

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Mar 28, 2024

Discretionary Information Flow Control for Interaction-Oriented Specifications

Lluch Lafuente, Alberto; Nielson, Flemming; Nielson, Hanne Riis

Published in:
Logic, Rewriting, and Concurrency

Link to article, DOI:
10.1007/978-3-319-23165-5_20

Publication date:
2015

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Lluch Lafuente, A., Nielson, F., & Nielson, H. R. (2015). Discretionary Information Flow Control for Interaction-
Oriented Specifications. In Logic, Rewriting, and Concurrency: Essays Dedicated to José Meseguer on the
Occasion of His 65th Birthday (pp. 427-450). Springer. https://doi.org/10.1007/978-3-319-23165-5_20

https://doi.org/10.1007/978-3-319-23165-5_20
https://orbit.dtu.dk/en/publications/5fa21f34-5eeb-407d-9dd7-80a523ff91cf
https://doi.org/10.1007/978-3-319-23165-5_20

Discretionary Information Flow Control
for Interaction-Oriented Specifications

Alberto Lluch Lafuente, Flemming Nielson, and Hanne Riis Nielson

DTU Compute, The Technical University of Denmark, Denmark

Abstract. This paper presents an approach to specify and check discre-
tionary information flow properties of concurrent systems. The approach is
inspired by the success of the interaction-oriented paradigm to concurrent
systems (cf. choreographies, behavioural types, protocols,...) in providing
behavioural guarantees of global properties such as deadlock-absence. We
show how some information flow properties are easier to formalise and
check on a global interaction-oriented description of a concurrent system
rather than on a local process-oriented description of the components of
the system. We use a simple choreography description language adapted
from the literature of choreographies and session types. We provide a
generic method to instrument the semantics with information flow anno-
tations. Policies are used to specify the admissible flows of information.
The main contribution of the paper is a sound type system for statically
checking if a system specification ensures an information flow policy.
The approach is illustrated with two archetypal examples of distributed
and parallel computing systems: a protocol for an identity-secured data
providing service and a parallel MapReduce computation.

Keywords: Information Flow Control, Discretionary Access Control, Chore-
ographies, Communication Protocols, Interaction-Oriented Computing, Parallel
Computing, Service-Oriented Computing, High-Performance Computing

1 Introduction

The flow of information within a concurrent system is often expected to satisfy
some properties related to which components can access which data and how.
Such properties are known as discretionary access control policies and provide a
fine-grained control over the flow of information, as opposed to other kinds of
security policies that often regard the non-interference between security levels of
information. Consider for instance, the following concurrent program:[

k!x
]
p

[
k?y ; k’ !“go” ; k!y’

]
q

[
k’?z ; k?z

]
r

where u!v denotes the sending of a message v over a channel u, u?w denotes the
reception on variable w of a message on channel u, sequential composition is
denoted by ; and the sequential code of the concurrent processes p, q, r composing
the system is enclosed between square brackets. Is there a flow of information

from variable x to variable z? A simple analysis of all possible executions of the
system may provide a negative answer depending on the kind of information flow
one is interested in (explicit, implicit and so on). However, such an a posteriori
verification is undecidable in general and often unfeasible (e.g. due to state space
explosion). An a priori static analysis, however, should be smart enough to
discard the potential flow of information over channel k if one is interested in
explicit data flows. Indeed, x is sent over channel k and z is obtained from k as
well. It is a matter of synchronisation that z will not receive the value of x.

p

q

r

x

y

y′

z

•
•

•
◦

◦◦
◦
◦ ◦

p

q

r

x

y

y′

z

++

kk

++

kk

''

''

��

��

Fig. 1. A flow of information

Fig. 1 shows a graphical representation
of some flow of information in our example.
A detailed explanation of our graphical no-
tation will be provided later, here it suffices
to understand that the flow of information is
represented with a graph (circles and arrows)
equipped with an interface (left and right list
of principal and variable names). Of course,
the figure depicts only some flows of informa-
tion, in particular it represents explicit data
flows between variables, write access from principals to variables and control
dependencies due to interactions. The precise notion of information flow one
would like to consier may vary, depending of the properties of interest, the ap-
plication domain, the context of execution where the system will be deployed
and so on. Note, in particular, the absence of channels in the depicted flow,
which may be an appropriate choice in case of deployment on a framework with
synchronous channels that retain no data after synchronisation. Letting apart this
simple illustrative example, a priori verification of discretionary information flow
policies in concurrent systems is a challenging task that urges suitable solutions
to ease the engineering of trustworthy-by-design systems in the era of of big data,
data-drivenness and massive parallel/concurrent/high-performance computing.

Contribution. We investigate in this paper an application of the interaction-
oriented paradigm to the specification of trustworthy-by-design concurrent systems.
Our work shares the same constructive attitude towards security promoted in [4]
of providing methodologies and techniques to support security-by-design. Even if
the work was motivated by security concerns, our approach can be applied to
other aspects of concurrent and distributed systems where information flows play
a fundamental role, like performance issues related to locality of data access, or
robustness issues related to control dependencies among processes. Our work is
also inspired by the success of the interaction-oriented paradigm in providing
deadlock-freedom by design in distributed systems (see e.g. [8]). Many information
flow properties are global in nature, which suggests that they should be easier
to formalise and check on a global description of the system rather than on the
local description of the individuals.

The basis of the approach is the specification of the system by means of a
choreography, i.e. a global description of the expected interactions of a system in
terms of the messages exchanged between its components. Our choreographies

are also enriched with a specification of the information being used by processes
in their decision points and about local updates of data. Such descriptions allows
one to design and analyse information systems top-down, where the behaviour of
the individuals is synthesised from (or specified in) the description of the global
behaviour of the system. As an example, consider the following choreography:

C1 , p.x -> q.y : k ; q.“go” -> r.z : k’ ; q.y’ -> r.z : k

where u.e -> u′.e′ : c specifies that component u sends expression e over channel
c to component u′, that stores the message according to the pattern e′. This
choreography specifies the very same concurrent system we saw before. However,
statically checking the absence of an explicit data flow from x to z is easier as the
choreography-based description resembles a sequential program where traditional
information flow analysis techniques may be adapted and applied. For instance,
the flow of Fig. 1 can be easily extracted from the static description of C1.

We start our work defining a formal choreography description language for
specifying the global behaviour of the system. The language is strongly based on
existing approaches based on process calculi (e.g. session calculi) and behavioural
types (e.g. session types). As usual in those traditions, we consider a notion
of well-formedness for choreographies, to rule out systems for which providing
information flow guarantees is not trivial. The main contribution of the paper is
a sound type system for information flow policies, i.e. one that ensures that if a
choreography C is typed with a policy Π, denoted Ent ` C : Π, we can conclude
that C is Π-secure, i.e. the information flows of the behaviours described by C
satisfy the policy Π, denoted C |= Π. In the judgement Ent ` C : Π, Ent denotes
the set of entities (principals, variables, channels) involved in C and Π. A key
role in our approach is played by the use of an instrumented semantics [24] for our
language, where semantic rules are enriched with annotations relevant to the flows
of information. The instrumentation of the semantics is parametric with respect
to the flows associated to the main events in the choreography (interactions, local
updates, choices). This provides a convenient degree of flexibility to the user, who
can specify the notion of information flow that better suits his purposes. This
is one of the reasons why information flow assurances in our approach are not
related to a non-interference [10,16] result. In our experience, non-interference
cannot be easily conveyed to software, safety or security engineers and often
provides a too strong requirement with respect to the the kind of information flow
properties of interest. Our information flow policies are based on the Decentralized
Label Model [23]. We use here a graphical notation for information flows and
policies based on graphs with interfaces [6,11]. Though not technically different
from relational-based notations we think that the use of graphs provides a formal
and visually appealing presentation, suitable for software, safety and security
engineers and in line with other successful graphical notations such as message
sequence charts, fault trees and attack trees. The type system is as well parametric
with respect to the flows associated to the choreography events and its soundness
relies on some well-formedness constraints of the flow annotations.

u.name -> rp.user : a ;
rp.user -> ip.id : b ;
u.my pwd -> ip.pwd : a ;
if check(id,pwd)@ip then

ip.“ok” -> rp.“ok” : b ;
rp.class(user) -> s.class : c

else
ip.“fail” -> rp.“fail” : b ;
rp.“na” -> s.class : c ;

(ip.rep(id) -> rp.report : b
| (data := first(class) @ s;

while data 6= nil @s do
s.data -> u.info : a ;
data := data.next @ s

then
s.“end” -> u.info : a))

a!name ;
a!my pwd ;
loop

a?info
⊕ (a?“end” ;

break)

u

b?id ;
a?pwd ;
if check(id,pwd) then

b!“ok”
else

b!“fail” ;
b!rep(id) ;

ip

a?user ;
b!user ;
((b?“ok” ;

c!class(user))
⊕ (b?“fail”)

c!“na”) ;
b?report ;

rp

c?class ;
data := first(class) ;
while data 6= nil then

a!data ;
data := data.next ;

then
a!“end” ;

s

Fig. 2. Interaction- (left) and process-oriented (right) specification of a service

Structure of the Paper. Section 2 presents two paradigmatic case studies aimed at
providing some additional motivation and insights, and to serve as running exam-
ples. Section 3 presents a simple choreography description language, defining its
formal semantics and a notion of well-formedness. Section 4 presents our graphical
notation for information flows, the annotation-parametric instrumentation of
the semantics and the well-formedness conditions on flow annotations. Section 5
formalises the notion of satisfaction of a policy by a choreography and presents
the sound type system that allows us to statically check if a choreography satisfies
a security policy. Section 6 discusses related works, concludes the paper and
describes our current and future research investigations.

2 Applications: Protocols, Services and HPC

We present in this section two case studies from different domains, to provide
additional motivations and insights on the approach, as well as to serve as running
examples throughout the paper. The first case study (Section 2.1) is a archetypal
example of a distributed system, namely a protocol used in an identity-secured
data providing service. The second case study (Section 2.2) is an archetypal
example of a parallel program, namely a parallel MapReduce computation.

2.1 An Identity-Secured Data Providing Service

Our first case study is inspired on the OpenID example of [22], slightly adapted
for presentation purposes. The system consists of a user u trying to retrieve some
data from a server s. The access to the desired data is subject to authentication

name

my pwd

info

user

report

id

pwd

class

data

//

77

// ++

ss ��
gg

oo

Fig. 3. Policy Πs,1 for the Data Providing Service

by an identity authentication party ip. The interaction between u, s and ip is
coordinated by a relying party rp.

Figure 2 provides two descriptions of this case study. The one on the left
provides an interaction-oriented description (namely, a choreography), while
the one on the right provides a process-oriented description (i.e. a distributed
specification). The choreography, P for short , is specified in our language, to be
presented later, while the process-oriented description is specified in a language
based on standard constructs of concurrent languages (featuring asymmetric,
binary, synchronous, pattern-based communication over channels). The four
components of the system (u, rp, ip and s) exchange some information through
three channels (a, b and c). Some information may be sensitive (e.g. passwords,
data, user classes, etc.) so that we may want to impose some policy on the way
such information flows.

As in the simple example presented in the Introduction, a first look at the
process-oriented specification may suggest some potential flows of information.
For instance, we can see that the content of data is sent over channel a, from
which both the relying party rp and the authentication party ip read messages.
The user password and the user class are involved in similar situations. A security
engineer may want to restrict and check those flows of information.

An example of a policy that one may be interested in is depicted in Figure 3.
The policy focuses on explicit data flows only. The policy allows explicit data
flows between some of the variables involved in the system but forbids others.
For instance, flows from my pwd to report or data, which could compromise the
password of the user, are not allowed. Information contained in data is only
allowed to flow to data itself or to info, thus we forbid data to flow to any of the
other variables that principals ip and rp may access.

The satisfaction of this policy depends on the kind of information flows one
wants to consider. If only explicit flows are considered, the policy is satisfied. This
may not be trivial by inspecting the process-oriented specification but a look
at the interaction-oriented specification may be more reassuring. For instance,
my pwd flows only directly to pwd through the interaction u.my pwd -> ip.pwd : a,
but pwd is not explicity used to update any variable or and is never communicated.
Moreover, the choreography clearly specifies that data is only used to calculate

the next piece of data or to be transferred to u’s info, and similarly for the rest
of the sensitive informations we have mentioned.

The situation is different, of course, if explicit flows are considered as well.
We will see this and examples of other policies in the rest of the paper.

2.2 A Binary Parallel Map-Reduce Computation

Our next case study is an archetypal example of parallel computations, namely
MapReduce [12]. MapReduce is very popular pattern for processing large data
sets in parallel, which has its origins in functional programming primitives such
Lisp’s map and reduce and High-Performance Computing primitives such as
MPI’s scatter and reduce operations. We consider here a simple case in which
the programmer is interested in computing the function red(map(x0, . . . , xm)),
where map : T → T ′ is a function that processes single values of some type T into
single values of some other type T ′ (and that can be piece-wise lifted to vectors
as we do above) and red : T ′

∗ → T ′ is a function to accumulate a vector of values
of type T ′ into a single value of type T ′. We assume, as usual in MapReduce,
that red is associative and commutative and amounts to the identity function on
vectors of size 1. This allows one to decompose function red as a binary function,
which greatly helps the accumulation of values in parallel.

Mi,0 , yi:= map(xi)@pi
Mi,n+1 , pi->pi+2n : ki,i+2n ;

(Mi,n | Mi+2n,n) ;

pi+2n->pi: ki+2n,i ;
yi:= red(yi, yi+2n)@pi

Fig. 4. MapReduce Scheme

Figure 4 is a general scheme of a pos-
sible interaction-oriented MapReduce spec-
ification in our choreography description
language. The main idea of the scheme
is that in a MapReduce choreography
Mi,n+1, a principal pi will act as the leader
of 2n+1 principals in the computation of
red(map(xi, . . . , xi+2n+1)) to be stored in yi.
The leader principal will decompose that computation into the problem of com-
puting red(map(xi, . . . , xi+2n)) in yi and red(map(xi+2n+1, . . . , xi+2n+1)) in yi+2n

first, and accumulating the results afterwards. The first sub-problem will be
solved by pi itself, while the second sub-problem will be delegated to principal
pi+2n . Both sub-problems are solved applying the very same scheme. The in-
teractions do not involve any value passing and are simply used to trigger the
computations first (roughly, pi wakes up pi+2n) and later to ensure that the data
to be accumulated has been indeed computed (roughly, pi waits for pi+2n to
finish). For this purpose the choreography uses pairs of channels ku,v to be used
exclusively for pu to synchronise with pv.

Figure 5 presents an instance M0,2 of the above choreography scheme on
a scenario with four principals, together with an equivalent process-oriented
specification. In this example an information flow analysis can reveal interesting
information regarding data locality or control dependencies. For instance, one
would be interested in controlling which principals can affect which other princi-
pals for the sake of a analysing the robustness of the computation in terms of
failure dependencies. In addition, one would like to control the access of data by
principals for the sake of ensuring performance by maximising access locality.

p0->p2: k0,2 ;
(

p0->p1: k0,1 ;
(y0:= map(x0)@p0 | y1:= map(x1)@p1) ;
p1->p0: k1,0 ;
y0:= red(y0, y1)@p0

|
p2->p3: k2,3 ;
(y2:= map(x2)@p2 | y3:= map(x3)@p3) ;
p3->p2: k3,2 ;
y2:= red(y2, y3)@p2

) ;
p2->p0: k2,0 ;
y0:= red(y0, y2)@p0

k0,2! ;
k0,1! ;
y0:= map(x0) ;
k1,0? ;
y0:= red(y0, y1)@p0 ;
k2,0? ;
y0:= red(y0, y2)@p0

p0

 k0,1? ;
y1:= map(x1) ;
k1,0!

p1

k0,2? ;
k2,3! ;
y2:= map(x2) ;
k3,2? ;
y2:= red(y2, y3)@p0 ;
k2,0!

p2

 k2,3? ;
y3:= map(x3) ;
k3,2!

p3

Fig. 5. Interaction- (left) and process-oriented (right) specification of MapReduce

p0 p1 p2 p3

x0 x1 x2 x3

y0 y1 y2 y3

II OO OO OOBB

��

II

��

II

��

II

��

YYQQ ZZ

Fig. 6. Policy Πm,1 for MapReduce

As an example of a concrete pol-
icy, consider Figure 6. The policy fo-
cuses on how principals access data,
i.e. which principal in the computa-
tion is accessing which data variable.
The policy allows each principal pi
to read variable xi and to read and
write on variable yi. Additional write
permissions are granted to allow accumulation: p0 is allowed to read y2 and y1
and p2 is allowed to read y3. This policy is actually satisfied by the choreography
(and its distributed process-oriented counterpart) and is indeed more permissive
than needed. For instance, p1 is allowed to read variable yi but that does not
occur. This policy illustrates that sometimes one is not interested in explicit data
flows. Indeed, controlling similar policies can be very useful when the system
is to be deployed on an parallel architecture and principals and data have to
be allocated in computational resources such as processors, machines, memory
locations, etc.

All in all, the case studies we have presented and the examples of information
flow policies motivate the need to consider different notions of information flow
and that is the reason why our framework is parametric with respect of the
notion of flow to be considered.

3 Choreographic Specifications of Concurrent Systems

A choreography describes the expected interactions of a system in terms of
the messages exchanged between its components. Choreographies can be used
to automatically derive (via endpoint projections) distributed code skeletons
or local specifications to be checked on existing implementations. The latter
case is typical, for instance, of legacy systems (where existing implementations
may be available) or open systems (where the principals may be governed
by independent parties). Choreographies are usually given a so called weak

C ::= C;C′ (sequential composition)
| C | C′ (parallel composition)
| if e@p then C else C′ (choice)
| while e@p do C then C′ (loop)
| A (actions)

A ::= x := e @p (update)
| p.e -> q.e′ : k (interaction)
| skip (skip)

Fig. 7. A simple choreography description language

(or partial or constraint) interpretation [21]: a (distributed) realisation S of a
choreography C is admitted if it exhibits a subset of the behaviours specified
by the choreography. In a trace-based setting, the question can be rephrased
as Traces(C) ⊆ Trace(S). This does not necessarily prescribe the presence
of unobservable/hidden interactions aimed at realising the choreography. For
instance, in a trace-based settings the above mentioned notion of admissibility
of realisations can be relaxed to Traces(C)|O ⊆ Trace(S)|O, where |O is the
projection on a set of observables O that would discard hidden interactions.
However, most approaches to choreographies are based on the idea that the
choreography specifies all the interactions that may be observed in the system
and assume that no additional interactions will take place in the realisation of
the choreography. We believe that this is methodologically more adequate for
information flow control: implicit hidden interactions may introduce unexpected
flows of informations, whereas requiring all interactions to be explicitly declared
should help understanding the actual flows of information and should mitigated
the unintentional introduction of undesired flows.

As a consequence, not all choreographies are realisable in a distributed way. A
typical example is the choreography p.e -> q.x : k ; r.e’ -> s.y : k’ where, clearly,
there is no way of imposing the order of the interactions without introducing
additional ones. Typically, well-formedness conditions are given to impose some
semantic and syntactic constraints on choreographies that ensure good properties
in terms of realizability and soundness of the endpoint projections.

Choreographies: Syntax. We consider a simple choreography description lan-
guage inspired by process calculi and session types approaches to choreographies.
In particular, the syntax of our language is close to the interaction oriented
language [20], the choreography calculus [22,8] and the global types used in [9,3].

We use universes of variables Var, pattern expressions Expr over variables,
principals Prin, and channels Chan. We denote the union of principals, variables
and channels the entities and denote them with Ent = Prin ∪Var ∪Chan.

Definition 1 (syntax of choreographies). The syntax of our choreography
description language is defined by the grammar of Fig. 7, where e, e′ ∈ Expr,
x ∈ Var, p, q ∈ Prin are distinct principals (p 6= q), and k ∈ Chan.

The set of principals (reps. entities) in a choreography C is denoted by pn(C)
(reps. en(C)), the set of variables in an expression e is denoted by v(e). These
functions are defined as expected and we hence neglect their formal definition.
We assume that variable names cannot be used as values in expressions, to forbid
mechanisms such as indirect references and name passing in interactions, which
may pose additional challenges in our technique.

The syntactic category C corresponds to choreographies. To avoid confusion
between individual choreographies and the syntactic category, we sometimes
use C to denote the set of all terms generated by C. The syntactic category
A corresponds to actions. This syntactic category is not strictly necessary but
simplifies the presentation of our approach. We shall use a set A of events defined
as the union of all terms generated by A and all expressions of the form e@p.

The language includes classical constructs such as sequential and parallel
composition, branching and loops. One feature to be remarked is that decision
points are annotated with the name of a principal (cf. @p in loops and choices).
By doing so one can specify which p principal is the selector, i.e. the principal
responsible for taking the control decision. Another remarkable difference with
respect to standard languages is that the while construct has a termination code
in addition to the body. Similar annotations are not new in choreographies and
are used e.g. in [9,3]. The idea is that such code is used by the selector principal
to notify termination to all passive processes involved in the body. This feature
is not strictly necessary in our work but we prefer to have it in order make our
language closer to the ones used in the literature of choreographies.

Actions include local updates of the form x := e @p where principal p updates
variable x with the result of evaluating expression e, the void action skip and
a binary interaction p.e -> q.e′ : k between principals p and q. In such an
interaction principal p aims at sending over channel k the result of evaluating
expression e to principal q. Expression e is to be matched against the pattern e′

whose variables act as binders to collect the result of the interaction. As we have
seen, e and e′ can be void in which case we use the simplified notation p -> q : k.

Semantics of Choreographies. We present two semantics for our language: an
operational semantics, aimed at providing a first insight to the reader, and a
denotational semantics, which eases the presentation of the main results.

The operational semantics of our language is the relation → ⊆ C × A × C
defined by the rules in Fig. 8. The rules are very similar to those of standard
parallel programming languages or process calculi. We just remark here that the
semantics is abstract with respect to the actual evaluation of expressions: the
branching in choices and loops can be seen as non-deterministic choices.

The denotational semantics defines the traces of a choreography as words
over the alphabet of events A. As in some approaches to choreographies (e.g. [9]),
we restrict ourselves to finite words, and hence finite traces.

C1
α−−→ C′

1

C1;C2
α−−→ C′

1;C2 skip;C
skip−−−→ C

A 6= skip

A
A−−→ skip

i 6= j ∈ {1, 2} Ci
α−−→ C′

i C′
j = Cj

C1 | C2
α−−→ C′

1 | C′
2

i ∈ {1, 2}
if e@p then C1 else C2

e@p−−−→ Ci

i ∈ {1, 2} C1 = C ; while e@p do C then C2

while e@p do C then C2
e@p−−−→ Ci

Fig. 8. Operational Semantics of Choreographies

Definition 2 (trace semantics). The trace semantics of our language is given
by function Traces : C → 2A

∗
defined by

Traces(C1;C2) = Traces(C1)Traces(C2)
Traces(C1 | C2) = Traces(C1) 1 Traces(C2)

Traces(if e@p then C1 else C2) = e@p (Traces(C1) ∪ Traces(C2))
Traces(while e@p do C1 then C2) = e@p (Traces(C1) e@p)∗Traces(C2)

Traces(A) = {A}

Above, juxtaposition denotes the concatenation of traces, the unary operator
∗ is the usual Kleene star of regular expressions, and the binary operator 1

denotes the shuffling of trace sets, i.e. T 1 T ′ = {σ1σ′1 . . . σnσ′n | σ1 . . . σn ∈
T ∧ σ′1 . . . σ′n ∈ T ′}. The empty trace will be denoted by ε. Both semantics can
be shown to be equivalent for finite behaviours: the finite traces of the transition
system defined by the operational semantics coincide with the traces defined by
the denotational semantics (up to occurrences of skip).

Well-Formed Choreographies. As mentioned, choreographies should enjoy a couple
of properties to be useful in practice, e.g. to ensure distributed realizability and
soundness of endpoint projections. It is common practice to define a notion of
well-formed choreography and, possibly, syntactic restrictions to ensure well-
formedness. In our work, well-formedness is just needed for the correctness of
our type system and we hence provide a simple notion tailored for our purpose.

Definition 3 (well-formed choreography). Let C be a choreography. We say
that C is well-formed if the following conditions hold:

1. every occurrence of C1 | C2 in C should be such that en(C1) ∩ en(C2) = ∅;
2. all traces σ ∈ Traces(C) satisfy the following condition: If σ = σ′αβσ′′, with

α, β ∈ A then pn(α) ∩ pn(β) 6= ∅ or σ′βασ′′ ∈ Traces(C).

Our notion of well-formedness is reminiscent of the semantic notion of well-
formedness used in [9] and some syntactic restrictions taken from [19]. Intuitively,

well-formedness requires (1) no entity can be involved in both branches of a
parallel composition, and (2) that the set of traces of a choreography is closed
under the transposition of actions involving disjoint principals. Note also, that
our notion of well-formedness is not strong enough to guarantee realisability. For
example, the choreography p . e -> q . e’ : k ; r . e” -> q . e’’’ : k (adapted from
examples of ill-formed choreographies of [19]) is well-formed according to our
notion, but cannot be realised due to the race condition on channel k. This is
not a problem: it just means that our technique applies to more choreographies
than needed in practice.

4 Information Flows in Choreographies

We provide in this section our notion of information flows and the mechanism to
instrument the semantics of choreographies with flow annotations.

Information Flows as Graphs with Interfaces. A flow F is essentially a relation
among entities, possibly expressing how entities influence or depend on each
other. We represent flows in this paper using graphs with interfaces [6,11] as they
provide an intuitive visual representation and elegant and well-defined notions of
flow composition.

A graph with a discrete interface (cf. Def. 11 in Section A) is denoted by
I i−→ G o←− O and is defined by an input interface I (a set of nodes), and output
interface O (a set of nodes), a body graph G and a pair i, o of injective mappings
from I and O to the nodes of G. A detailed presentation of graphs with interfaces
can be found in Section A.

Definition 4 (flow graph). A flow graph (or briefly a flow) is a graph with
interface I i−→ G o←− O.

Examples of flow graphs can be found in Fig. 1 and Fig. 9. The visual
representation places the input and output interfaces to the left and to the
right of the body graph, respectively. The mappings are denoted with dotted
lines, while normal arrows are used for the edges. We use two sorts of nodes to
distinguish principals (•) from variables (◦). We neglect channels in our examples,
for the sake of simplicty, so we do not use any specific node sort for them.

As we have seen in the case studies of Section 2 we sometimes distinguish
different kinds of information flows. A direct flow between two entities is denoted
by an arrow, but we sometimes use a specific terminology depending on the sort
of the source and the target of an edge. More precisely, we call an edge between
variables a data flow, an edge between processes a control flow, and edge from a
variable to a process an data-to-control flow and vice versa for control-to-data
flows. We also call flow to a path in a body graph. A path between variables is
called explicit flow if it does not contain any control point. Otherwise it is called
implicit flow. The input interface can be understood as the entities being used in
the flow, while the output interface can be seen as the entities being provided by
the flow. Note that the input and output mappings may not agree on a given

p

q

r

x

y

y′

z

•
•

•

◦
◦◦

◦
◦

p

q

r

x

y

y′

z

++

kk

'' ��

p

q

r

x

y

y′

z

•
•

•
◦

◦◦
◦
◦

p

q

r

x

y

y′

z

++

kk

'' ��

p

q

r

x

y

y′

z

•
•

•
◦

◦
◦
◦ ◦

p

q

r

x

y

y′

z

++

kk

'' ��

Fig. 9. Flows F1 (top left), Id{r,y′,z} (bottom left), F1⊗Id{r,y′,z} (mid) and F2 (right).

entity η, see e.g. how the overwrite of variable of z is modelled in the flow of
Fig. 1.

In the following we denote the set of entities I ∪O involved in a flow graph
F = I i−→ G o←− O by en(F). Our flow graphs can be related to standard
concepts and terminology of information flow control. For instance, given a flow
F = I i−→ G o←− O, we can define the set of influencers of a set of entities E ⊆ O,
denoted IF (E), as {η ∈ I | i(η)→+

G η′ ∧ η′ ∈ o(E)}, i.e. the set of input entities
that have a flow towards some entity in E exposed in the output of F . Conversely,
we can define the set of readers of a set of entities E ⊆ I, denoted RF (E), as
{η ∈ O | ∃η′ ∈ i(E)∧ η′ →+

G o(η)}, i.e. the set of output entities that have a flow
from some entity in E exposed in the input of F . Here u→+

G v denotes that v is
reachable from u through a path of positive length in graph G.

Flow graphs are equipped with suitable operations such as the empty flow 0,
a family of identities IdN indexed by a set of entities N (see e.g. Id{r,y′,z} in the
bottom left of Fig. 9), a binary (associative, commutative) parallel composition
operation ⊗ (see e.g. F1 ⊗ Id{r,y′,z} in the middle of Fig. 9) and a binary
(associative) sequential composition operation ◦ (e.g. the flow graph in Fig. 1 can
be obtained as the composition (F1 ⊗ Id{r,y′,z}) ◦ F2 of the flows in Fig. 9). A
precise definition of those operations can be found in Section A (taken from [15]),
which recasts the original presentations of [6,11] in the exact shape we need.
The intuitive idea is that the sequential composition of a flow F with a flow G
is the result of identifying the outputs of F with the inputs of G and merging
their body graphs accordingly. The resulting graph has the input interface of F
as input and the output of G as output. Instead, the parallel composition of a
flow F with a flow G is the result of identifying inputs of F with inputs of G
and outputs F with outputs G and merging their body graphs accordingly. The
resulting graph has as input (resp. output) interface the union of the input (resp.
output) interfaces of F and G.

flows(α) = lflow(α)⊗ IEnt\en(α) lflow(skip) = 0

lflow(e@p) = 0 lflow(x := e @p) lflow(p.e -> q.e′ : k)
x

x1

. . .

xn

x

x1

. . .

xn

◦ ◦
◦
. . .

◦

◦

@@ PP y1

ym

x1

xn

y1

. . .

ym

x1

. . .

xn

◦
. . .

◦

◦
. . .

◦
◦
. . .

◦

44
??

:: LL

Fig. 10. Mapping of events into flows: explicit data flows

Instrumenting the Semantics. We denote the set of all flows by F . The instru-
mentation of the semantics with flows is obtained by mapping actions in A into
flows via some suitable function flows : A → F .

Fig. 10 presents an example of such a mapping function, where v(e) =
{x1, . . . , xn} and v(e′) = {y1, . . . , ym}. In particular, the function represents an
annotation based on explicit data flows, where one is not interested in channels
or principals, but just in direct transfer of data in interactions and assignments.
The example function flows relies on a function lflows that defines the local flow
of an event α. Such local flow is composed in parallel with IEnt\en(α), i.e. the
identity on all entities not involved in α. The local flows for skip are defined to
be the empty graph (no flow at all). It is worth remarking that in those flows the
variables x or yi can belong to v(e) and hence coincide with some variable xi.
This kind of flow annotation can be useful, for instance, in the data providing
case study of Section 2.1. We will refer to this flow annotation by flowse.

Another example is depicted in Fig. 11. This flow annotation considers explicit
data flows and some implicit data and control flows. For example, the local flows
associated to conditions in decision points record the data-to-control flow from
the free variables of e to the principal p and the data flow to variable x. Moreover,
the flows for assignments and interactions are similar with the difference being
that in interactions we record the mutual control flow between the interacting
principals. We call this flow annotation function flowse.

Yet another example can be found in Fig. 12. In this case, that we will refer to
as flowsa, we are interested in flows related to how processes directly access data
by either reading or writing variables. Note that, contrary to the previous cases,
we are not interested in observing the fact that a variable has been overwritten.
This is the kind of flow annotation that would make sense in the example we saw
in Section 2.2, related to the MapReduce computation, where one is interested
in controlling the locality of data accesses.

flows(α) = lflow(α)⊗ IEnt\en(α) lflow(skip) = 0

lflow(e@p) lflow(x := e @p) lflow(p.e -> q.e′ : k)
p

x1

. . .

xn

•
◦
. . .

◦

p

x1

. . .

xn

◦

@@ PP
p

x

x1

. . .

xn

p

x

x1

. . .

xn

•
◦ ◦
◦
. . .

◦

◦

��

@@ PP

q

p

y1

. . .

ym

x1

. . .

xn

q

p

y1

. . .

ym

x1

. . .

xn

•
•

◦
. . .

◦

◦
. . .

◦
◦
. . .

◦

��
DD

��

��

44
??

:: LL

Fig. 11. Mapping of events into flows: explicit and implicit flows

As we have seen, our approach provides some flexibility in the definition
of flow annotations. However, the soundness of our approach relies on some
well-formedness restrictions of those annotations.

Definition 5. (well-formed flow annotation) A flow annotation function flows :
A → F is well-formed iff ∀α ∈ A : flows(α) = F ⊗ IEnt\en(F) ∧ en(F) ⊆ en(α).

Intuitively, the idea is that a well-formed flow annotation associates a flow to an
event α which is composed by an arbitrary flow F on some entities occurring in α
and the identity on all other entities not occurring in F . It is easy to see that the
flow annotations of Fig. 10, 11 and 12 are well-formed. Note that well-formedness
also forbids the introduction of fresh entities outside Ent in the interface of the
defined flows. Of course, flow annotations are a doubly-sharped mechanism: it
provides a lot of flexibility to the information flow engineer, but it also discharges
on him the responsibility of specifying the local flows of interest. As an extreme
case consider that a flow annotation could be just defined as the constant IdEnt.
In this case, no flow would be observed and all policies would be satisfied.

From now on, we restrict our attention to well-formed annotation functions.
Given a well-formed flow annotation function flows the flow-instrumentation
of the operational semantics of our language can be obtained as the relation

→⊆ C×F×C defined as {C flows(α)−−−−→ C ′ | C α−−→ C ′}. Similarly, the traces defined
by the denotational semantics can be transformed into flows by sequentially
composing the flows associated to the events of a trace.

Definition 6 (trace flows). The flows of a trace σ, denoted flows(σ), is given
by function flows : A∗ → F defined as

flows(ε) = IdEnt flows(σσ′) = flows(σ) ◦ flows(σ′)

flows(α) = lflow(α)⊗ IEnt\en(α) lflow(skip) = 0

lflow(e@p) lflow(x := e @p) lflow(p.e -> q.e′ : k)
p

x1

. . .

xn

•
◦
. . .

◦

p

x1

. . .

xn

◦

@@ PP
p

x

x1

. . .

xn

p

x

x1

. . .

xn

•
◦

◦
. . .

◦

◦

��
KK SS

p

q

y1

. . .

ym

x1

. . .

xn

p

q

y1

. . .

ym

x1

. . .

xn

•
•

◦
. . .

◦
◦
. . .

◦

��

��

NN WW

Fig. 12. Mapping of events into flows: data access flows

The above definition does not define flows(α) to provide the afore mentioned
flexibility in the observation of flows in events. Function flows is lifted to set of
traces T and choreographies C in the obvious way, i.e. flows(T) = {flows(σ) |
σ ∈ T} and flows(C) = flows(Traces(C)). As a simple example, the flow in Fig. 1
represents the flow of the only trace of the choreography C1 discussed in the
Introduction obtained with the mapping of events into flows defined in Fig. 11.

5 Typing Choreographies

We represent information flow policies with flow graphs with the idea that a flow
graph denotes all flows that are allowed in a system.

Definition 7 (information flow policy). An information flow policy Π is a
graph with interface Ent i−→ G o←− Ent. The set of all policies is denoted by P.

It is worth to note that we require the input and output of a policy to coincide
with the set of all entities Ent of interest. We call a policy coherent if i = o, i.e.
if all entities mapped to the same node in the body by both input and output
mappings. Note that when a policy F = Ent i−→ G o←− Ent agrees in its input and
output interfaces, we can rename some nodes in the body G with their (unique)
images in the interface, possibly after alpha-renaming some internal nodes to
avoid name clashes. This way we can provide the more compact notation that we
use some of our figures. An additional simplification that we do in our graphical
notation is that if a flow or policy is the identity on some entity η, then we
neglect η in the visual notation. For instance, in all our examples we neglect the
channels used in the choreographies.

u rp ip s

name

my pwd

info

user

report

id

pwd

class

data--

oo //
yy &&�� ��zz

..kk 33

��

�� �� ��

{{�� ��

^^OO YY

//

77

// ++

ss ��
gg

oo

Fig. 13. Policy Πs,2 in the Data Providing Service

We have already seen some examples of policies in Section 2, namely in Fig. 3
and 6. An additional example can be found in Fig. 13. It specifies a policy for
the data providing case study which extends the policy of Fig. 3 to implicit flows.
Figure 14, instead, provides two additional policies for the MapReduce case study.
The one on the left focuses on control flows and may be useful to control how
principals depend on each other, e.g. in case of failure. The one on the right is
oriented to explicit data flows.

p0 p1 p2 p3
//oo //oo

%%yy

x0 x1 x2 x3

y0 y1 y2 y3
�� �� �� ��

YY YY
oo oo
ee

Fig. 14. Policies Πm,2 (left) and Πm,3 (right) for MapReduce

The following definition formalizes the notion of satisfaction of an information
flow policy by a choreography, resp. a set of traces, a decomposable trace, an
atomic trace, and an information flow. Here, a decomposable refers to the fact
that we are interested in observing all components (i.e. subtraces) of a trace and
atomic refers to the fact that we want to observe the trace as a whole.

Ent ` C1 : Π Ent ` C2 : Π

Ent ` C1;C2 : Π

Ent ` C1 : Π Ent ` C2 : Π

Ent ` C1 | C2 : Π

A |= Π

Ent ` A : Π

e@p |= Π Ent ` C1 : Π Ent ` C2 : Π

Ent ` if e@p then C1 else C2 : Π

e@p |= Π Ent ` C1 : Π Ent ` C2 : Π

Ent ` while e@p do C1 then C2 : Π

Fig. 15. Type system

Definition 8 (policy satisfaction). The set of policy satisfaction relations
|= : C ∪ 2A

∗ ∪ A∗ ∪ F → P, ` : A∗ → P, is defined by:

C |= Π iff Traces(C) |= Π
T |= Π iff ∀σ ∈ T : σ |= Π
σ |= Π iff σ = σ′′σ′σ′′′ ⇒ σ′ ` Π
σ ` Π iff flows(σ) |= Π
F |= Π iff ∀η, η′ ∈ en(Π) : iF (η)→∗GF oF (η′) ⇒ iΠ(η)→∗GΠ oΠ(η′)

Intuitively, the idea is that a choreography satisfies a policy Π if all its traces
satisfy the policy Π. A trace σ satisfies Π if no subtrace of σ introduces a flow
from an entity η to an entity η′ that is not allowed in Π.

Our type system statically checks if a choreography C satisfies a policy Π.
Our types are thus policies and our type judgements are of the form Ent ` C : Π.
The type system is sound for policies coherent policies, i.e. policies whose input
and output interfaces agree.

Definition 9 (type system). The type system for judgements Ent ` C : Π is
defined by the rules of Fig. 15.

The main result of our work is the soundness of the type system (cf. Th 1).
In order to prove such result we have first to prove the following lemma that
formalises the fact that trace concatenation preserves the satisfaction of policies.

Lemma 1 (concatenation). Let σ1, σ2 ∈ A∗ be two traces and Π ∈ P a
coherent policy. If σ1 |= Π and σ2 |= Π then σ1σ2 |= Π.

Proof. The proof is by induction on the length of σ1 and σ2.

[σ1 = ε or σ2 = ε] These are trivial cases.
[σ1 = α1 and σ2 = α2, αi ∈ A]. To prove σ1σ2 |= Π we have to show that
σ ` Π for all subtraces of α1α2. Those are four: ε, α1, α2 and α1α2. The
first three cases are trivial. The interesting case is the latter. The proof is
by contradiction. Suppose that α1α2 6|= Π. This means that there exist two

different entities η, η′ ∈ en(Π) such that η ∈ Rflows(α1α2)(η
′) but η /∈ RΠ(η′).

Since αi |= Π, i ∈ {1, 2} we know that η 6∈ Rflows(αi)(η
′). Hence, the flow

from η′ to η must have been introduced in the composition of the flows of
α1 and α2. There must exist an entity η′′ such that η′′ ∈ Rflows(α1)(η

′) and
η′′ ∈ Iflows(α2)(η). But since η′′ ∈ Ent (by well-formedness of flows) and
αi |= Π, i ∈ {1, 2} it must be the case that η′′ ∈ RΠ(η′) and η′′ ∈ IΠ(η).
Moreover, since Π s coherent, we know that i(η′′) = o(η′′). Hence Π must
be such that η ∈ RΠ(η′). This is a contradiction. Hence, σ1σ2 ` Π. Since
we have shown that all subtraces of α1α2 satisfy Π we can conclude that
σ1σ2 |= Π.

[σ1 = α1σ
′
1, α1 ∈ A] We have to show that σ ` Π for all subtraces σ of α1σ

′
1σ2.

We distinguish two cases (i) traces of the form σ′ with σ′σ′′ = σ1σ2 and (ii)
traces of the form α1σ

′ with σ′σ′′ = σ1σ2. Consider case (i) first. We know
that σ′1 |= Π and σ2 |= Π. By induction, we can conclude that σ′1σ2 |= Π.
Hence all sub-traces of σ1σ2 not starting with α1 satisfy Π. Consider now
case (ii), i.e. traces of the form α1σ

′ with σ′σ′′ = σ1σ2. Again, we can apply
induction since α1 |= Π and σ′ |= Π (by case i). Thus we conclude that
σ1σ2 |= Π.

ut

Theorem 1 (soundness). Let C ∈ C be a well-formed choreography and Π ∈ P
be a coherent policy. If Ent ` C : Π then C |= Π.

Proof. The proof is by induction on the structure of C.

[C = A] This case is trivial since A |= Π is precisely the premise for typing A.

[C = C1;C2] By definition, every trace of C1;C2 is of the form σ1σ2 with
σi ∈ Traces(Ci), i ∈ {1, 2}. We have that σi |= Π, i ∈ {1, 2} by induction
since the typing rules for C1;C2 require Ent ` Ci : Π, i ∈ {1, 2}. Hence, we
can apply Lemma 1 to conclude that σ1σ2 |= Π.

[C = C1 | C2] The proof of this case relies on well-formedness, which allows us
to transform every trace σ ∈ Traces(C1 | C2) into a trace σ′ in one of the
forms used in the above case, while having flows(σ) = flows(σ′).

We start proving that the transformation is possible and later prove
that it indeed preserves the flows. Every trace σ ∈ Traces(C1 | C2) is of
the form σ1,1σ1,2 . . . σn,1σn,2 with σ1,i . . . σn,i ∈ Traces(Ci), i ∈ {1, 2}. It
is easy to see if σ is of the form σ′σk,2σk+1,1σ

′′ with σk,2 = σ′k,2α and
σk+1,1 = βσ′k+1,1, with α, β ∈ A , we can transform σ into trace σ′′′ =
σ′σ′k,2βασ

′
k+1,1σ

′′ which belongs to Traces(C1 | C2) by conditions (1) and
(2) of well-formedness. Indeed, condition (1) requires α and β two involve
disjoint entities (en(α) ∩ en(β)) and (2) ensures that transposing α and β in
σ yields a trace that belongs to Traces(C1 | C2).

It remains to show that σ and σ′′′ have the same flows. The main idea
is that flows(αβ) = flows(βα) since en(α) ∩ en(β) = ∅. This can be shown

as follows

flows(αβ) = flows(α) ◦ flows(β)
= (F ⊗ IdEnt\en(F)) ◦ (G⊗ IdEnt\en(G)) (well-formed flows)

=

F
⊗
IdEnt\(en(F)∪en(G))

⊗
Iden(G)

 ◦

Iden(F)

⊗
IdEnt\(en(F)∪en(G))

⊗
G

 (since en(F) ∩ en(G) = ∅)

=

(F

(IdEnt\(en(F)∪en(G))

(Iden(G)

◦
⊗
◦
⊗
◦

Iden(F))

IdEnt\(en(F)∪en(G)))

G)

 (distribution)

= F ⊗ IdEnt\(en(F)∪en(G)) ⊗G (identity)
= G⊗ IdEnt\(en(F)∪en(G)) ⊗ F (commutativity)

from which we can apply the same equations (upwards, replacing G by F) to
obtain flows(βα).

Applying the above described transpositions in σ as much as needed
results in σ being rewritten into σ1σ2 with σi ∈ Traces(Ci), i ∈ {1, 2}. Since
Ent ` Ci : Π, i ∈ {1, 2}, the proof schema based on the application of
Lemma 1 used in the above case can then be applied to conclude that
C |= Π.

[C = if e@p then C1 else C2] By definition, every trace σ in Traces(if e@p then C1

else C2) is of the form e@p σ′ with σ′ ∈ Traces(Ci), i ∈ {1, 2}. The typing
rule for C requires e@p |= Π and Ent ` Ci : Π, i ∈ {1, 2}. By induction we
have Ci |= Π, i ∈ {1, 2} so that we can apply the Lemma 1 to conclude that
e@p σ′ |= Π.

[C = while e@p do C1 then C2] This case is similar to the above one.
ut

Let us now consider the choreographies P and M0,2 of our case studies, the
flow annotation functions flowse, flowsi, and flowsa and the policies Πs,1, Πs,2,
Πm,1, Πm,2 and Πs,3. For ease of notation, let us use the notation C |=f Π to
refer to C |= Π when flows is f .

One can easily see that the following satisfaction statements regarding the
choreography P of the identity-secured data providing service can be concluded
from our type system: P |=flowse Πs,1, P |=flowse Πs,2, and P |=flowsi Πs,2. An
easy way to see this is to note that all events in the choreography (actions and
expressions used in the branching statements) satisfy the corresponding policy.
Instead the statement P |=flowsi Πs,1 cannot be concluded. As a matter of fact,
policy Πs,1 is not satisfied by P, since Πs,1 does not allow implicit flows, that P
actually has. For instance, the flow annotation function flowsi would reveal an
implicit flow from my pwd to class that is not allowed by the policy Πs,1.

Regarding the MapReduce case study, we can conclude, for instance that
M0,2 |=flowsa Πm,1, M0,2 |=flowse Πm,3, and M0,2 |=flowsi Πm,3. However, we
cannot conclude that M0,2 |=flowsi Πm,2 since flowsi requires us to observe data
flows that Πm,2 does not allow. A flow annotation function like flowse but limited
to control flows would then allow us to check the policy.

flows(α) = lflow(α)⊗ IEnt\en(α) lflow(skip) = 0

lflow(e@p) = 0 lflow(x := e @p) = 0 lflow(p.e -> q.e′ : k)

p

q

p

q

•
•

•
•
zz
DD

//

//

Fig. 16. Mapping of events into flows: control flows with temporal dependencies

p0

p1

p2

p3

• • •

•

• • •

•

p0

p1

p2

p3

// //

// //

UU

		

XX

��

XX

��

UU

		

Fig. 17. Policy Πm,4

Actually, the policy Πm,2 is more permissive
than it could be. It allows one to have depen-
dencies between all principals, including p1 and
p3, whose respective controls do not actually de-
pend on each other in P. A more relaxed policy
forbidding control flow dependencies between
p1 and p3 can be found in Fig. 17. Contrary
to all policies we have presented so far, policy
Πm,4 is not coherent, i.e. it does not agree in
the interface and, thus, our type system cannot
be applied. That is, some entities in the interface correspond to different nodes in
the body graph. This is essential to capture some information about the temporal
order of flows. It is easy to check that the policy allows flows from p1 to p0 and
p2 but not to p3.

p0

p1

p2

p3

• • • • •

• • •

• • • • •

• • •

p0

p1

p2

p3

// // // //

// //

// // // //

// //

UU

XX

��

XX

��

XX

��

XX

��

UU

Fig. 18. Control dependencies in MapReduce

To check policies like Πm,4 we
would have to consider the richer
control flow annotation flowsd of
Fig. 16 to avoid spurious flows.
Indeed, flow annotation functions
like flowse abstract away from
temporal information in the con-
trol flow. Such abstractions intro-
duce spurious flows between, for in-
stance, p1 and p3 whose respective
controls do not depend on each
other. Instead, flowsd records some basic information about the temporal order of
interactions. Fig. 18 illustrates the flow of all maximal traces of choreography P.
The policy Πm,4 would be satisfied. For example, the above mentioned spurious
flows between p1 and p3 are not present now. Indeed, p1 interacts directly with
p0 and indirectly with p2 but only after p2 has finished interacting with p3.
Extending our type system to deal with such policies is subject of current work.

6 Related Works and Conclusion

The use of typing disciplines for security systems has a long tradition. The recent
years have seen an increasing interest in applying techniques based on behavioural
types to security analysis. We refer to [2] for a comprehensive survey and limit
our discussion to the most relevant and recent works in that area.

A first work worth mentioning is [7], which presents an approach for dealing
with non-interference properties in distributed systems where components interact
within multiparty sessions. Systems are described with a session calculus featuring,
among others, session creation, inter-session interaction, and session delegation.
The approach includes a session type system whose rules include information
flow requirements to ensure both behavioural and non-interference properties.
Another relevant work is presented in [14]. The work focuses on data provenance,
i.e. the problem of keeping track of how data flow and are processed. The authors
present a calculus to describe how processes use, consume and publish linked
data. The approach is equipped with type systems for the calculus to ensure
mandatory access control properties based on security levels [14] and role-based
access control properties [13].

There are two main differences between the above discussed works and our
own work. The first one is our focus on discretionary information flow, instead of
other forms of information flow control (mandatory, role-based, non-interference,
etc.). A second difference lies in the specification languages used; our choreography
description language differs from the calculi used in the above mentioned works.
It would not be trivial, for instance, to integrate our type system with the type
system of [7] as both focus on related but significantly different languages and
properties. We would also like to remark that our work is still in a preliminary
phase and does not yet consider aspects of choreography realizability, local
projections and systems with multiple-sessions.

As a matter of fact, those aspects are part of our research agenda. We are
currently developing a suitable notion of local projections and a type system that
ensure that projections enjoy suitable semantic relations with choreographies,
from which we can conclude that local projections do not introduce flows not
specified in the choreography. The main contribution of the paper would then be
applied to ensure Π-secure distributed implementations.

We also plan to investigate the development of our approach in several
directions, including the possibility to specify and check temporal aspects by
extending our type system beyond coherent policies. We would also like to
develop an inference system to compute of over- and under-approximation of
information flows, and to consider of intransitive information flow properties. On
the application side, we plan to investigate the suitability of our approach to
popular parallel programming frameworks such as MPI. There is indeed an urgent
demand of formal guarantees for systems developed in such frameworks [18] and
some flow analysis works already exist (e.g. [5,1]) also based on behavioural types
(e.g. [17]).

Acknowledgement. We would like to dedicate this work to José Meseguer, for his

inspiring and influencing works in the areas of Concurrency Theory, Algebraic Specifi-

cations and Security. We hope that José will understand (and forgive!) the absence of a

non-interference result in our work. The first author would like to express his gratitude

to José for honouring him with his friendship and giving him the unique experience

of scientific collaboration. The first author is also grateful to Fabrizio Montesi, Emilio

Tuosto and Marco Carbone for fruitful feedback on early versoins of this work, and to

the organizers of the BETTY COST Action for their gentle invitation to present an

early version of the work in a meeting.

References

1. Aananthakrishnan, S., Bronevetsky, G., Gopalakrishnan, G.: Hybrid approach for
data-flow analysis of MPI programs. In: Malony, A.D., Nemirovsky, M., Midkiff,
S.P. (eds.) International Conference on Supercomputing, ICS’13, Eugene, OR, USA
- June 10 - 14, 2013. pp. 455–456. ACM (2013), http://doi.acm.org/10.1145/
2464996.2467286

2. Bartoletti, M., Castellani, I., Denielou, P.M., Dezani-Ciancaglini, M., Ghilezan, S.,
Pantovic, J., Pérez, J.A., Thiemann, P., Toninho, B., Vieira, H.T.: Combining be-
havioural types with security analysis, state of The Art Report of WG2 – European
Cost Action IC1201 BETTY (Behavioural Types for Reliable Large-Scale Soft-
ware Systems), available at http://www.behavioural-types.eu/publications/

WG2-State-of-the-Art.pdf/at_download/file

3. Bocchi, L., Melgratti, H.C., Tuosto, E.: Resolving non-determinism in choreogra-
phies. In: Shao, Z. (ed.) 23rd European Symposium on Programming Languages
and Systems (ESOP 2014). Lecture Notes in Computer Science, vol. 8410, pp.
493–512. Springer (2014), http://dx.doi.org/10.1007/978-3-642-54833-8_26

4. Boudol, G.: Secure information flow as a safety property. In: Degano, P., Guttman,
J.D., Martinelli, F. (eds.) 5th International Workshop on Formal Aspects in Security
and Trust (FAST 2008). Lecture Notes in Computer Science, vol. 5491, pp. 20–34.
Springer (2008), http://dx.doi.org/10.1007/978-3-642-01465-9_2

5. Bronevetsky, G.: Communication-sensitive static dataflow for parallel message
passing applications. In: Proceedings of the CGO 2009, The Seventh International
Symposium on Code Generation and Optimization, Seattle, Washington, USA,
March 22-25, 2009. pp. 1–12. IEEE Computer Society (2009), http://dx.doi.org/
10.1109/CGO.2009.32

6. Bruni, R., Gadducci, F., Montanari, U.: Normal forms for algebras of connec-
tion. Theor. Comput. Sci. 286(2), 247–292 (2002), http://dx.doi.org/10.1016/
S0304-3975(01)00318-8

7. Capecchi, S., Castellani, I., Dezani-Ciancaglini, M.: Typing access control and
secure information flow in sessions. Inf. Comput. 238, 68–105 (2014), http://dx.
doi.org/10.1016/j.ic.2014.07.005

8. Carbone, M., Montesi, F.: Deadlock-freedom-by-design: multiparty asynchronous
global programming. In: Giacobazzi, R., Cousot, R. (eds.) The 40th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL
2013). pp. 263–274. ACM (2013), http://doi.acm.org/10.1145/2429069.2429101

9. Castagna, G., Dezani-Ciancaglini, M., Padovani, L.: On global types and multi-
party session. Logical Methods in Computer Science 8(1) (2012), http://dx.doi.
org/10.2168/LMCS-8(1:24)2012

http://doi.acm.org/10.1145/2464996.2467286
http://doi.acm.org/10.1145/2464996.2467286
http://www.behavioural-types.eu/publications/WG2-State-of-the-Art.pdf/at_download/file
http://www.behavioural-types.eu/publications/WG2-State-of-the-Art.pdf/at_download/file
http://dx.doi.org/10.1007/978-3-642-54833-8_26
http://dx.doi.org/10.1007/978-3-642-01465-9_2
http://dx.doi.org/10.1109/CGO.2009.32
http://dx.doi.org/10.1109/CGO.2009.32
http://dx.doi.org/10.1016/S0304-3975(01)00318-8
http://dx.doi.org/10.1016/S0304-3975(01)00318-8
http://dx.doi.org/10.1016/j.ic.2014.07.005
http://dx.doi.org/10.1016/j.ic.2014.07.005
http://doi.acm.org/10.1145/2429069.2429101
http://dx.doi.org/10.2168/LMCS-8(1:24)2012
http://dx.doi.org/10.2168/LMCS-8(1:24)2012

10. Cohen, E.: Information transmission in computational systems. In: Sixth ACM
Symposium on Operating Systems Principles. pp. 133–139. SOSP ’77, ACM, New
York, NY, USA (1977), http://doi.acm.org/10.1145/800214.806556

11. Corradini, A., Gadducci, F.: An algebraic presentation of term graphs, via gs-
monoidal categories. Applied Categorical Structures 7(4), 299–331 (1999), http:
//dx.doi.org/10.1023/A:1008647417502

12. Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters.
Communications of the ACM 51(1), 107–113 (2008)

13. Dezani-Ciancaglini, M., Ghilezan, S., Jaksic, S., Pantovic, J.: Types for role-based
access control of dynamic web data. In: Mariño, J. (ed.) 19th International Workshop
on Functional and Constraint Logic Programming (WFLP 2010). Lecture Notes in
Computer Science, vol. 6559, pp. 1–29. Springer (2010), http://dx.doi.org/10.
1007/978-3-642-20775-4_1

14. Dezani-Ciancaglini, M., Horne, R., Sassone, V.: Tracing where and who provenance
in linked data: A calculus. Theor. Comput. Sci. 464, 113–129 (2012), http://dx.
doi.org/10.1016/j.tcs.2012.06.020

15. Gadducci, F.: Graph rewriting for the pi-calculus. Mathematical Structures
in Computer Science 17(3), 407–437 (2007), http://dx.doi.org/10.1017/

S096012950700610X

16. Goguen, J.A., Meseguer, J.: Security policies and security models. In: IEEE Sym-
posium on Security and Privacy. pp. 11–20 (1982)

17. Gopalakrishnan, G., Kirby, R.M., Siegel, S.F., Thakur, R., Gropp, W., Lusk, E.L.,
de Supinski, B.R., Schulz, M., Bronevetsky, G.: Formal analysis of MPI-based
parallel programs. Commun. ACM 54(12), 82–91 (2011), http://doi.acm.org/10.
1145/2043174.2043194

18. Honda, K., Marques, E.R.B., Martins, F., Ng, N., Vasconcelos, V.T., Yoshida,
N.: Verification of MPI programs using session types. In: Träff, J.L., Benkner,
S., Dongarra, J.J. (eds.) 19th European MPI Users’ Group Meeting on Recent
Advances in the Message Passing Interface (EuroMPI 2012). Lecture Notes in
Computer Science, vol. 7490, pp. 291–293. Springer (2012), http://dx.doi.org/
10.1007/978-3-642-33518-1_37

19. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. In:
Necula, G.C., Wadler, P. (eds.) 35th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL 2008). pp. 273–284. ACM (2008),
http://doi.acm.org/10.1145/1328438.1328472

20. Lanese, I., Guidi, C., Montesi, F., Zavattaro, G.: Bridging the gap between
interaction- and process-oriented choreographies. In: Cerone, A., Gruner, S. (eds.)
Sixth IEEE International Conference on Software Engineering and Formal Methods,
SEFM 2008, Cape Town, South Africa, 10-14 November 2008. pp. 323–332. IEEE
Computer Society (2008), http://dx.doi.org/10.1109/SEFM.2008.11

21. Lohmann, N., Wolf, K.: Decidability results for choreography realization. In: Kappel,
G., Maamar, Z., Nezhad, H.R.M. (eds.) 9th International Conference on Service-
Oriented Computing (ICSOC 2011). Lecture Notes in Computer Science, vol. 7084,
pp. 92–107. Springer (2011), http://dx.doi.org/10.1007/978-3-642-25535-9_7

22. Montesi, F.: Choreographic Programming. Ph.D. thesis, IT University of Copen-
hagen (2013), http://www.fabriziomontesi.com/files/m13_phdthesis.pdf

23. Myers, A.C., Liskov, B.: A decentralized model for information flow control. In:
SOSP. pp. 129–142 (1997), http://doi.acm.org/10.1145/268998.266669

24. Nielson, F., Nielson, H.R., Hankin, C.: Principles of program analysis. Springer
(1999)

http://doi.acm.org/10.1145/800214.806556
http://dx.doi.org/10.1023/A:1008647417502
http://dx.doi.org/10.1023/A:1008647417502
http://dx.doi.org/10.1007/978-3-642-20775-4_1
http://dx.doi.org/10.1007/978-3-642-20775-4_1
http://dx.doi.org/10.1016/j.tcs.2012.06.020
http://dx.doi.org/10.1016/j.tcs.2012.06.020
http://dx.doi.org/10.1017/S096012950700610X
http://dx.doi.org/10.1017/S096012950700610X
http://doi.acm.org/10.1145/2043174.2043194
http://doi.acm.org/10.1145/2043174.2043194
http://dx.doi.org/10.1007/978-3-642-33518-1_37
http://dx.doi.org/10.1007/978-3-642-33518-1_37
http://doi.acm.org/10.1145/1328438.1328472
http://dx.doi.org/10.1109/SEFM.2008.11
http://dx.doi.org/10.1007/978-3-642-25535-9_7
http://www.fabriziomontesi.com/files/m13_phdthesis.pdf
http://doi.acm.org/10.1145/268998.266669

A Graphs with Interfaces

We recall and adapt a few definitions concerning graphs, and their extension
with interfaces, referring to [15,6,11] for a more detailed presentation.

Definition 10 (graphs). A is a four-tuple 〈V,E, s, t〉 where V is the set of
nodes, E is the set of edges and s, t : E → V are the source and target functions.
A graph morphism is a pair of functions 〈fV , fE〉 preserving the source and target
functions, i.e. fV ◦ s = s ◦ fE and fV ◦ t = t ◦ fE.

Definition 11 (graphs with interfaces). A graph with interfaces is a span
of graph morphisms I i−→ G o←− O, where G is a body graph, I and O are the
input and output graph interfaces, and i : I → G, o : O → G are the input and
output graph morphisms. An interface graph morphism f : G⇒ H is a triple of
graph morphisms 〈fI , f, fO〉, preserving the input and output morphisms.

With an abuse of notation, we sometimes refer to the image of the input and
output morphisms as inputs and outputs, respectively, and we use the term graph
to refer to abbreviate graphs with interfaces. We restrict our attention to graphs
with discrete interfaces, i.e., such that their set of edges is empty.

The following definitions define the sequential and parallel composition of
graphs with interfaces, whose informal description can be found in Section 4.

Definition 12 (sequential composition of graphs). Let G = I i−→ G
j←− J

and G′ = J
j′−→ G′ o←− O be graphs with interfaces. Then, their sequential

composition is the graph G ◦ G′ = I i′−→ G′′ o′←− O, for G′′ the disjoint union
G]G′, modulo the equivalence on nodes induced by j(x) = j′(x) for all x ∈ NJ ,
and i′, o′ the uniquely induced arrows.

Definition 13 (parallel composition of graphs). Let G = I i−→ G o←− O

and H = I ′ i′−→ H o′←− O′ be two graphs with interfaces. Then, their parallel
composition is the gwdi G⊗H = (I ∪I ′) i′′−→ G′ o′′←− (O∪O′), for G′ the disjoint
union G]H, modulo the equivalence on nodes induced by o(y) = o′(y) for all
y ∈ NO ∩ NO′ and i(y) = i′(y) for all y ∈ NI ∩ NI′ , and i′′, o′′ the uniquely
induced arrows.

With an abuse of notation, the set-theoretic operators are defined component-
wise. The operations are concretely defined, modulo the choice of canonical
representatives for the set-theoretic operations: the result is independent of such
a choice, up-to isomorphism of the body graphs.

A graph expression is a term over the syntax containing all graphs with
discrete interfaces as constants, and parallel and sequential composition as binary
operators. An expression is well-formed if all occurrences of those operators
are defined for the interfaces of their arguments, according to Definitions 12
and 13; its interfaces are computed inductively from the interfaces of the graphs
occurring in it, and its value is the graph obtained by evaluating all operators in
it. For the axiomatic properties of the operations (e.g. associativity, identity of ◦,
associativity, commutativity and identity of ⊗) we refer to [6,11].

	 Discretionary Information Flow Controlfor Interaction-Oriented Specifications

