
1

Satisfiability of Constraint Specifications on XML
Documents ?

Marisa Navarro1, Fernando Orejas2, and Elvira Pino2

1 Universidad del País Vasco (UPV/EHU), San Sebastián, Spain
marisa.navarro@ehu.es

2 Universitat Politècnica de Catalunya, Barcelona, Spain
{orejas,pino}@cs.upc.edu

Abstract. Jose Meseguer is one of the earliest contributors in the area of Al-
gebraic Specification. In this paper, which we are happy to dedicate to him on
the occasion of his 65th birthday, we use ideas and methods coming from that
area with the aim of presenting an approach for the specification of the struc-
ture of classes of XML documents and for reasoning about them. More precisely,
we specify the structure of documents using sets of constraints that are based on
XPath and we present inference rules that are shown to define a sound and com-
plete refutation procedure for checking satisfiability of a given specification using
tableaux.

1 Introduction

The aim of our work is to study how we can specify classes of XML documents and
how we can reason about them. Currently, the standard specification of classes of XML
documents is done by means of DTDs or XML Schemas. In both cases, we essentially
describe the abstract syntax of the class of documents and the types of its attributes.
This is quite limited. In particular, we may want to state more complex conditions about
the structure of documents in a given class or about their contents. For example, with
respect to the structure of documents, we may want to state that if an element includes
an attribute with a given content, then these documents should not include some other
element. Or, with respect to the contents of documents, we may want to express that the
value of some numeric attribute of a certain element is smaller than the value of another
attribute of a different element.

In this paper, we concentrate on the specification of the structure of documents, not
paying much attention to their contents. In this sense, we present an abstract approach
for the specification of (the structure of) classes of XML documents using sets of con-
straints that are based on XPath [17, 21] queries, as given in [11], using the concept
of tree patterns. Roughly, a tree pattern describes a basic property on the structure of
documents. Its root represents the root of documents. Nodes represent elements that

?This work has been partially supported by funds from the Spanish Ministry for Economy and
Competitiveness (MINECO) and the European Union (FEDER funds) under grant COMMAS
(ref. TIN2013-46181-C2-1-R, TIN2013-46181-C2-2-R) and from the Basque Project GIU12/26,
and grant UFI11/45.

must be present on the given documents and their labels represent their contents, i.e.
the names of elements and their value, if any. A wildcard (the symbol ∗), means that we
don’t know or we don’t care about the contents of that element. Finally, single edges
represent parent/child relations between elements, while double edges represent a de-
scendant relationship between elements. Again, if any of these two relations is included
in a tree pattern, then it should also be included in the documents satisfying that prop-
erty. For instance, on the left of Fig. 1 we show a tree pattern p describing documents
D whose root node is labelled with a, some child node of the root node in D is labelled
b, and some descendant node of the root node in D has two child nodes labelled c and
d, respectively.

a a

b * b e

c d g f

c d

Fig. 1. A tree pattern and a document satisfying the pattern

Similarly, we represent, in an abstract way, XML documents using the same kind
of trees. The difference between a document and a tree pattern is that a document does
not include double edges or wildcards. For example, on the right of Fig. 1 we show a
document that satisfies the pattern on the left. In particular, we may see that the root
of the document is labelled by a. Moreover, that root has a child node labelled b and
a descendant node (the element labelled f) that has two child nodes labelled c and d,
respectively.

We consider three kinds of (atomic) constraints. The first one, called positive con-
straints, are tree patterns. The second one are negative constraints, ¬p, where p is a
tree pattern, expressing that documents should not satisfy p. Finally, the third sort of
constraint are conditional constraints, written ∀(c : p → q), where both p and q are
tree patterns. Roughly speaking, these constraints express that if a document satisfies p
then it must also satisfy q. Moreover, these constraints can be combined using the con-
nectives ∧ and ∨. These kinds of constraints are similar to the graph constraints studied
in [15, 16] in the context of graph transformation. Nevertheless, the application of the
ideas in [15, 16] to our setting is not trivial, as discussed in Sec. 3.

Obviously, there are conditions on the structure of XML documents that are not
expressible using the kind of constraints studied in this paper. However, our experience

in the area of graph transformation [15, 16] shows that, in practice, these constraints are
sufficient in most cases. Nevertheless, we believe that the ideas presented here can be
extended to a class of XML constraints, similar to the class of nested graph conditions
that has been shown equivalent to first-order logic of graphs [6]. However, we also
believe that this extension is not straightforward.

Since our aim is to be able to reason about these specifications, we present inference
rules that are shown, by means of tableaux, to define a sound and complete refutation
procedure for checking satisfiability of a given specification.

The paper is organized as follows. Section 2 contains some basic notions and nota-
tional conventions we are going to use along the paper. Section 3 introduces the three
kinds of constraints that we use as literals of the clauses in a specification. In Sec. 4 we
present our tableau method for reasoning about our constraints, and in Sec. 5 we show
its soundness and completeness. Finally, in Sec. 6 and 7 we discuss related work and
provide some conclusions.

2 Basic Definitions and Notation

In this section we introduce some basic concepts and notations, as well as some defini-
tions and properties on patterns that will be required in the paper.

2.1 Documents and Patterns

As we have seen in the introduction, we consider a document as a kind of unordered
and unranked tree with nodes labelled from an infinite alphabet Σ and whose edges
represent a parent/child relation between nodes. The symbols inΣ represent the element
labels, attribute labels, and values that can occur in documents. By considering that the
trees are unordered and unranked, the subtrees can commute (the "sibling ordering" is
irrelevant), and there are no restrictions on the number of children a node can have.

As also seen, patterns describe properties on the structure of documents and are also
represented by trees. However, there is the special label ∗, representing the wildcard,
and there are two kinds of edges: single and double edges. Patterns (and documents) can
be represented textually using the following format: A pattern pwith root labelled a and
subtrees p1, . . . , pn will be textually written p = a(!p1) . . . (!pn) where each pi is recur-
sively written in the same format, and ! being / or // to indicate the edge from the root to
each subtree pi. Some parenthesis can be omitted in the case of having only one subtree.
For instance, the pattern given in Fig. 1 can be textually written a(/b)(// ∗ (/c)(/d)).
Similarly, the document in the same Fig. 1 is textually written a(/b/g)(/e/f(/c)(/d)).

However, even if the documents and the patterns that we would write would always
be finite, in our paper we need to deal with infinite documents and patterns. The reason,
is that (as often done), given a specification for a class of documents, we will consider
that the specification is consistent if there exist documents that satisfy it, even if these
documents are infinite. In this sense, one might consider that the results shown in Sect.
5 are not fully adequate, in the sense that we would not have proved the completeness
of our proof rules with respect to the class of finite documents.

For this reason, we need a more precise definition of what documents and patterns
are. In particular, we define them as follows:

Definition 1 (Patterns and Documents). Given a signature Σ, a pattern p on Σ is a
5-tuple p = (Nodesp, rootp,Labelp,Edgesp,Pathsp) where, Nodesp is a set of nodes,
rootp ∈ Nodesp is the root node of p, Labelp : Nodesp → Σ ∪ {∗} is the labeling
function, and Edgesp,Pathsp ⊆ Nodesp × Nodesp are two relations representing
edges and paths between nodes in p, such that the following conditions are satisfied:

1. Edgesp and Pathsp are irreflexive and acyclic (i.e. there are no nodes n, n′ such
that 〈n, n′〉 and 〈n′, n〉 are both in Edgesp or Pathsp).

2. Pathsp is transitive and includes Edgesp.
3. There is no node n such that 〈n, rootp〉 is in Edgesp or Pathsp.
4. For any other node n 6= rootp in Nodesp, 〈rootp, n〉 ∈ Pathsp. Moreover, if 〈n′, n〉

and 〈n′′, n〉 are both in Pathsp, then either 〈n′′, n′〉 or 〈n′, n′′〉 are in Pathsp.

Then, a documentD on Σ can be defined as a special kind of pattern without nodes
labelled with ∗, that is, LabelD : NodesD → Σ, and, such that, in addition it satisfies
the following condition:

5. For every pair of nodes n, n′ ∈ NodesD, if 〈n, n′〉 ∈ PathsD, then
– 〈n, n′〉 ∈ EdgesD, or
– there exist n1, n2 ∈ NodesD such that 〈n, n1〉, 〈n2, n′〉 ∈ EdgesD and, either
n1 = n2 or 〈n1, n2〉 ∈ PathsD.

PΣ andDΣ will denote, respectively, the set of all patterns and the set of all documents
on Σ.

Intuitively, the above definition can be easily explained. The relation 〈n, n′〉 ∈
Edgesp represents the existence of an edge / between n and n′ in the given pattern
or document, and 〈n, n′〉 ∈ Pathsp represents that there is a path consisting of edges
/ or // (in the case of patterns) or just / (in the case of documents) between n and
n′. Conditions 1-4 ensure that our patterns and documents are trees. Finally, Cond. 5
ensures that if 〈n, n′〉 ∈ PathsD then there is a finite or infinite path, consisting only of
edges /, between n and n′. It is easy to see that, in the case where the given set of nodes
is finite, our definition of patterns and documents would be equivalent to other notions
of (finite) trees. In particular, for finite documents, Condition 5 is equivalent to saying
that Paths is the transitive closure of Edges .

One could think that the second part of Cond. 5 could be simplified as follows:
– there exists n1 ∈ NodesD such that 〈n, n1〉 ∈ Edgesp and 〈n1, n′〉 ∈ Pathsp.
However, both conditions are not equivalent. In particular, our Cond. 5 would ex-

clude infinite paths like n/n1/n2/ . . . /nk/ . . ., where for every i, 〈ni, n′〉 ∈ Pathsp,
which would be allowed by the simpler condition. That is, an infinite path for 〈n, n′〉 ∈
Pathsp cannot consist of an infinite sequence n/n1/n2/ . . . /nk/ . . . approaching n′.
Instead, our infinite paths must consist of two infinite sequences n/n1/n2/ . . . /nk/ . . .
and . . . /n′j/ . . . /n

′
2/n
′
1/n
′, where for every i, i′, 〈ni, n′i′〉 ∈ Pathsp.

For example, consider again the pattern and the document in Fig. 1. Abusing of
notation, let us identify nodes with labels. Then, for the pattern p = a(/b)(//∗(/c)(/d))
and the document D = a(/b/g)(/e/f(/c)(/d)), we have:

Edgesp = {〈a, b〉, 〈∗, c〉, 〈∗, d〉}

Pathsp = {〈a, b〉, 〈a, ∗〉, 〈a, c〉, 〈a, d〉, 〈∗, c〉, 〈∗, d〉}
EdgesD = {〈a, b〉, 〈b, g〉, 〈a, e〉, 〈e, f〉, 〈f, c〉, 〈f, d〉}
PathsD = {〈a, b〉, 〈a, e〉, 〈a, g〉, 〈a, f〉, 〈a, c〉, 〈a, d〉, 〈b, g〉, 〈e, f〉, 〈e, c〉, 〈e, d〉, 〈f, c〉,

〈f, d〉}

For the sake of readability, from now on we will omit the signature Σ. Moreover,
we will write n/n′ instead of 〈n, n′〉 ∈ Edgesp, and n//n′ instead of 〈n, n′〉 ∈ Pathsp.
Notice that, in our simplified notation, the symbol // is overloaded to mean a kind of
edge in patterns but also, the relation defining paths in patterns and documents. How-
ever, it is easy to distinguish both uses from the context since, in the first case, we will
usually refer to "an edge //". If some ambiguity could persist then, we will use //d to
denote direct relation between nodes. That is, given n1, n2 ∈ Nodesp n1//

dn2 if not
n1/n2 but, n1//n2 such that there does not exist n ∈ Nodesp with n1//n and n//n2.
Nevertheless, for simplicity, in the examples in the rest of the paper we will use the
textual writing for patterns and documents, so that, in those expressions the symbol //
always will stand for edges, that is, the direct relation //d.

2.2 Pattern Morphisms and Pattern Models

Morphisms are very important in our work. A document satisfies a pattern if we can
identify the structure of the pattern in the document. Formally, we do this by means of
morphisms. In addition, we also use a special kind of morphisms to relate the premise
and the conclusion in conditional constraints. We define the notion of morphism be-
tween two patterns, since documents are a special case of patterns. Then, the same def-
inition applies to morphisms between documents or between patterns and documents.
As said, the latter case will be used to define which documents are the models of a pat-
tern. That is, from a logical point of view, we can see patterns as formulae, documents
as structures and morphisms defining a notion of pattern satisfaction.

Definition 2 (Morphisms). Given two patterns p, q ∈ P , a morphism h : p→ q, from
p to q, is a function h : Nodesp → Nodesq satisfying the following conditions:

– Root-preserving: h(rootp)=rootq;
– Label-preserving: For each n ∈ Nodesp, Labelp(n)=∗ or Labelp(n)=Labelq(h(n));
– Edge-preserving: For each n1, n2 ∈ Nodesp, if n1/n2 then, h(n1)/h(n2);
– Path-preserving: For each n1, n2 ∈ Nodesp, if n1//n2 then, h(n1)//h(n2);

As usual, a monomorphism is an injective morphism. PΣ and DΣ denote, respec-
tively, the category of patterns and its subcategory of documents on Σ.

Definition 3 (Models). Given a pattern p ∈ P and a document D ∈ D, we say that
D satisfies p, denoted D |= p, if there exists a monomorphism from p to D. The set of
models of a pattern p is the set of documents satisfying p, that is, Mod(p) = {D ∈ D |
D |= p}.

In Fig. 2 there is an example of a monomorphism h : p → D from the pattern p =
a(/b)(// ∗ (/c)(/d)) to the document D = a(/e/f(/c)(/d))(/b/g). The morphism h is

a // a

b //*

,,

b e

c

,,

d

,,

g f

c d

Fig. 2. A pattern p, a document D and a monomorphism h : p→ D

* // a

e // e b

c

Fig. 3. A monomorhism h : p→ q between two patterns

drawn with dotted arrows. We can see that D satisfies p because its root is labelled with
a, it has a child node labelled b, and it has a descendant node (in the example labelled
with f) with two child nodes labelled with c and d respectively. In Fig. 3 there is an
example of a monomorphism h : p → q from the pattern p = ∗//e to the pattern q
= a(/e)(//b/c). The monomorphism h is drawn with dotted arrows. The existence of
such monomorphism implies that all models of q are also models of p.

The following proposition relates monomorphisms and models for two patterns.

Proposition 1. Given two patterns p, q ∈ P :

– If there exists a monomorphism h : p→ q then Mod(q) ⊆ Mod(p).
– Mod(q) ⊆ Mod(p) does not imply that there is a monomorphism h : p→ q.

Proof. For the first claim, letD be a document in Mod(q), then there exists a monomor-
phism f from q to D. Then the composition f ◦ h is a monomorphism from p to D and
therefore the document D is also a model for p. The second claim can be shown with
an example in [11] .

3 Constraints, Clauses and Specifications

As said in the Introduction, following [15, 16] we consider three kinds of constraints:
positive, negative and, conditional constraints. The underlying idea of our constraints
is that they should specify that certain patterns must occur (or must not occur) in a
given document. For instance, the simplest kind of constraint, p, specifies that a given
documentD should satisfy the pattern p. Obviously, ¬p specifies that a given document
D should not satisfy p. A more complex kind of constraint is of the form ∀(c : p → q)
where c is a prefix morphism, which means that q is a pattern that extends p. Roughly
speaking, this constraint specifies that whenever a document D satisfies the pattern p it
should also satisfy the extended pattern q (see Def. 6 below).

However, translating the ideas in [15, 16] to our setting is not trivial, mainly for
two reasons. On the one hand, in [15, 16] models and formulas are both graphs, while
in our setting models are documents and formulas are patterns. This difference adds
some complication to our setting. In particular, we have solved the problem by defining
documents and patterns in such a way that documents are a special case of patterns.
This has implied to include explicitly the paths relation in the definition of documents.
On the other hand, and most importantly, we deal with patterns that are trees having
edges of type //, but the related notion of “path" is not considered for graph constraints
in [15, 16]. Actually, in the logic defined in [15, 16] or in the more general one defined
in [6], the existence of paths is a second order notion [7].

3.1 Constraints and Clauses

Before defining our three kinds of constraints, we must define prefix morphisms.

Definition 4. Given two patterns p and q, a prefix morphism from p to q is a monomor-
phism c : Nodesp → Nodesq that satisfies the following conditions:

– Root-preserving: c(rootp)=rootq;
– Label -identity: For each n ∈ Nodesp, Labelp(n)=Labelq(c(n));
– Edge-identity: For each n1, n2 ∈ Nodesp, n1/n2 if, and only if, c(n1)/c(n2);
– Path-identity: For each n1, n2 ∈ Nodesp, n1//dn2 if, and only if, c(n1)//dc(n2);

Recall that //d stands for direct //-relation in patterns, that is, //-edges. We will
simply write c : p→ q and we will say that p is a prefix of q. Not every monomorphism
is a prefix morphism. See for instance that the monomorphism in Fig. 3 is not a prefix
morphism since it violates "Label-identity", "Edge-identity", and "Path-identity".

Definition 5. Given a pattern p, p denotes a positive constraint and ¬p denotes a neg-
ative constraint. A conditional constraint is denoted ∀(c : p → q) where p and q are
patterns and c : p→ q is a prefix morphism.

A clause α is a finite disjunction of literals `1 ∨ `2 ∨ . . . ∨ `n, where, for each
i ∈ {1, . . . , n}, the literal `i is a (positive, negative or conditional) constraint. The
empty disjunction is called the empty clause and it can be represented by FALSE .

Satisfaction of clauses is inductively defined as follows.

Definition 6. A document D ∈ D satisfies a clause α, denoted D |= α, if it holds:

– D |= p if there exists a monomorphism h : p→ D;
– D |= ¬p if D 6|= p (that is, if there does not exist a monomorphism h : p→ D);
– D |= ∀(c : p→ q) if for every monomorphism h : p→ D there is a monomorphism
f : q → D such that h = f ◦ c.

– D |= `1 ∨ `2 ∨ . . . ∨ `n if D |= `i for some i ∈ {1, . . . , n}.

Let us see what satisfaction of a conditional constraint means. First recall that in a
conditional constraint ∀(c : p → q) the pattern q is an extension of the pattern p so
a document D will be a model of the conditional constraint if whenever D satisfies p,
it also satisfies q. To be more precise, each part in the document D satisfying p must
satisfy q. Consider, for instance, the conditional constraint ∀(c : p→ q) with p = ∗//a ,
q = ∗//a/b and c being the obvious prefix morphism from p to q. By Def. 6, a document
satisfies this constraint if each node (descendant of the root) labelled a has a child node
labelled b. Then the document D = g(/a/b)(/a/h) does not satisfy the constraint. In
fact, for the monomorphism h : p → D that applies the node a in p into the second
node a in D, there does not exist a monomorphism f : q → D such that h = f ◦ c.
However, note that D |= q. Therefore, from a logical point of view, we may notice that,
in this framework, ∀(c : p→ q) is not equivalent to C = ¬p ∨ q.

3.2 Specifications

We assume that a specification S consists of a set of clauses. As said in the Introduction,
our aim is to find a sound and complete refutation procedure for checking satisfiability
of specifications consisting of clauses as defined above. Here we give an example of an
unsatisfiable specification.

Example 1. Consider the specification S = {C1, C2, C3, C4} where C1 = (∗//b) ∨
(∗//e), C2 = ∀(c2 : ∗//b→ ∗(//b)(/e)), C3 = ∀(c3 : ∗//e→ ∗(//e)(/b)), and C4 =
¬(∗(/b)(/e)).
Clause C1 specifies that the document(s) must have a node labelled b or e; C2 says
that if the document has some node labelled b then its root must have a child node
labelled e; similarly, C3 says that if the document has some node labelled e then the
root must have a child node labelled b; and finally, C4 says that the root cannot have
two children nodes labelled b and e. It is easy to test, for instance, that the document
D1= a(/b)(/f/e) satisfies C1, C3 and C4 but D1 6|= C2. Similarly, the document D2 =
a/e satisfies C1, C2 and C4 but D2 6|= C3. There is no document satisfying all clauses
in S.

3.3 Superposition of Patterns

In this section we introduce two operations on patterns that can be seen as a way of
pattern deduction, which will be used for obtaining new clauses from a specification.
Note, for instance, that if a document D satisfies both the patterns a/b and a/c then
its root, labelled a, must have two children nodes labelled b and c, therefore we can
trivially deduce that D must also satisfy the pattern a(/b)(/c). But not always a single

pattern can express the conditions of two patterns: IfD satisfies both the patterns a/b/e
and a/b/c, then it must be deduced that D satisfies one of the patterns obtained by
superposing both patterns, what means, in this example, that D must satisfy either the
pattern a/b(/e)(/c) or the pattern a(/b/e)(/b/c).

The two superposition operations on patterns will be denoted by the symbols⊗ and
⊗c,m and they are formally introduced in the following definitions.

Given two patterns p1 and p2, the operation p1⊗p2 denotes the set of patterns that
can be obtained by "combining" p1 and p2 in all possible ways.

Definition 7. Given two patterns p1 and p2, p1 ⊗ p2 is defined as the following set of
patterns: p1⊗p2 = {s ∈ P | there exist jointly surjective monomorphisms inc1 : p1 → s
and inc2 : p2 → s} where “jointly surjective" means that Nodess = inc1(Nodesp1) ∪
inc2(Nodesp2).

For instance, given the patterns p1 = a(/b/e)(//c) and p2 = a//b/x, the set p1⊗p2
contains the two patterns: s1 = a(/b(/e)(/x))(//c) and s2 = a(/b/e)(//b/x)(//c).
Each one corresponds with a way of combining p1 and p2; the nodes labelled b are
shared in s1 while there are two different nodes b in s2.

The underlying idea is that all patterns s in p1⊗p2 must verify that every document
that is a model of s must be a model of p1 and a model of p2. Conversely, every docu-
ment that is a model of both p1 and p2 must be a model of some s in p1⊗p2. In some
cases the set can be empty.

Proposition 2. Given two patterns p1 and p2, the set of patterns p1 ⊗ p2 is the empty
set if and only if rootp1 and rootp2 have different labels in Σ.

Proof. If the roots of p1 and p2 have different labels in Σ (for instance, a and b) then
no combination s is possible since inc1 : p1 → s implies that the root of s must be
labelled a and inc2 : p2 → s implies that the root of s must be labelled b.

Conversely, if the root s of p1 and p2 have the same label a (or if one of them is
a and the other one is ∗) then the document s with root labelled a and whose set of
subtrees is the union of the subtrees of p1 and p2 is an element in p1 ⊗ p2.

Proposition 3 (Pair Factorization Property). Given three patterns p1, p2, r, and two
monomorphisms f1 : p1 → r and f2 : p2 → r, there exists a pattern s ∈ p1 ⊗ p2, with
monomorphisms inc1 : p1 → s and inc2 : p2 → s, and there exists a monomorphism
h : s→ r such that h ◦ inc1 = f1 and h ◦ inc2 = f2. In the particular case when r is a
document, this property means that r is a model of s . Graphically:

p1

inc1

��

f1

''
s

h // r

p2

inc2

OO

f2

77

Proof. Since f1, f2 are monomorphisms, the root s of p1 and p2 cannot have different
labels inΣ. Moreover, some pattern s ∈ p1⊗p2 holds this property. Then, we will have
a well-defined morphism h if choose a pattern s such that, for every m ∈ Nodesp1 and
n ∈ Nodesp2 : if f1(m) = f2(n) then inc1(m) = inc2(n) and if f1(m) is an ancestor
(respectively descendant) of f2(n), inc1(m) must not be a descendant (respectively
ancestor) of inc2(n).

Given a pattern p1, a prefix morphism c : p2 → q and a monomorphism m : p2 → p1,
the operation p1 ⊗c,m q denotes the set of patterns that can be obtained by combining
p1 and q in all possible ways, but sharing p2.

Definition 8. Given a pattern p1, a prefix morphism c : p2 → q, and a monomorphism
m : p2 → p1, p1 ⊗c,m q is defined as the following set of patterns: p1 ⊗c,m q = {s ∈ P
| there exist jointly surjective monomorphisms inc1 : p1 → s and inc2 : q → s such
that inc1 ◦m = inc2 ◦ c}.

For instance, given the patterns: p1 = a(/b/e)(//c/i), p2 = ∗//b, and q =
∗(//b//a)(//c/d), with the unique possible monomorphism m : p2 → p1 and the
unique possible prefix morphism c : p2 → q, the set p1 ⊗c,m q contains the patterns s1
= a(/b(/e)(//a))(//c/i)(//c/d) and s2 = a(/b(/e)(//a))(//c(/i)(/d)). Note that s2
is similar to s1 but with only one node labelled c.

The underlying idea is that all patterns s in p1 ⊗c,m q must verify that every doc-
ument D that is a model of s must be a model of p1 and a model of q. However, such
a document D is not necessarily a model of the conditional constraint ∀(c : p2 → q).
Conversely, every document that is a model of both p1 and ∀(c : p2 → q) must be a
model of some s in p1 ⊗c,m q.

Notice that the set p1 ⊗c,m q is always non-empty, since given a prefix morhism
c : p2 → q and a monomorphism m : p2 → p1 we can always obtain a pattern s by
extending the nodes in m(p2) as indicated by the function c. However, if c would be
a monomorphism instead of a prefix morphism (i.e. if in the definition of conditional
constraints we would have used arbitrary monomorphisms), the resulting set could be
empty. Take, for instance, c : p2 → q, with p2 = a//b and q = a/b (which is not a prefix
morphism), and take p1 = a/e/b. Although there is a monomorphism m : p2 → p1,
there is no pattern s obtained by combining p1 and q sharing p2.

4 Tableau-based Reasoning for XML-patterns

Analogously to tableaux for plain first-order logic reasoning [8], we introduce tableaux
for dedicated automated reasoning for XML-document properties. In general, tableaux
are trees whose nodes are literals. In our case, these literals are constraints of the form
p, ¬p or ∀(c : p→ q).

Definition 9 (Tableau, branch). A tableau is a finitely branching tree whose nodes are
constraints. A branch B in a tableau T is a maximal path in T .

The construction of a tableau for a specification S can be informally explained as
follows. We start with a tableau consisting of the single node true. For every clause
α = `1 ∨ . . . ∨ `n in S we extend all the leaves in the tableau with n branches, one for
each literal `i, as depicted in Fig. 5 (see the four first steps) for the specification S in
Example 1. Then we continue the extension of each leaf by applying other tableau rules
(on two literals in its branch). In Fig. 5 we show the tableau in the left hand side, and
the rules applied in its construction in the right hand side.

Before defining the rules that build the tableaux associated to our specifications, we
need to introduce some notation. Let p be a positive constraint inB, such that p contains
an edge // (that is, n1//dn2 for some n1, n2 ∈ Nodesp). Let prefix(n1) denote the
path from rootp to the node n1, and hang(n2) the subtree of p hanging from the node
n2; we write p[n1//hang(n2)] to highlight the edge // from node n1 to node n2 in p.
Then p[n1/hang(n2)] denotes the pattern obtained by replacing // by /. In addition,
p[n1 ←] denotes that the subtree hang(n2) has been pruned from p, and p[n1 ← /A]
(equivalently p[n1 ← //A]) denotes that the pattern A is hanged as a subtree of node
n1 in p, where / (equivalently //) is the edge from n1 to rootA.

For instance, given the pattern p = e(/i)(/a(/b)(//c(/d)(/j))) (see Fig. 4) with
an edge // from the node n1 labelled a to the node n2 labelled c, we have that
prefix(n1) = e/a; hang(n2) = c(/d)(/j); p[n1 ←] = e(/i)(/a/b); and p[n1 ← /A] =
e(/i)(/a(/b)(/s/k)) when hanging, for instance, the pattern A = s/k.

e

i a

b c

d j

Fig. 4. The pattern p = e(/i)(/a(/b)(//c(/d)(/j)))

Now, the tableau rules that are specific for our logic are the following ones:

Definition 10 (Tableau rules). Given a specification S, a tableau for S is either a tree
consisting of the single node true, or for any node x in the tableau that is not a leaf, one
of the following conditions hold:

– ∨-rule (∨): There is a clause `1 ∨ . . .∨ `n in S and the children of x are `1, . . . `n.
– Superposition rule (S1): The constraints p1 and p2 are either x or ancestors of
x and p1 ⊗ p2 is not empty, and the children of x are the constraints s, for each
pattern s in p1 ⊗ p2. Otherwise, if p1 ⊗ p2 is empty, x has the only child FALSE .

true

C2 = ∀(c2 : ∗//b→ ∗(//b)(/e))

C3 = ∀(c3 : ∗//e→ ∗(//e)(/b))

C4 = ¬(∗(/b)(/e))

C5 = ∗//b

C7 = ∗(//b)(/e)

C8 = ∗(/b)(/e)

FALSE

C6 = ∗//e

C9 = ∗(//e)(/b)

C8 = ∗(/b)(/e)

FALSE

(∨)C2

(∨)C3

(∨)C4

(∨)C1

(S2)C5, C2

(S2)C7, C3

(Cl)C8, C4

(S2)C6, C3

(S2)C9, C2

(Cl)C8, C4

Fig. 5. A closed tableau for the specification S in Example 1 (left) and their applied rules (right)

– Superposition rule (S2): The constraints p1 and ∀(c : p2 → q) are either x or
ancestors of x such that there is a monomorphism m : p2 → p1, and the children
of x are the constraints s, for each s in p1 ⊗c,m q.

– Unfolding rule (U1): The constraint p where p = p[n1//hang(n2)] is either x or
an ancestor of x and the children of x are the constraint p[n1 ← /hang(n2)], and
the constraints s[inc2(n) ← //hang(n2)] for each s in p[n1 ←] ⊗c,m q, where q
= prefix(n1)[n1 ← /n] with label(n) = ∗, and monomorphisms are depicted in
the diagram below.

– Unfolding rule (U2): The constraint p where p = p[n1//hang(n2)] is either x or
an ancestor of x and the children of x are the constraint p[n1 ← /hang(n2)], and
the constraints s[inc2(n) ← /hang(n2)] for each s in p[n1 ←] ⊗c,m q, where q
= prefix(n1)[n1 ← //n] with label(n) = ∗, and monomorphisms are depicted in
the diagram below.

p[n1 ←]

inc1

��
prefix(n1)

m

55

c

))

s

q

inc2

OO

– Closing rule (Cl): The constraints p and ¬q are either x or ancestors of x, such
that there is a monomorphism m : q → p, and x has the only child FALSE .

Obviously the above rules not only describe if we can associate a given tableau to a
specification S, but they can also be used in the construction of a tableau for S. The ∨-
rule is the standard tableaux rule for creating the initial tableau from the clauses of the

given specification. The superposition rules state that if we have two non-negative liter-
als in a given branch, then we can extend that branch with the immediate consequences
of these literals, as we have seen in Sec. 3.3. We may notice that the superposition rules
define a finite number of children for a given node x, because the set of patterns result-
ing from a superposition of finite patterns is a finite set. The closing rule states that if,
in a branch B, we have a positive and a negative literal, p,¬q, that are contradictory,
because p embeds q, then we can close B with FALSE .

Finally, the unfolding rules extend a branch with all the possible ways of unfolding
an edge n1//n2. In principle, we considered two different ways of doing this unfolding:
replacing n1//n2 by n1/n2 and n1/n//n2 (using rule U1) or by n1/n2 and n1//n/n2
(using rule U2), where label(n) = ∗ in both cases. However, it is necessary to take into
account all possible identifications of such new node n with other nodes in the obtained
literal. Otherwise, the rule may be unsound as explained in the following example.

Example 2. Consider the specification S = {C1, C2, C3, C4} with C1 = a(//b)(//c),
C2 = ¬(a/b), C3 = ¬(a/c), and C4 = ¬(a(/ ∗ //b)(/ ∗ //c)).
If rule U1 would just unfold an edge // only in / and / ∗ //, then we could easily
find a refutation for this specification as follows: By applying such U1 to the edge a//b
in C1 we could get the constraints C5 = a(/b)(//c) and C6 = a(/ ∗ //b)(//c). The
first literal, C5, is directly contradictory with C2. If we now unfold C6 (on the edge
a//c) by applying the rule U1, we could get the literals C7 = a(/ ∗ //b)(/c) and C8 =
a(/∗//b)(/∗//c), which could be directly refuted withC3 andC4 respectively. But the
specification S is not inconsistent because, for instance, the documentD = a/d(/b)(/c)
satisfies all its clauses.
However, the situation with the defined unfolding rules is the following. The application
of rule U1 on C1 yields to the literals C5, C6, and the literal C9 = a/c//b obtained by
joining the new node ∗ with the old node c in C6; and the application of the rule U1
on C6 yields to the literals C7, C8, and the literal C10 = a/ ∗ (//b)(//c) obtained by
joining the new node ∗ with the old node ∗ in C8. While C9 can be refuted with C3, the
literal C10 yields to an open branch as depicted in Fig. 6. See also Fig. 7 for the rules
applied to built the tableau in Fig. 6.

Definition 11 (Open/closed branch, tableau proof). In a tableau T a branch B is
closed ifB contains FALSE ; otherwise, it is open. A tableau is closed if all its branches
are closed. A tableau proof for (the unsatisfiability of) a specification S is a closed
tableau T for S according to the rules given in Def. 10.

Finally, it will be useful to define tableau satisfiability.

Definition 12 (Branch and tableau satisfiability). A branch B in a tableau T is sat-
isfiable if there exists a document D satisfying all the constraints in B. In this case, we
say that D is a model for B, written D |= B. A tableau T is satisfiable if there is a
satisfiable branch B in T . IfD |= B for a branch B in T , we also say thatD is a model
for T and also write D |= T .

true

C1 = a(//b)(//c)

C2 = ¬(a/b)

C3 = ¬(a/c)

C4 = ¬(a(/ ∗ //b)(/ ∗ //c))

C5 =
a(/b)(//c)

FALSE

C6 =
a(/ ∗ //b)(//c)

C7 =
a(/ ∗ //b)(/c)

FALSE

C8 =
a(/ ∗ //b)(/ ∗ //c)

FALSE

C10 =
a/ ∗ (//b)(//c)

. . .

C9=
a/c//b

FALSE

Fig. 6. An open tableau for the specification S in Example 2

5 Soundness and Completeness of the Tableau Method

In this section we prove that our tableau method is sound and complete. In particular,
soundness means that if we are able to construct a tableau where all its branches are
closed then our original specification S is unsatisfiable. Completeness means that if a
saturated tableau includes an open branch, where the notion of saturation is defined
below, then the original specification is satisfiable. Actually, the open branch provides
a model that satisfies the specification.

Theorem 1 (Soundness). If there is a tableau proof for the specification S, then S is
unsatisfiable.

Proof. We prove that if a specification S is satisfiable, then any associated tableau can-
not have all its branches closed. The proof is by induction on the structure of the tableau.
Specifically, we show by induction on the construction of T that ifD |= S thenD |= T .

The base case is trivial since T consists only of the node true.
For the general case, assume that D |= T as inductive hypothesis. We have to show

that if T ′ is constructed by applying a tableau rule to T , thenD |= T ′. By induction, we
know that there exists a branch B in T such that D |= B. If this branch is not extended
when constructing T ′, then it trivially holds that D |= T ′ since B is still a branch in T ′.

(∨)C1

(∨)C2

(∨)C3

(∨)C4

(U1)C1 on a//b

(Cl)C5, C2 (U1)C6 on a//c

(Cl)C7, C3 (Cl)C8, C4 . . .

(Cl)C9, C3

Fig. 7. The applied rules to build the tableau in Fig. 6

Otherwise, if B is extended, then we show that in T ′ there exists an extended branch
B′ from B such that D |= B′ and therefore also D |= T ′. Now, we proceed by cases
depending on what rule is applied in the extension:

– Suppose that the rule applied to construct T ′ is the ∨-rule. We know that one literal
` per clause in S exists such that D |= ` because D |= S. The ∨-rule adds nodes
labelled with literals from a clause in S. Therefore, D must satisfy at least one of
these literals.

– Suppose that the rule applied to construct T ′ is the superposition rule S1. Suppose
p1 and p2 are the literals inB that are used for the extension. By inductive hypothe-
sis we know thatD |= p1 andD |= p2. It means that there are two monomorphisms
h1 : p1 → D and h2 : p2 → D. By Prop. 3, there exists some s ∈ p1⊗p2 verifying
the pair factorization property with h : s→ D being a monomorphism, so,D |= s.

– Suppose that the rule applied to construct T ′ is the superposition rule S2. Suppose
p1 and ∀(c : p2 → q) are the literals in B that are used for the extension. By
inductive hypothesis we know thatD |= p1 andD |= ∀(c : p2 → q). SinceD |= p1,
there exists a monomorphism h1 : p1 → D. Then h1 ◦m is also a monomorphism
from p2 to D. From here, since D |= ∀(c : p2 → q), there is a monomorphism
h2 : q → D such that h1 ◦m = h2 ◦ c. By Prop. 3, there exists some s ∈ p1 ⊗c,m q
verifying the pair factorization property with h : s → D being a monomorphism,

so, D |= s. Graphically:

p1

inc1

��

h1

&&
p2

m

88

c

&&

s
h // D

q

inc2

OO

h2

88

– Suppose that the rule applied to construct T ′ is one of the unfolding rules. Suppose
p[n1//hang(n2)] is the literal in B that is used and that (U1) is the rule used for
the extension. By inductive hypothesis we know that D |= p. It means that there is
a monomorphism h1 : p→ D, that is, it holds h1(n1)//h1(n2). Then, accordingly
to Cond. 5. in Def. 1 we have three cases:
1. If h1(n1)/h1(n2) holds, it is clear that there exists a monomorphism h2 :
p[n1 ← /hang(n2)]→ D, so we have that D |= p[n1 ← /hang(n2)].

2. If h1(n1)/m1//m2/h1(n2) holds, for some nodes m1 and m2 in D, then the
following f1 and f2 are monomorphisms:
• f1 : p[n1 ←]→ D such that f1(p[n1 ←]) = h1(p[n1 ←]),
• f2 : q → D for q = prefix(n1)[n1 ← /n] with label(n) = ∗, such that
f2(prefix(n1)) = h1(prefix(n1)) and f2(n) = m1.

Then, by Prop. 3, there exists some s ∈ p[n1 ←] ⊗c,m q verifying the pair
factorization property with f : s→ D being a monomorphism.

p[n1 ←]

inc1

��

f1

''
prefix(n1)

m

55

c

))

s
f // D

q

inc2

OO

f2

77

Therefore, D |= s[inc2(n) ← //hang(n2)] since we can define a monomor-
phism h2 : s[inc2(n)← //hang(n2)]→ D such that h2 = h1 except for:
• h2(inc2(n)) = f(inc2(n)) = f2(n) = m1

3. Otherwise, h1(n1)/m′/h1(n2) holds and it is enough to consider morphisms
such that:
• f2(n) = m′,
• h2(inc2(n)) = f(inc2(n)) = f2(n) = m′

Similar arguments serve if the rule used is (U2).

Consequently, in all these cases, there exists an extended branch B′ in T ′ such that
D |= B′ and therefore D |= T ′.

In order to prove completeness, the following notion of saturation of tableaux is re-
quired. Saturation describes some kind of fairness that ensures that we do not postpone
indefinitely some inference step.

Definition 13 (Saturated Tableau). Given a tableau T for a specification S, we say
that T is saturated if the following conditions hold:

– No new literals can be added to any branch B in T using the ∨-rule.
– For each branch B in T , one of the following conditions is satisfied:
• either it is closed, or
• it is open and all rules have been applied in B.

It should be clear that it is always possible to build a (possibly infinite) saturated
tableau. It is enough to keep, for every branch, a queue of the pending inferences.

To prove completeness we will show that we can associate a canonical modelDB to
any open branch in a given tableau T so that, if T is saturated thenDB can be proven to
be a model for T . In particular, this model is obtained by, first, computing rB , which is
the colimit of the diagram consisting of the patterns in the positive literals in the branch
and the monomorphisms induced by rule applications. And, second, by replacing in rB
every ∗ label by a fresh label from Σ that is not present in any literal in the given spec-
ification. The existence of these colimits (satisfying an additional minimality property)
is described in the Def. 14 and Prop. 4.

Definition 14 (Infinite colimits). We say that P be a (possibly infinite) directed di-
agram of patterns, if it is a collection of patterns and monomorphisms between the
patterns, such that for every pair of patterns p1 and p2 there exists a pattern r and
monomorphisms f1 : p1 → r and f2 : p2 → r in P . We say that P has a colimit if there
exists a pattern rP together with a collection of morphisms {hp : p → rP | p ∈ P}
such that, if f : p1 → p2 in P then hp1 = hp2 ◦ f . Moreover, we say that the colimit
is minimal, if for every finite pattern q such that there is a monomorphism g : q → rP ,
then, there is a pattern p in P and a monomorphism gp : q → p such that the diagram
below commutes:

q
gp //

g

p

hp~~
rP

Now, we show that every open branch defines a directed diagram, so that, if the
tableau is saturated, it has a minimal colimit.

Proposition 4 (Colimit of open branches in saturated tableaux). Given an open
branch B in a saturated tableau T then, the set of patterns in positive literals in B
is a directed diagram PB that has a minimal colimit rB .

Proof. First of all, we define the diagram PB associated to a branch B as follows:

– If p is a positive literal in a node of B then p is in PB .

– If s, p1 and p2 are literals on nodes of B such that s is one of the child literals ob-
tained from p1 and p2 after applying rule (S1), then the corresponding monomor-
phisms inc1 : p1 → s and inc2 : p2 → s are in PB .

– If s, p1 and ∀(c : p2 → q) are literals on nodes of B, such that s is one of the
child literals obtained from p1 and ∀(c : p2 → q) after applying rule (S2), then the
corresponding monomorphism inc1 : p1 → s is in PB .

– If s and p are literals on nodes of B such that s is one of the child literals obtained
from p after applying rule (U1) or (U2), then the associated monomorphism f :
p→ s is in PB .

Then, since T is saturated, if p and q are literals inB, the branch includes the application
of the corresponding superposition rule (S1) to these literals. Moreover, sinceB is open,
the superposition p ⊗ q is not empty and defines the morphisms inc1 : p1 → s and
inc2 : p2 → s, so PB is a directed diagram.

For the colimit construction, it is enough to define rB as the quotient of the union of
the patterns in the diagram modulo the equivalence relation defined by the morphisms
of the diagram1. For the minimality property, if q is a finite pattern such that g : q → rP ,
then there should exist a finite subset of patterns P0 ⊆ PB such that the union of the
nodes of the patterns in P0 includes the set of nodes g(n), where n is in Nodesq . Then,
using that PB is directed we can prove the existence of a pattern p in PB , obtained by
doing superpositions on patterns in P0, such that there is a monomorphism gp : q → p
verifying g = hp ◦ gp.

Lemma 1 (Canonical models of saturated tableaux). If B is an open branch of a
saturated tableau T , rB is its colimit, and DB is the result of replacing in rB each ∗
by a label a not present in the given specification S, then DB is a document such that
DB |= B and, hence, DB |= S.

Proof. First, we have to prove that DB is indeed a document. This means proving that
DB satisfies Cond. 5 in Def. 1. Let n1, n2 be two nodes in DB (and, hence, in rB) such
that n1//n2 holds. By Prop. 4, there must exist a pattern p in PB containing such nodes
n1 and n2 such that n1//n2 holds in p2. There are several possibilities:

1. If n1/n2 is in p then n1/n2 is in DB .
2. If n1//dn2 is in p, since the tableau is saturated, at some point in the branch B we

would have applied the unfolding rule (U1) to the literal p. As a consequence, B
would also include the literal p1 where either p1 = p[n1 ← /hang(n2)] or p1 =
s[inc2(n) ← //hang(n2)] for one of the patterns s in p[n1 ←] ⊗c,m q, where q
= prefix(n1)[n1 ← /n] with label(n) = ∗. In the former case, we would know
that in DB we have n1/n2. In the latter case, B has the literal p1 containing a node
m1 such that n1/m1//

dn2 is in p1. But because the tableau is saturated, at some
later point in the branch B we would have applied the unfolding rule (U2) to the

1 The least equivalence relation satisfying that if f is a morphism in the diagram and f(n) = n′,
then n ≡ n′

2 To be more precise there are nodes m1,m2, such that m1//m2 holds in p, hp(m1) = n1 and
hp(m2) = n2.

literal p1 on the edge m1//
dn2. As a consequence, B would also include the literal

p2 where either p2 = p1[m1 ← /hang(n2)] or p2 = s′[inc2(n′)← /hang(n2)] for
one of the patterns s′ in p1[m1 ←] ⊗c,m q′, where q′ = prefix(m1)[m1 ← //n′]
with label(n′) = ∗. Now, in the former case, we would know that in DB we have
n1/m1/n2. In the latter case, B has the literal p2 containing a node m2 such that
n1/m1//

dm2/n2 is in p2. Therefore we know that in DB we have two nodes m1

and m2 such that n1/m1//m2/n2 holds.
3. Otherwise, there must be at least two edges between the nodes n1 and n2 in p.

That is, there must be nodes m1,m2 in p with n1/m1 or n1//dm1, and m2/n2 or
m2//

dn2, such that m1 = m2 or m1//m2 holds in p. Now:
(a) If n1/m1 and m2/n2 then trivially n1/m1//m2/n2 holds in DB .
(b) If n1//dm1 or m2//

dn2, then at some point we would apply the first or the
second unfolding rule and, as in case 2, we would also prove that n1, n2 satisfy
Cond. 5 in Def. 1.

Now, we prove that DB satisfies each literal ` in B. Let renameB : rB → DB
be the isomorphism that renames all the labels ∗ in NodesrB by a label a. Then, we
have thatDB |= ` if, and only if, rB |= ` because, for every pattern p, the existence of a
monomorphism h : p→ DB implies the existence of a monomorphism rename−1B ◦h :
p → rB ; and, conversely, the existence of a monomorphism f : p → rB implies the
existence of a monomorphism renameB ◦ f : p → DB . Therefore, it will be enough
to prove that rB satisfies each literal ` in B. We proceed by cases:

– If ` = p then, as a direct consequence of the colimit construction, we know that
there exists a monomorphism hp : p→ rB , so rB |= p.

– Assume that ` = ∀(c : p→ q). We will prove that, if there exists h : p→ rB then
there is a monomorphism f : q → rB such that h = f ◦ c. First, we know as a
consequence of the colimit construction that since p is finite, there is a pattern r ∈
PB (with the corresponding monomorphism hr : r → rB) and a monomorphism
gr : p→ r, such that the following diagram commutes:

p
gr //

h

r

hr~~
rB

Moreover, since T is saturated, we know that the superposing rule (S2) has been
applied between ∀(c : p → q) and r. Suppose that s ∈ r ⊗c,gr q is the one such
that s is the literal that was hanged in the branch B. Then, by colimit definition, we
know there is a monomorphism hs : s→ rB and the following diagram defines the
required monomorphism f = hs ◦ inc2 : q → rB such that h = hr ◦ gr = f ◦ c.

r

inc1

��

hr

''
p

gr

88

c

&&

s
hs // rB

q

inc2

OO

f

88

– Let ` = ¬p and let us see that assuming that there exists h : p → rB leads to a
contradiction. If it was the case, we know that, since p is finite, there is a pattern
r ∈ PB (with hr : r → rB) and a monomorphism gr : p → r, such that the
following diagram commutes:

p
gr //

h

r

hr~~
rB

Then, since T is saturated the closing rule (C) must be applied between ¬p and r
so the branch should be closed, contradicting the premise.

Finally, we prove completeness of the tableau method.

Theorem 2 (Completeness). If the specification S is unsatisfiable, then there is a
tableau proof for S.

Proof. If there is no tableau proof for S, then every tableau for S has an open branch.
Hence, if T is a saturated tableau for S, it should have an open branchB and, by Lemma
1, DB |= S.

6 Related work

XPath [17, 21] is a well-known language for navigating an XML document (or XML
tree) and returning a set of answer nodes. Since XPath is used in many XML query lan-
guages as XQuery, XSLT or XML Schema among others [20, 18, 19], a great amount of
papers deal with different aspects on different fragments of XPath. For instance, in [4]
an overview of formal results on XPath is presented concerning the expressiveness of
several fragments, complexity bounds for evaluation of XPath queries, as well as static
analysis of XPath queries. In [3] they study the problem of determining, given a query
p (in a given XPath fragment) and a DTD D, whether there exists an XML document
conforming to D and satisfying p. They show that the complexity ranges from PTIME
to undecidable, depending on the XPath fragment and the DTD chosen. The work pre-
sented in [5] deals with the same problem (in a particular case) and it uses Hybrid
Modal Logic to model the documents and some class of schemas and constraints. They
provide a tableau proof technique for constraint satisfiability testing in the presence of
schemas.

Our approach is different than the previous ones in two aspects. On the one hand,
we do not consider any DTD or schema, and we use a simple fragment of XPath. In
this sense our approach is simpler than previous ones. But, on the other hand, our aim
is to define specifications of classes of XML documents as sets of constraints on these
documents, and to provide a form of reasoning about these specifications. In this sense,
our main question is satisfiability, that is, given a set of constraints S, whether there
exists an XML document satisfying all constraints in S.

Some other work, which shares part of our aims, is the approach for the specification
and verification of semi-structured documents based on extending a fragment of first-
order logic [2, 12]. They present specification languages that allow us to specify classes
of documents, and tools that allow us to check whether a given document (or a set of
documents) follows a given specification. However, they do not consider the problem
of defining deductive tools to analyze specifications, for instance to look for inconsis-
tencies. Schematron [9] has a more practical nature. It is a language and a tool that is
part of an ISO standard (DSDL: Document Schema Description Languages). The lan-
guage allows us to specify constraints on XML documents by describing directly XML
patterns (using XML) and expressing properties about these patterns. Then, the tool
allows us to check if a given XML document satisfies these constraints. However, as
in the previous approach, Schematron provides no deductive capabilities. Finally, the
approach presented in this paper is very related to the work presented in [15, 16], show-
ing how to use graph constraints as a specification formalism, and how to reason about
these specifications. However, as discussed in Sec. 3, the descendant relation in our
constraints makes non-trivial the application of the techniques in [15, 16]. In particular,
the descendent relation would be second-order in the logic of graph constraints defined
in [15, 16].

In [1, 13] we presented some preliminary work directly related to the work in this
paper. In particular, in [13], we introduced the three kinds of constraints considered here
and three main inference rules called R1, R2 and R3 (similar to the rules Cl, S1 and
S2 in this paper). We proved that these rules were sound, but some counter-examples
showed that they were not complete. So, we introduced two new rules, called Unfold1
and Unfold2 (a preliminary version of U1 and U2), that solved these counter-examples,
so we conjectured that this was enough to prove completeness. Unfortunately, Unfold1
and Unfold2 are unsound as we explain in Example2. Moreover, we presented some
subsumption and simplification rules in order to produce a more efficient procedure.
In parallel, we implemented a prototype tool for reasoning with these rules that is de-
scribed in [1] by means of examples and screenshots.

7 Conclusion and further work

In this paper, we have presented an approach for specifying the structure of XML doc-
uments using three kinds of constraints based on XPath, together with a sound and
complete method for reasoning about them.

We strongly believe that satisfiability problem for this class of constraints is only
semidecidable, since we believe that it would be similar to the (un)decidability of the
satisfiability problem for the Horn clause fragment of first-order logic. As a conse-
quence, if a given specification is inconsistent, we can be sure that our procedure will
terminate showing that unsatisfiability. However, our procedure may not terminate if
the given specification is satisfiable. In this context, we may consider that studying the
complexity of a procedure that may not terminate is not very useful. Nevertheless, we
may like to have an idea about the performance of our approach when the procedure
terminates. One could think, that this performance would be quite poor, since checking
if there is a monomorphism between two trees (a basic operation in our deduction pro-

cedure) is an NP-complete problem [10]. Actually, this is not our experience with the
tool that we have implemented [1]. We think that the situation is similar to what hap-
pens with graph transformation tools. In these tools, applying a graph transformation
rule means finding a subgraph isomorphism, which is also a well-known NP-complete
problem. However, the fact that the graphs are typed (in our case, the trees are labelled),
in practice, reduces considerably the search.

In the future, we plan to extend our approach to consider also cross-references and
properties about the contents of documents. The former problem means, in fact, to ex-
tend our approach to graphs and graph patterns. For the latter case, we plan to follow
the same approach that we used to extend our results for graphs in [15, 16] to the case
of attributed graphs in [14].

References

1. Albors, J., and Navarro, M. SpecSatisfiabilityTool: A tool for testing the satisfiability of spec-
ifications on XML documents, Proceedings of PROLE 2014, EPTCS 173 (2015), 27-40.

2. Alpuente, M., Ballis, D., and Falaschi, M. Automated Verification of Web Sites Using Partial
Rewriting, Software Tools for Technology Transfer, 8 (2006), 565-585.

3. Benedikt, M., Fan, W., and Geerts, F. XPath satisfiability in the presence of DTDs. JACM 55,
2 (2008).

4. Benedikt, M., and Koch, C. XPath Leashed, ACM Computing Surveys 41, 1 (2008).
5. Bidoit, N., and Colazzo D. Testing XML constraint satisfiability. Proceedings of the Interna-

tional Workshop on Hybrid Logic (HyLo 2006). ENTCS 174, 6 (2007), 45-61.
6. Habel A., Pennemann K.H. Correctness of high-level transformation systems relative to nested

conditions, Mathematical Structures in Computer Science 19(2), (2009), 245–296.
7. Habel A., Radke H. Expressiveness of graph conditions with variables, International Collo-

quium on Graph and Model Transformation GraMoT 2010, ECEASST 30, (2010).
8. Hähnle, R. Tableaux and Related Methods, in Robinson,J.A.,Voronkov,A.(eds.) Handbook of

Automated Reasoning (2001), 100–178.
9. Jelliffe, R. Schematron, Internet Document, http://xml.ascc.net/resource/ schematron/.
10. Kilpelainen, P., Mannila, H. Ordered and Unordered Tree Inclusion. SIAM Journal on Com-

puting archive Volume 24 (2):340-356, (1995).
11. Miklau, G., and Suciu, D. Containment and equivalence for a fragment of XPath, JACM, 51,

1 (2004), 2-45.
12. Nentwich, C., Emmerich, W., Finkelstein, A., and Ellmer, E. Flexible Consistency Checking,

ACM Transaction on Software Engineering and Methodology, 12(1) (2003), 28–63.
13. Navarro, M., and Orejas, F. A refutation procedure for proving satisfiability of constraint

specifications on XML documents, SCSS 2014, EasyChair EPiC series, 30 (2014), 47-61.
14. Orejas, F. Symbolic Graphs for Attributed Graph Constraints, Journal of Symbolic Compu-

tation. 46(3) (2011), 294–315.
15. Orejas, F., Ehrig, H., and Prange, U. A Logic of Graph Constraints, Fundamental Approaches

to Software Engineering, 11th Int. Conference, FASE 2008. LNCS 4961 (2008) 179-198.
16. Orejas, F., Ehrig, H., and Prange, U. Reasoning with graph constraints, Formal Asp. Comput.

22, 3-4 (2010), 385-422.
17. WORLD WIDE WEB CONSORTIUM. 1999a. XML path language (XPath) recommenda-

tion, http://www.w3c.org/TR/XPath/.
18. WORLD WIDE WEB CONSORTIUM. 1999b. XSL transformations (XSLT). W3C recom-

mendation version 1.0, http://www.w3.org/TR/xslt.

19. WORLD WIDE WEB CONSORTIUM. 2001. XML schema part 0: Primer. W3C recommen-
dation, http://www.w3c.org/XML/Schema.

20. WORLD WIDE WEB CONSORTIUM. 2002. XQuery 1.0 and XPath 2.0 formal semantics.
W3C working draft, http://www.w3.org/TR/query-algebra/.

21. WORLD WIDE WEB CONSORTIUM. 2007. XML path language (XPath) 2.0.

