Skip to main content

Piecewise Linear Formulations for Downlink Wireless OFDMA Networks

  • Conference paper
  • First Online:
  • 1144 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9228))

Abstract

In this paper, we propose piecewise mixed integer linear programming (PWMIP) models for joint subcarrier and power allocation in downlink wireless orthogonal frequency division multiple access (OFDMA) networks. In particular, we consider the problem of maximizing the total capacity of an OFDMA system subject to user power, subcarrier and quality of service constraints. For this purpose, we model the problem as a (0-1) mixed integer nonlinear programming problem. Then, we obtain two PWMIP models by means of a convex combination approach [17] and with the approach proposed in [21]. The latter consists of reducing the cardinality of a subset of binary variables to a logarithmic number of binary variables. Finally, we propose a variable neighborhood search (VNS) procedure [10, 11]. Our preliminary numerical results indicate that the first model is more effective and that the VNS approach allows to obtain feasible solutions in less computational cost.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amzallag, D., Armarnik, T., Livschitz, M., Raz, D.: Multi-cell slots allocation in OFDMA systems. In: 16th Mobile and Wireless Communications Summit (IST), pp. 1–5 (2007)

    Google Scholar 

  2. Balas, E.: Projection, lifting and extended formulation in integer and combinatorial optimization. Ann. Oper. Res. 140, 125–161 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Beale, E., Tomlin, J.: Special facilities in a general mathematical programming system for non-convex problems using ordered sets of variables. In: Lawrence, J. (ed.) Proceedings of the Fifth International Conference on Operational Research, pp. 447–454. Tavistock Publications, London (1970)

    Google Scholar 

  4. Bixby, R.: Solving Real-World Linear Programs: A Decade and More of Progress. Oper. Res. 50(1), 1–13 (2002)

    Article  MathSciNet  Google Scholar 

  5. Cao, Z., Tureli, U., Liu, P.: Optimum subcarrier assignment for OFDMA uplink. In: IEEE International Conference on Communications, pp. 11–15 (2003)

    Google Scholar 

  6. Croxton, K., Gendron, B., Magnanti, T.: Comparison of mixed-integer programming models for nonconvex piecewise linear cost minimization problems. Manage. Sci. 49, 1268–1273 (2003)

    Article  MATH  Google Scholar 

  7. Dantzig, G.: Linear programming and extensions. Princeton University Press (1963)

    Google Scholar 

  8. Geiler, B., Martin, A., Morsi, A., Schewe, L.: Mixed Integer Nonlinear Programming. The IMA Volumes in Mathematics and its Applications, vol. 154, pp. 287–314 (2012)

    Google Scholar 

  9. Gray, F.: Pulse code communication, March 17, 1953 (filed November 1947). U.S. Patent 2,632,058

    Google Scholar 

  10. Hansen, P., Mladenovic, N.: Variable neighborhood search: Principles and applications. Eur. J. Oper. Res. 130, 449–467 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hansen, P., Mladenovic, N., Perez Brito, D.: Variable Neighborhood Decomposition Search. J. Heuristics. 7, 335–350 (2001)

    Article  MATH  Google Scholar 

  12. Hernández, A., Guio, I., Valdovinos, A.: Interference management through resource allocation in multi-cell OFDMA networks. In: IEEE 69th Vehicular Technology Conference VTC, pp. 1–5 (2009)

    Google Scholar 

  13. Keha, A., de Farias, I., Nemhauser, G.: Models for representing piecewise linear cost functions. Oper. Res. Lett. 32(1), 44–48 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. Markowitz, H., Manne, A.: On the solution of discrete programming-problems. Ecometrica 25, 84–110 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  15. Padberg M., Rijal, M.: Location, Scheduling, Design and Integer Programming. International Series in Operations Research & Management Science, vol. 3. Springer, Boston (1996)

    Google Scholar 

  16. Shannon, C.E.: A Mathematical Theory of Communication. AT&T Tech. J. 27, 379–423 (1948)

    MathSciNet  MATH  Google Scholar 

  17. Srikrishna, S., Linderoth, J., Luedtke, J.: Locally ideal formulations for piecewise linear functions with indicator variables. Oper. Res. Lett. 41(6), 627–632 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Sternad, M., Svensson, T., Ottosson, T., Ahlen, A., Svensson, A., Brunstrom, A.: Towards Systems Beyond 3G Based on Adaptive OFDMA Transmission. Proceedings of the IEEE 95, 2432–2455 (2007)

    Article  Google Scholar 

  19. Venturino, L., Risi, C., Buzzi, S., Zappone, A.: Energy-efficient coordinated user scheduling and power control in downlink multi-cell OFDMA networks. In: IEEE 24th International Symposium on Personal Indoor and Mobile Radio Communications (PIMRC), pp. 1655–1659 (2013)

    Google Scholar 

  20. Vielma, J., Ahmed, S., Nemhauser, G.: Mixed-integer models for nonseparable piecewise-linear optimization: unifying framework and extensions. Oper. Res. 58, 303–315 (2009)

    Article  MathSciNet  Google Scholar 

  21. Vielma, J., Nemhauser, G.: Modeling disjunctive constraints with a logarithmic number of binary variables and constraints. Math Program 128, 49–72 (2009)

    Article  MathSciNet  Google Scholar 

  22. Wong, I., Zukang, C., Evans, B., Andrews, J.: A low complexity algorithm for proportional resource allocation in OFDMA systems. In: IEEE Workshop on Signal Processing Systems, pp. 1–6 (2004)

    Google Scholar 

  23. Yaghoobi, H.: Scalable OFDMA physical layer in IEEE 802.16 WirelessMAN. Intel Technology Journal 8, 201–212 (2004)

    Google Scholar 

  24. Zhaorong, Z., Jianyao, Z., Jingjing, L., Weijiang, L., Yunjie, R.: Resource allocation based on immune algorithm in multi-cell cognitive radio networks with OFDMA. In: Fifth International Conference on Computational and Information Sciences (ICCIS), pp. 1644–1647 (2013)

    Google Scholar 

  25. Zukang, S., Jeffrey, G., Evans, B.: Short range wireless channel prediction using local information, signals, systems and computers. In: Conference Record of the Thirty-Seventh Asilomar Conference, vol. 1, pp. 1147–1151 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo Adasme .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Adasme, P., Lisser, A. (2015). Piecewise Linear Formulations for Downlink Wireless OFDMA Networks. In: Younas, M., Awan, I., Mecella, M. (eds) Mobile Web and Intelligent Information Systems. MobiWIS 2015. Lecture Notes in Computer Science(), vol 9228. Springer, Cham. https://doi.org/10.1007/978-3-319-23144-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23144-0_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23143-3

  • Online ISBN: 978-3-319-23144-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics