
CoDEL � A Relationally Complete Language for

Database Evolution

Kai Herrmann#, Hannes Voigt#, Andreas Behrend*, and Wolfgang Lehner#

#Database Technology Group, Technische Universität Dresden, Germany,
�rstname.lastname@tu-dresden.de

*Computer Science III, University of Bonn, Germany,
behrend@cs.uni-bonn.de

Abstract. Software developers adapt to the fast-moving nature of soft-
ware systems with agile development techniques. However, database de-
velopers lack the tools and concepts to keep pace. Data, already existing
in a running product, needs to be evolved accordingly, usually by man-
ually written SQL scripts. A promising approach in database research
is to use a declarative database evolution language, which couples both
schema and data evolution into intuitive operations. Existing database
evolution languages focus on usability but did not aim for completeness.
However, this is an inevitable prerequisite for reasonable database evolu-
tion to avoid complex and error-prone workarounds. We argue that rela-
tional completeness is the feasible expressiveness for a database evolution
language. Building upon an existing language, we introduce CoDEL. We
de�ne its semantic using relational algebra, propose a syntax, and show
its relational completeness.

Keywords: Descriptive Database Evolution, Evolution Language, Re-
lational Completeness

1 Introduction

Changes in modern software systems are no longer an exception but have become
daily business. Following the mantra �Evolution instead of Revolution�, agile
software development centers the creativity and excellence of people to handle
the unpredictably dynamic world of software development [3]. Agile methods
are characterized by short development cycles, each with the goal of a shippable
product. This provides constant feedback, which helps to establish a customer-
oriented development process resulting in products that �t customer's true needs
and yield high customer acceptance. It is in the very nature of agile development,
that requirement speci�cations are in perpetual �ux. Adjusting the software's
design to updated requirements is as daily business as developing new features.

However, a major obstacle in this process are the database systems [2].
Whereas software development tools support developers in the process of de-
signing changes with a comprehensive set of automatized refactoring features,
the evolution of databases is usually realized by manually writing scripts of SQL-
DDL and -DML operations. This manual database evolution is expensive and

𝐷𝑖+1 𝐷𝑖+2𝐷𝑖 …

App 𝑉𝑖

Database
Evolution

App 𝑉𝑖+1 App 𝑉𝑖+2

Schema Evolution

Data Evolution

Agile
Application Evolution

Evolution
Script

Evolution
Script

Developers specify Developers specify

Fig. 1. Database evolution.

error-prone. Furthermore, many software projects show poor integration of the
database developers. According to a survey [1], two third of the pooled software
developers perform database-related changes without consulting the responsible
database developers, which certainly increases the software developer's produc-
tivity but is not necessarily helping the quality of the resulting database.

To keep pace with agile software development, the database systems have to
supply software-refactoring-like features. Such database evolution features need
to evolve the database schema (schema evolution) and payload data (data evo-
lution) in a single consistent step [15]. Such a database evolution processes as
illustrated in Figure 1. While evolving an application, the application developer
speci�es the corresponding database evolution with the help of schema modi�ca-

tion operations (SMOs). In contrast to SQL-DDL and -DML statements, SMOs
specify the evolution of the schema and the data in a descriptive, integrated
way and ensure that the data is consistently evolved with the schema. SMOs
are typically more compact than a script of DDL and DML operations resulting
in the same evolution. On the user side, SMOs increase the developer's produc-
tivity while dealing with database evolution and reducing the chances of faulty
evolution scripts and unintended data loss. On the database system side, SMOs
open the opportunity to optimize and reduce the actual data movement involved
in an evolution step or even invert evolution steps for database versioning. These
bene�ts are enabled by the use of SMOs instead of DDL/DML.

A set of SMOs forms a database evolution language (DEL). Naturally, the
design of a particular DEL determines its expressiveness. A powerful DEL lets
the user easily specify all necessary evolution steps. In contrast, a weak DEL
forces the user into more complicated evolution scripts or even to fall back on
DDL/DML statements, which renders the DEL useless. In principal, a DEL
should at least cover the power of DDL and DML of an ordinary database sys-
tem. We argue, that a DEL for relational databases should at least be relation-
ally complete: For any relational DDL/DML script, there exists a semantically
equivalent sequence of SMOs. Relational DDL/DML scripts create, alter, and
drop database objects, while conditions and the actual data are speci�ed using
expressions from a given DQL. The latter motivates the relational algebra [5] as
the natural reference for determining the power of relational DDL and DML.

Given a relational database D = {R1, . . . , Rn} with tables Ri, a DEL is
relationally complete if it can transform D into any other relational database
D′ = {R′1, . . . , R′m} with each R′i being computable from D with operators from
the relational algebra. A minimal language providing relational completeness is
Lmin = {Add (·, ·) ,Del (·)} with

Add (R′, ε)→ D ∪ {R′ = ε (R1, . . . , Rn)}
Del (R)→ D \ {R}

The add operation adds a new table R′ to the database D based on the given
relational algebra expression ε. The delete operation removes the speci�ed table
R from D. Let inst (Lmin) be the set of all operation instances of Lmin with valid
parameters. Then obviously, a database D can be transformed into any other
database D′ with a sequence s ∈ inst (Lmin)+. Hence, Lmin is relationally com-
plete. From a practical standpoint however, Lmin is not very appealing, because
it is rather unintuitive and not oriented on actual evolution steps. However, any
other DEL which is as expressive as Lmin is relationally complete as well.

To the best of our knowledge, the most advanced DEL design is
PRISM++ [8, 6]. PRISM++ provides SMOs to create, rename, and drop both
tables and columns, to divide and combine tables both horizontally and verti-
cally, and to copy tables. The PRISM++ authors claim practical completeness
for their powerful DEL, by validating it against evolution histories of several
open source projects. Although this evaluation suggests that PRISM++ is su�-
cient also for other software projects, it does not provide any reliable complete-
ness guarantee. For instance, we do not see an intuitive way to remove all rows
from a table A, which also occur in a table B using the PRISM++ DEL, since
it does not o�er any direct or indirect outer join functionality. Thus, we con-
sider PRISM++ not to be relationally complete. Nevertheless, PRISM++ has
an intuitive and �eld-proven design.

In this paper, we present a relationally Complete DEL (CoDEL), building on
the set of PRISM++ SMOs to inherit its practical feasibility. However, CoDEL
is relationally complete and equally expressive as Lmin. Our contributions are:
1. We provide a formal de�nition of the semantics of all CoDEL operations

and propose an SQL-like syntax. With that, CoDEL can serve as a reference
language for the formal evaluation of other DELs.

2. We show the relational completeness of CoDEL. We show that all operations
of the relational algebra � as presented in [5] plus selected extensions � can
be expressed in CoDEL and whereby any Lmin expression, as well.

3. We lay the foundation for further research. CoDEL is a DEL, whose SMOs
are compact with precisely de�ned semantics. Hence researchers can tackle
their challenges on a per-SMO-level (�Divide and Conquer�). For instance,
database versioning requires full invertibility of a database evolution. CoDEL
allows to de�ne invertibility locally for each operation, which greatly simpli-
�es such research.

We de�ne CoDEL in Section 2, prove its relational completeness in Section 3,
discuss related work in Section 4, and conclude the paper in Section 5.

𝐷𝑒𝑙𝐶𝑜𝑙𝑢𝑚𝑛

𝐴𝑑𝑑𝐶𝑜𝑙𝑢𝑚𝑛

𝐷𝑒𝑙𝑅𝑜𝑤

𝐴𝑑𝑑𝑅𝑜𝑤

𝑈𝑛𝑖𝑡𝑒𝑅𝑜𝑤

𝑆𝑝𝑙𝑖𝑡𝑅𝑜𝑤

𝑈𝑛𝑖𝑡𝑒𝐶𝑜𝑙𝑢𝑚𝑛

𝑆𝑝𝑙𝑖𝑡𝐶𝑜𝑙𝑢𝑚𝑛

Column Row

Add

Delete

Split

Unite

Rename 𝑅𝑒𝑛𝐶𝑜𝑙𝑢𝑚𝑛

Table

𝐷𝑒𝑙𝑇𝑎𝑏𝑙𝑒

𝐴𝑑𝑑𝑇𝑎𝑏𝑙𝑒

∅

𝑅𝑒𝑛𝑇𝑎𝑏𝑙𝑒

Undefined

<
𝒔
𝒎
𝒐
>

< 𝒔𝒄𝒐𝒑𝒆 >

Undefined

Fig. 2. Structuring of CoDEL.

2 CoDEL

Database evolution changes the schema of a database and/or the already ex-
isting data. A DEL contains operations to descriptively specify such changes
as units, which clearly distinguishes it from SQL-DDL and -DML. PRISM++
limits itself to operations that modify individual tables � no PRISM++ oper-
ation accepts more than two tables. This keeps the PRISM++ DEL intuitive
and easy to learn. CoDEL adopts this principle. However, CoDEL operations
systematically cover all possible changes that can be applied to tables. Tables
are the fundamental structuring element and the container for primary data in a
relational database. Secondary database objects such as views, constraints, func-
tions, stored procedures, indexes, etc. should be considered in database evolution
as well. However, in this paper we focus on the evolution of primary data.

CoDEL de�nes SMOs of the pattern 〈smo〉〈scope〉(Θ), where 〈smo〉 is the

type of operation, 〈scope〉 is the general database object the operation works on,
and Θ is the set of parameters the SMO requires. Figure 2 gives a systematic
overview of all SMOs in CoDEL. A relational database table is a two-dimensional
structure consisting of columns and rows, hence, SMOs can operate on the level
of columns, of rows, or of whole tables. On all three levels there are �ve ba-
sic operations: Add, Del, Split, Unite, and Ren. We will now introduce the
meaningful operations, as shown in Figure 2. First, CoDEL has two basic op-
erations to create (Addtable) and drop (Deltable) tables as a whole, similar to
their counterparts in a standard DDL. Second, CoDEL has a set of operations to
modify a table. Hence, CoDEL o�ers eight table modi�cation SMOs 〈smo〉〈scope〉
with 〈scope〉 ∈ {column, row} and 〈smo〉 ∈ {Add,Del,Split,Unite}. For in-
stance, Delcolumn removes a column from a given table and Splitrow partitions
a table horizontally, while Splitcolumn partitions it vertically. CoDEL de�nes
no Split or Unite of whole tables, since these operations are restricted to ei-
ther column or row scope. Third, CoDEL includes two SMOs to rename a table
(Rentable) and a column (Rencolumn). The renaming of rows is unde�ned.

Regarding relational completeness, Rencolumn, Rentable, Delcolumn, and
Delrow are not necessary. However, they are very common [9] and included
in CoDEL for usability's sake. To summarize, CoDEL is the DEL LC with:

LC =


Addtable, Deltable,
Addcolumn, Delcolumn, Splitcolumn, Unitecolumn,
Addrow, Delrow, Splitrow, Uniterow,
Rentable, Rencolumn


All CoDEL SMOs require a set Θ of parameters. Let inst (o,D) be the set of
instances of the SMO o with a valid parameterization regarding the database D.
For instance, the only parameter to remove a table with Deltable(Θ) is the name
of an existing table, so that inst (Deltable (Θ) , D) = {Deltable(R)|R ∈ D}. Fur-
ther, let inst (L, D) =

⋃
o∈L inst (o,D) be the set of all validly parameterized

SMO instances of the DEL L. Then, a CoDEL evolution script s for a database
D is a sequence of instantiated SMOs with s ∈ inst (LC , Di)

+
, where Di is the

database after the application of the i-th SMO.
In the following, we specify the semantics of all CoDEL SMOs. Table 1 sum-

marizes the de�nition of the semantics based on Lmin. The table also shows the
SQL-like syntax we propose for the implementation of CoDEL. In the remainder,
R.C = {c1, . . . , cn} denotes the set of columns of table R and Ri speci�es the
version i of the table R. Whenever an SMO does not change the table's name
but its columns or rows, we increment this version counter i. CoDEL SMOs take
tables as input and return tables. According to the SQL standard, tables are
multisets. Our semantics de�nition with Lmin is based on the relational algebra,
though, where tables are sets. However, relational database systems internally
manage row identi�ers, which are at least unique per table. At the level of
SMO implementation, we consider the row identi�ers as part of the tables and
hence, tables as sets. The corresponding multiset semantics of the SMOs can be
achieved, by adding a multiset projection of the resulting tables that removes
the row identi�ers without eliminating duplicates.

Addtable and Deltable The SMOs Addtable and Deltable are the simpli�ed
version of their Lmin counterparts. Addtable(R, {c1, . . . , cn}) requires two param-
eters, a table name R and a set of column de�nitions ci. It creates an empty table
with the speci�ed name and schema. Deltable(R) takes only a single parameter,
the name of the table to be dropped.

Addcolumn and Delcolumn Addcolumn adds a new column to an existing
table. As parameter Addcolumn(Ri, c, f(c1, . . . , cn)) takes the name Ri of the
table, the column de�nition c of the new column, and a function f . The re-
sulting table is Ri+1. Addcolumn applies the function f to each row in Ri to
calculate the row's value for the new column c. The function f receives all
other column values of the row as parameters. Figure 3 shows an example:
Addcolumn(Person0, zip, getZip(name, age, address)) adds a column zip to Per-

son0 by determining the zip code based on the currently available information.

P
e
rs
o
n
{0

,2
} name age address

Tom 10 Street 10
Max 25 Way 5
Ina 45 Street 10

B
a
se

0

name age

Tom 10
Max 25
Ina 45 A

d
d
re
ss

0 name address

Tom Street 10
Max Way 5
Ina Street 10

P
e
rs
o
n
1 name age address zip

Tom 10 Street 10 01187
Max 25 Way 5 01237
Ina 45 Street 10 01187

Unitecolumn(Base0, Address0, P erson2, (name = name))

Splitcolumn(Person0, (Base0, {name, age}) , (Address0, {name, address}))

Addcolumn(Person0, zip, getZIP (name,age,address))

Delcolumn(Person1, zip)

Fig. 3. Example for the operations on columns.

Delcolumn removes a column from a table. Speci�cally, Delcolumn(Ri, c)
takes the name Ri of an existing table and the name c ∈ Ri.C of the column
that should be removed from Ri. The resulting table is Ri+1. Figure 3 shows an
example, where we remove the column zip from table Person1.

Splitcolumn and Unitecolumn Splitcolumn partitions a table vertically
and removes the original table. Splitcolumn has a generalized semantics,
where the resulting partitioning is allowed to be incomplete and overlapping.
Splitcolumn(R, (S, {s1, . . . , sn}) , (T, {t1, . . . , tm})) takes the name R of the orig-
inal table, a pair of table name S and a set of column names si as speci�cation of
the �rst partition and optionally a second pair (T, {t1, . . . , tm}) as speci�cation
of the second partition. The two sets of column de�nitions are independent. In
case S.C∩T.C 6= ∅, the columns S.C∩T.C are copied. In case S.C∪T.C ⊂ R.C,
the partitioning is incomplete. If the second partition is not speci�ed, T is not
created. Note that CoDEL prohibits empty sets of column de�nitions for S and
T , since tables must have at least one column. Figure 3 shows an example with
the Splitcolumn SMO. Table Person0 is vertically partitioned to general infor-
mation (Base0) and address information (Address0). The partitions overlap on
the column name to maintain the connection between addresses and person.

Unitecolumn is the inverse operation of Splitcolumn. It joins two tables
based on a given condition and removes the original tables. As parameters,
Unitecolumn(R,S, T, cond, o) takes the names R and S of the original tables,
the name T of the resulting table, a join condition cond using SQL predicates
without further nesting, and the optional request o for an outer join. In case
o = >, Unitecolumn performs an outer join, so that no rows from the original
tables are lost. In case o = ⊥ (or not speci�ed) Unitecolumn performs an inner
join. With the inner join, Unitecolumn loses all rows from R and S that do not
�nd a join partner, since R and S are dropped after the join. Note that restrict-

SMO: Addtable(R, {c1, . . . , cn}) Deltable(R)
Semantic: Add(R, πc1,...,cn (∅)); Del(R);
Syntax: CREATE TABLE R (c1,...,cn) DROP TABLE R

SMO: Addcolumn(Ri, c, f(c1, . . . , cn))
Semantic: Add

(
Ri+1, πRi.C∪{c←f(c1,...,cn)} (Ri)

)
; Del(Ri);

Syntax: ADD COLUMN c AS f(c1,...,cn) INTO Ri

SMO: Delcolumn(Ri, c)
Semantic: Add

(
Ri+1, πRi.C\{c} (Ri)

)
; Del(Ri);

Syntax: DROP COLUMN c FROM Ri

SMO: Splitcolumn(R, (S, {s1, . . . , sn}) , (T, {t1, . . . , tm}))
Semantic: Add(S, πs1,...,sn (R)); [Add (T, πt1,...,tm (R))];

Del(R);
Syntax: DECOMPOSE TABLE R INTO S (s1,...,sn) [, T (t1,...,tm)]

SMO: Unitecolumn(R,S, T, cond, o)
Semantic: o = ⊥: Add(T,R ./cond S); o = >: Add(T,R 1 cond S);

Del(R); Del(S);
Syntax: [OUTER] JOIN TABLE R, S INTO T WHERE cond

SMO: Addrow(Ri, G, {(a1, f1(G,V)) , . . . , (am, fm(G,V))} , S)
Semantic: S given: Add

(
S, γG,{fj(G,V)→aj |1≤j≤m} (Ri)

)
S not given: Add

(
Ri+1, Ri ∪ γG,{fj(G,V)→aj |1≤j≤m} (Ri)

)
; Del(Ri);

Syntax: AGGREGATE TABLE Ri (g1,...,gn) WITH a1 = f1(G,V),... [INTO S]

SMO: Delrow(Ri, cond)
Semantic: Add(Ri+1, σ¬cond (Ri)); Del(Ri);
Syntax: REMOVE FROM TABLE Ri WHERE cond

SMO: Splitrow(R, (S, condS) , (T, condT))
Semantic: Add(S, σcondS (R)); [Add (T, σcondT (R))];

Del(R);
Syntax: PARTITION TABLE R INTO S WITH condS [, T WITH condT]

SMO: Uniterow(R,S, T)
Semantic: Add

(
T, πR.C∪{ω→ai|ai∈S.C\R.C} (R) ∪ πS.C∪{ω→ai|ai∈R.C\S.C} (S)

)
;

Del(R); Del(S);
Syntax: MERGE TABLE R, S INTO T

SMO: Rentable(R,R
′) Rencolumn(Ri, c, c

′)
Semantic: Add(R′, R); Del(R); Add

(
Ri+1, ρc′/c (Ri)

)
; Del(Ri);

Syntax: RENAME TABLE R INTO R′ RENAME COLUMN c IN Ri TO c′

Table 1. Syntax and Semantic of CoDEL operations.

ing the join to foreign key relations as other DELs do, does not prevent this
information loss. A foreign key does not guarantee that every row in the refer-
enced table is actually referenced by at least one row in the referencing table.
Figure 3 also shows an example of Unitecolumn. The tables Base0 and Address0
are inner joined to the table Person2 based on equal names. Since all persons
have an address in this example, no rows are lost.

Addrow and Delrow Addrow adds new rows to an existing ta-
ble by aggregating the data in the current rows. As parameter
Addrow(Ri, G, {(aj , fj(G,V)) |1 ≤ j ≤ m} , S) requires the name Ri of the
original table, the set of grouping columns G = {g1, . . . , gn} ⊆ Ri.C, a set of
pairs of column name aj and aggregations function fj , and optionally a new
table name S. Addrow produces new rows by grouping table Ri by all columns
gk ∈ G and calculating the values for the columns aj with the functions fj .
The functions fj may contain constants, the values of the grouping columns G,
and aggregate functions upon the remaining columns V = Ri.C \G. If the new
table name S is speci�ed, Addrow creates S with the newly produced rows and
Ri remains available, which is particularly necessary, when the newly created
rows have a di�erent set of columns than Ri.C. Otherwise, Addrow appends
the new rows to Ri to form its new version Ri+1. In this case, we require
the column de�nitions of the new rows to match the original table Ri, hence
{g1, . . . , gn} ∪ {a1, . . . , am} = R.C. In general, the set of grouping columns is
also allowed to be empty resulting in one group and hence, one new row.

Delrow removes rows from a given table. Delrow(Ri, cond) takes the name
of an existing table Ri and a condition cond. It removes all rows, which satisfy
the condition and evolves the table to Ri+1.

Splitrow and Uniterow Splitrow partitions a table horizontally. However,
its semantics is more general than standard horizontal partitioning [4]. The SMO
creates at most two partitions out of a given table � with the partitioning allowed
to be incomplete and overlapping � and removes the original table. More pre-
cisely, Splitrow(R, (S, condS) , (T, condT)) takes the name of the original table,
a pair of table name S and condition condS as speci�cation of the �rst partition
and optionally a second pair (T, condT) as speci�cation of the second partition.
Both conditions condS and condT are independent. If the original tables contain
rows that ful�ll neither of the conditions, the resulting partitioning is incomplete.
Rows that ful�ll both conditions are copied resulting in overlapping partitions.
In case both conditions hold for all rows, i.e., condS = > and condT = >, T
is a complete copy of S. Hence, Splitrow subsumes the functionality of a copy
operations that can be found in other DELs. If condT is not speci�ed, Splitrow
does not create table T .

Uniterow is the inverse operation of Splitrow; it merges two given ta-
bles along the row dimension and removes the original tables. As parameters
Uniterow(R,S, T) requires, the names R and S of the original tables and the
name T of the resulting table. The schema of R and S are not required to by
equivalent. In case both schemas di�er, T contains null values (ω) in the corre-
sponding cells. Uniterow eliminates duplicates in T . In case R and S contain
equivalent rows, these rows will show up only once in T .

Rentable and Rencolumn The last two SMOs rename schema elements.
Rentable(R,R

′) renames the table with the name R into R′. Rencolumn(Ri, c, c
′)

renames the column c in table Ri into c
′, which results in table Ri+1.

We use the semantics de�nition, as summarized in Table 1, to show the
relational completeness of CoDEL in the following section.

3 Relational Completeness

To show the relational completeness of CoDEL, we argue that it is at least
as powerful as Lmin (Section 1), which is relationally complete by de�nition.
There is always a semantically equivalent expression in CoDEL for any expres-
sion in Lmin. The Del (R) operation from Lmin is trivial, since it is equivalent
to CoDEL's Deltable(R). On the contrary, Add (R, ε) from Lmin is more com-
plex, as ε covers the power of the relational algebra. Since both the relational
algebra and CoDEL are closed languages, it is reasonable to address each opera-
tion of the relational algebra separately. We show that, for each operation from
the relational algebra, there is a semantically equivalent sequence of SMOs in
CoDEL.

We assume the basic relational algebra [5] and add common extensions like
the extended projection, aggregation, and outer joins. However, we intentionally
exclude other extensions like the transitive closure and sorting. CoDEL does not
cover these extensions, since CoDEL is non-recursive and set-based. We maintain
these characteristics, since they proved to be a reasonable trade-o� between
expressiveness and usability, however, they are open for further research. With
respect to implementations based on current database management systems,
the distinction between di�erent types of null values [19] is not considered. For
instance Uniterow adds null values in columns, which existed in only one input
table, losing the information, whether a value was null before or did not exist at
all. The following sections will consider all constructs from the relational algebra
including the chosen extensions and show that CoDEL is capable to obtain the
semantically equivalent results.

Relation: R The basic elements of the relational algebra are relations. They
contain the data and are directly accessible by CoDEL as tables. Whenever one
table is required multiple times within a relational algebra expression, CoDEL
allows to copy them using Splitrow(R, (S,>) , (T,>)).

Selection: σcond (R) The selection returns the subset of rows from R, which
satisfy the condition cond. CoDEL's Splitrow(R, (S, cond)) is semantically
equivalent, which directly follows from the semantics de�nition in Table 1.

Rename: ρc′/c (Ri) Renaming a column is subsumed by the extended projec-
tions, however, we include it here for completeness. CoDEL's obvious semantic
equivalent according to Table 1 is Rencolumn(Ri, c, c

′).

Extended Projection: πP (R) We will immediately consider the extended
projection, as it subsumes the traditional projection. The extended projection
de�nes a new set of columns, whose values are computed by functions depending
on the existing columns. Assume the projection P = {fk (R.C)→ ak|1 ≤ k ≤ m}
with n = |R.C|. The CoDEL sequence below, realizes such an extended projec-
tion. Without loss of generality, we use for-loops to iterate over the attribute
sets. Since this is only schema depending and data independent, it does not
extend the expressiveness of the DEL but is simply a short notation.

1: for k = [1..m] do
2: Addcolumn(Ri+k−1, a

′
k, fk (r1, . . . , rn));

3: for rj ∈ R.C do

4: Delcolumn(Ri+m+j−1, rj);
5: for k = [1..m] do
6: Rencolumn(Ri+m+n+k−1, a

′
k, ak);

7: for k = [i.. (i+ 2m+ n− 1)] do
8: Deltable(Rk);

Ri+1
2
=πr1,...,rn,f1(r1,...,rn)→a′

1
(Ri) (1)

Ri+m
1,2
=πr1,...,rn,f1(r1,...,rn)→a′

1,...,fm(r1,...,rn)→a′
m
(Ri) (2)

Ri+m+1
4
=πr2,...,rn,a′

1,...,a
′
m
(Ri+m) (3)

Ri+m+n
3,4
=πa′

1,...,a
′
m
(Ri+m) = πf1(r1,...,rn)→a′

1,...,fm(r1,...,rn)→a′
m
(Ri) (4)

Ri+m+n+1
6
=πa′

1→a1,a′
2,...,a

′
m
(Ri+m+n) (5)

Ri+m+n+m
5,6
=πa′

1→a1,...,a′
m→am

(Ri+m+n)

=πf1(Ri.C)→a1,...,fm(Ri.C)→am
(Ri) (6)

The �rst SMO adds a new column, with a masked name, for each column of
the output table. This allows to compute the new values based on all existing
ones. Afterwards, we drop the old columns, rename the new columns to their
unmasked name, and remove all intermediate tables. Applying the semantics
de�nitions of the CoDEL SMOs results in the desired extended projection, as
shown above. The concrete line of the CoDEL sequence, which is applied in the
semantics computation, is indicated by the numbers above the equal signs.

Outer Join: R d|><|dpS The outer join is another common extension to the
traditional relational algebra. Beyond the rows according to an inner join, it also
includes those rows in the result, which did not �nd a join partner. The missing
values for columns of the other table are �lled with null values ω respectively.
Obviously, CoDEL's Unitecolumn(R,S, T, p,>) is semantically equivalent, since
we explicitly introduced the option to perform outer joins.

Cross Product: R× S The cross product produces a row in the output table
for each pair of rows from the input tables. The following sequence of CoDEL
SMOs is semantically equivalent as shown below.

1: Addcolumn(Ri, j, 1);
2: Addcolumn(Sk, j, 1);
3: Unitecolumn(Ri+1, Sk+1, T0, Ri+1.j = Sk+1.j,⊥);
4: Delcolumn(T0, j);

Ri+1
1
=πr1,...,rn,1→j (Ri) = {(r1, . . . , rn, 1) | (r1, . . . , rn) ∈ Ri} (7)

Sk+1
2
= {(s1, . . . , sm, 1) | (s1, . . . , sm) ∈ Sk} (8)

T0
3
=Ri+1 ./Ri+1.j=Sk+1.j Sk+1

= {(r1, . . . , rn, s1, . . . , sm, 1) | (r1, . . . , rn) ∈ Ri, (s1, . . . , sm) ∈ Sk} (9)

T1
4
= {(r1, . . . , rn, s1, . . . , sm) | (r1, . . . , rn) ∈ Ri, (s1, . . . , sm) ∈ Sk}
=R× S (10)

We add a new column j to both tables with j 6∈ Ri.C and j 6∈ Sk.C and
the default value 1 to perform an inner join on j. Since its value is always 1,
there will be one row in the output table for each pair of rows from the two
input tables. We remove the additional column j and �nally show the semantic
equivalence between the relational cross product and the presented sequence of
CoDEL SMOs.

Aggregate: γG,F (R) The aggregation is another typical extension to the rela-
tional algebra. The rows are grouped by one set of columns G = {g1, . . . , gn} ⊆
R.C. Additional columns A = {ai|1 ≤ i ≤ p} are computed by functions F =
{fi (G,V)→ ai|ai ∈ A} with V = {v1, . . . , vm} = R.C \ G. These functions
may contain values from grouping columns G, aggregate functions on the re-
maining columns in V , constants, and arithmetic functions. CoDEL contains a
dedicated operation Addrow(R,G, F, S). It writes the result of the aggregation
to the new table S. According to the semantics de�nition in Table 1, the seman-
tics of Addrow equals the discussed aggregation semantics from the relational
algebra.

Union: R ∪ S The relational union, merges the rows from both input tables
to the one output table including an elimination of duplicates. Using the SMO
Uniterow, CoDEL provides a semantic equivalent to the relational union oper-
ation.

1: Uniterow(R,S, T);

T
1
=πR.C (R) ∪ πS.C (S) = R ∪ S (11)

Please note, that the union in the relational algebra requires R and S to have
identical sets of attributes (R.C = S.C), which justi�es the simpli�cation step.

Di�erence: R\S The relational di�erence returns all rows, which occur in the
�rst, but not in the second table. Analogous to the union, it requires R and S to
have identical sets of columns (R.C = S.C). The following CoDEL sequence is
semantically equivalent to the relational di�erence.

1: Addcolumn(Sk, j, 1);
2: Unitecolumn(Ri, Sk+1, T0, (Ri.c1 = Sk+1.c1 ∧ . . . ∧Ri.cn = Sk+1.cn) ,>);
3: Delrow(T0, j 6= ω);
4: Delcolumn(T1, j);

Sk+1
1
=πs1,...,sm,1→j (Sk) (12)

T0
2
=Ri 1 Sk+1

= {(r1, . . . , rn, 1) | (r1, . . . , rn) ∈ Ri, (r1, . . . , rn, 1) ∈ Sk+1}
∪ {(r1, . . . , rn, 1) | (r1, . . . , rn) 6∈ Ri, (r1, . . . , rn, 1) ∈ Sk+1}
∪ {(r1, . . . , rn, ω) | (r1, . . . , rn) ∈ Ri, (r1, . . . , rn, 1) 6∈ Sk+1} (13)

T1
3
=σ¬(j 6=ω) (T0) = σ(j=ω) (T0)

= {(r1, . . . , rn, ω) | (r1, . . . , rn) ∈ Ri, (r1, . . . , rn, 1) 6∈ Sk+1} (14)

T2
4
=πR.C (T1)

= {(r1, . . . , rn) | (r1, . . . , rn) ∈ Ri, (r1, . . . , rn) 6∈ Sk} = Ri \ Sk (15)

We add a new column j to Sk with j 6∈ Sk.C and the default value 1. The outer
join on all columns ci ∈ Ri.C = Sk.C is applicable, since the initial column sets
are equal. Due to the nature of the outer join, the resulting table contains all
rows which were in at least one of the two input tables. However, all rows, which
occurred in Sk have the value 1 in the column j and are removed by the third
SMO. All rows which occurred exclusively in R have a null value ω in the column
j and remain as result. Applying the semantics de�nition of the SMOs �nally
leads to the relational di�erence operation. Please note, that (r1, . . . , rn) 6∈ Sk

is equal to (r1, . . . , rn, 1) 6∈ Sk+1 due to the �rst step.

Finally, we successfully showed that CoDEL provides a semantic equivalent
for each relational algebra expression, which makes it equally expressive as Lmin.
Hence, it is relationally complete and a sound foundation for further research.

4 Related Work

Database evolution is a well recognized topic in the database research commu-
nity [13, 18]. There are a number of approaches to increase comfort and e�ciency
in database evolution, for instance by de�ning a schema evolution aware query
language [14]. Another approach is to de�ne database evolution languages graph-
based [12]. This allows modeling dependencies between di�erent artifacts in the
information system and applying changes globally. Furthermore, MeDEA [10]
provides a general framework to describe database evolution in the context of

evolving applications. MoDEF [17] basically introduces an IDE extension to au-
tomate the co-evolution of the evolving client schemas and the store.

Currently, PRISM [7] appears to provide the most advanced database evo-
lution tool including an SMO-based DEL. PRISM was �rst introduced in 2008
and focused on the plain database evolution [8]. Later, the authors extended it
to PRISM++, which includes the modi�cation of constraints and update rewrit-
ing [6]. To benchmark database evolution languages and tools, researchers also
analyzed the evolution histories of Wikimedia and other open source projects [9,
16]. Finally, database versioning extends the ideas of database evolution to al-
low both forward and backward compatibility between the di�erent versions of
evolving schemas [15]. Another extension of PRISM takes a �rst step into this di-
rection by answering queries on former schema versions according to the current
data [11]. The presented DEL CoDEL inherits the principle style of SMOs from
PRISM. However, PRISM is not relationally complete, while CoDEL is. This
additional characteristic provided by CoDEL is highly valuable with respect to
further research, particularly in the �eld of automated database versioning based
on SMOs, where falling back on common DDL and DML evolution scripts is not
an option.

5 Conclusion

Agile software development methods embrace the change. While software de-
velopers �nd support in refactoring methods to evolve their software, database
developers still have to �ddle with DDL/DML scripts to evolve schema and data
of a productive database consistently. Adding evolution support to a DBMS in-
volves the design of a database evolution language (DEL). In this paper we con-
sidered the relational completeness of DELs for relational databases. Relational
completeness is an important property of DELs. DELs that are incomplete
in this respect, can force the user back to the manual evolution process based
on DDL and DML limiting the utility of the evolution functionality. We pre-
sented the relationally complete DEL CoDEL. We detailed its formal de�nition
and showed its relational completeness. CoDEL is to our best knowledge the
�rst well-de�ned, relationally complete DEL. CoDEL can serve as a reference
language for productive implementations of database evolution in DBMSs.

The solid formal base of CoDEL is also important for research and develop-
ment beyond database evolution. For instance in database versioning, multiple
clients access the same data in di�erent schema versions. Database versioning
requires invertible SMOs, so that the database system can translate data back
and forth between schema versions. For the investigation of the invertibility of
SMOs a solid formal de�nition of the SMOs is a prerequisite. Hence, CoDEL
o�ers a good starting point towards database versioning. For the near future,
however, we hope CoDEL helps to jump start more implementations of proper
database evolution features in the DBMSs on the market, so that agile develop-
ment methods �nal arrive at the database layer.

6 Acknowledgments

This work is funded by the German Research Foundation (DFG) within the
Research Training Group RoSI (GRK 1907). The �nal publication is available
at Springer via http://dx.doi.org/10.1007/978-3-319-23135-8_5.

References

1. Scott W. Ambler. Whence Data Management? Dr. Dobb's Journal, 2006, no. 390,
p. 79.

2. Scott W. Ambler and Pramod J. Sadalage. Refactoring Databases: Evolutionary
Database Design. Addison-Wesley Signature, 2006, isbn 978-0321774514.

3. Kent Beck, Mike Beedle, Arie van Bennekum, Alistair Cockburn, Ward Cunning-
ham, Martin Fowler, James Grenning, Jim Highsmith, Andrew Hunt, Ron Je�ries,
Jon Kern, Brian Marick, Robert C. Martin, Steve Mellor, Ken Schwaber, Je�
Sutherland, and Dave Thomas. Manifesto for Agile Software Development, 2001.

4. Stefano Ceri, Mauro Negri, and Giuseppe Pelagatti. Horizontal Data Partitioning
in Database Design. SIGMOD Conference, 1982, pp. 128-136.

5. E. F. Codd. A Relational Model of Data for Large Shared Data Banks. Commu-
nications of the ACM, 1970, vol. 15, no. 3, pp. 162-166.

6. Carlo A. Curino, Hyun J. Moon, Alin Deutsch, and Carlo Zaniolo. Update Rewrit-
ing and Integrity Constraint Maintenance in a Schema Evolution Support System:
PRISM++. VLDB Endowment, 2010, vol. 4, no. 2, pp. 117-128.

7. Carlo A. Curino, Hyun J. Moon, Alin Deutsch, and Carlo Zaniolo. Automating
the Database Schema Evolution Process. VLDB Journal, 2012, vol. 22, no. 1, pp.
73-98.

8. Carlo A. Curino, Hyun J. Moon, and Carlo Zaniolo. Graceful Database Schema
Evolution: the PRISM Workbench. VLDB Endowment, 2008, vol. 1, no. 1, pp.
761-772.

9. Carlo A. Curino, Letizia Tanca, Hyun J. Moon, and Carlo Zaniolo. Schema Evo-
lution in Wikipedia: Toward a Web Information System Benchmark. ICEIS, 2008,
pp. 323-332.

10. Eladio Domínguez, Jorge Lloret, Ángel L. Rubio, and María A. Zapata. MeDEA:
A Database Evolution Architecture with Traceability. Data & Knowledge Engi-
neering, 2008, vol. 65, no. 3, pp. 419-441.

11. Hyun J. Moon, Carlo A. Curino, Myungwon Ham, and Carlo Zaniolo. PRIMA �
Archiving and Querying Historical Data with Evolving Schemas. SIGMOD Con-
ference, 2009, pp. 1019-1022.

12. George Papastefanatos, Panos Vassiliadis, Alkis Simitsis, Konstantinos Aggistalis,
Fotini Pechlivani, and Yannis Vassiliou. Language Extensions for the Automation
of Database Schema Evolution. ICEIS, 2008, pp. 74-81.

13. Erhard Rahm and Philip A. Bernstein. An Online Bibliography on Schema Evolu-
tion. SIGMOD Record, 2006, vol. 35, no. 4, pp. 30-31.

14. John F. Roddick. SQL/SE � A Query Language Extension for Databases Support-
ing Schema Evolution. SIGMOD Record, 1992, vol. 21, no. 3, pp. 10-16.

15. John F. Roddick. A Survey of Schema Versioning Issues for Database Systems.
Information and Software Technology, 1995, vol. 37, no. 7, pp. 383-393.

16. Ioannis Skoulis, Panos Vassiliadis, and Apostolos Zarras. Open-Source Databases:
Within, Outside, or Beyond Lehman's Laws of Software Evolution? LNCS, 2014,
vol. 8484, pp. 379-393.

17. James F. Terwilliger, Philip A. Bernstein, and Adi Unnithan. Worry-Free Database
Upgrades. SIGMOD Conference, 2010, p. 1191.

18. James F. Terwilliger, Anthony Cleve, and Carlo A. Curino. How Clean is Your
Sandbox? LNCS, 2012, vol. 7307, 2012, pp. 1-23.

19. Carlo Zaniolo. Database Relations with Null Values. Journal of Computer and
System Sciences, 1984, vol. 28, no. 1, pp. 142-166.

