need to be 

assisted by novel system and software engineering techniques. The aim of this PhD 

study is to develop such techniques (architectures, models, patterns, libraries, tools) 

and to demonstrate that applying the cross-layer fault tolerance for many-core systems 

can improve performance and energy-efficiency. 

6 Ongoing and future work 

Several topics are being investigated during the first year of the study to understand 

better the domain and to develop an initial understanding of the requirements for 

cross-layer fault tolerance engineering in many-core systems. 

6.1 Experiments with Odroid-XU3 board 

The Odroid-XU3 board is a small Octa-Core computing device implemented on ener-

gy-efficient hardware, which is based on the ARM big.LITTLE heterogeneous archi-

tecture and consists of a high performance Cortext-A15 quad core processor block 

(big), a low power Cortex-A7 quad core block (little), GPU and DRAM. The follow-

ing experiments were carried out to understand the correlation between power con-

sumption and performance. To clarify the voltage-frequency dependencies for the A7 



and A15 power domains, the first experiment measured voltage, current and power at 

different frequencies without any additional workload. The second experiment in-

volved measuring the same parameters under 100% load created by a stress test pro-

gram executing 50 million square root operations, and brought unexpected results, 

that at the identical frequency, A7 was a bit faster than A15 and consumed four times 

less power. The same trend was observed with sine and cosine functions. Experiments 

with other operations gave the anticipated results when A15 was more than twice 

faster than A7 at the same frequency and almost three times faster at a maximum 

frequency. In the third experiment, we investigated the influence of thread sleep state 

(between active state periods) on energy consumption. Our results show that in terms 

of energy, it is more efficient to execute the task as fast as possible. Fourth experi-

ment was held to investigate possible power and energy savings after disabling CPU 

cores for the cases when the workload is not very high. It was found that power con-

sumption reduces more than 8 times after disabling all four cores of A15 processor. 

This technique can be used to reduce power and energy consumption of many-core 

systems during their idle time. 

6.2 Threads scheduling  

In order to understand the behaviour of the scheduler at the ultimate load in Windows 

and Ubuntu OSs the threads scheduling experiments were carried out. Two or more 

threads with 10 milliseconds tasks, requiring as much CPU time as possible were 

bound to one CPU core using thread affinity. It was observed that Windows and Ub-

untu schedulers have different logic. Windows scheduler tries to run one thread to 

completion and after that switches to another thread, whereas Ubuntu scheduler tries 

to switch between different threads during execution. These findings should be taken 

into account while designing cross-layer fault tolerance for high performance and 

reliable many-core systems. 

6.3 Global exception catch block 

Breaking the abstractions will lead to the situation when the encapsulation principle is 

violated. This, in turn, can be the reason for the inconsistent state. Let us consider the 

hypothetical global catch block, which will specify that all exceptions down the call 

stack should be propagated to this global catch block, even though there are catch 

blocks below that can handle these exceptions. For example, we have module 1, that 

calls function Do of module 2 inside the try-global-catch statement. An implementa-

tion of the Do function already has a standard try-catch statement inside. If an excep-

tion is thrown in function Do and the standard catch block in the same function has 

only error loggers and does not attempt any recovery or rollback, than module 2 re-

mains consistent after the exception is propagated to the global catch block of module 

1. However, if function Do has a transaction that should be rolled back in the catch 

block, than the state of module 2 could become inconsistent after exception propaga-

tion to the global catch block in module 1, since the catch block in the Do function 

will not be applied. This simple example illustrates that it is necessary to study the 



effects of error propagation through the system layers in order to understand the prob-

lems to be faced during development of cross-layer fault tolerance. We are now de-

veloping an advanced exception handling scheme to support global exception han-

dling as a programming mechanism for cross-layer fault tolerance. 

6.4 Relax framework 

The authors of [13] propose a co-called language-level Relax mechanism for provid-

ing energy-efficient reliability and cross-layer fault tolerance for supercomputers. It 

allows the developer to specify code regions where low-reliability computations 

should be tolerated. In case of error, recovery is performed by re-execution of the 

“relaxed” code block. We plan to apply the similar approach on Odroid-XU3 board, 

by using little cores for detection of the calculation errors of big cores. If the error is 

detected, the recovery will be done by simple re-execution of the calculation. This 

technique will be useful for developing more sophisticated cross-layer fault tolerance 

mechanisms for many-core systems. 

6.5 Future work 

Our short-term plans include work in the two areas. Firstly, we will apply the Order 

Graphs – the scalable approach developed in our group [14] - to model fault tolerance, 

power consumption and performance of many-core systems and to represent cross-

layer fault tolerance. In particular, we would like to apply the idea of model fidelity to 

the area of fault/failure significance and of developing the corresponding cross-layer 

fault tolerance. Secondly, a medium-scale case study will be implemented to gain the 

experience in developing cross-layer fault tolerance for many-core systems. 
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