Skip to main content

Problems on Gaussian Normal Basis Multiplication for Elliptic Curve Cryptosystem

  • Conference paper
  • First Online:
Genetic and Evolutionary Computing (GEC 2015)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 388))

Included in the following conference series:

  • International Conference on Genetic and Evolutionary Computing
  • 1613 Accesses

Abstract

Several standards such as IEEE Standard 1363-2000 and FIPS 186-2 employ Gaussian normal basis (GNB). Gaussian normal basis is a special class of normal basis. Gaussian normal basis can solve the problem that multiplication in normal basis is an very difficult and complicated operation. Two equations have been proposed in the literature to transfer GNB to polynomial basis for easy multiplication. However, we find that GNB is not correctly transformed to polynomial basis for some m values over \(GF(2^{m})\). We will show the problems and expect some feedback about this problem from other researchers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Miller, V.S.: Use of elliptic curves in cryptography. In: Williams, H.C. (ed.) CRYPTO 1985. LNCS, vol. 218, pp. 417–426. Springer, Heidelberg (1986)

    Google Scholar 

  2. Koblitz, N.: Elliptic curve cryptosystems. Mathematics of Computation 48, 203–209 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  3. Boneh, D., Franklin, M.K.: Identity-based encryption from the weil pairing. SIAM Journal on Computing 32(3), 586–615 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-key cryptosystems. Communications of the ACM 21, 120–126 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  5. IEEE Standard 1363–2000: IEEE standard specifications for public-key cryptography (January 2000)

    Google Scholar 

  6. ANSI X9.62-2005: Public Key Cryptography for the Financial Services Industry: The Elliptic Curve Digital Signature Algorithm (ECDSA). American National Standards Institute (ANSI) (November 2005)

    Google Scholar 

  7. Bartee, T.C., Schneider, D.J.: Computation with finite fields. Information and Computing 6, 79–98 (1963)

    MathSciNet  MATH  Google Scholar 

  8. Mastrovito, E.D.: VLSI architectures for multiplication over finite field \(GF(2^{m})\). Applied algebra, algebraic algorithms, and error-correcting codes. In: Mora, T. (ed.) Proc. Sixth Int’l Conf., AAECC-6, Rome, pp. 297–309, July 1988

    Google Scholar 

  9. Koç, Ç.K., Sunar, B.: Low-complexity bit-parallel canonical and normal basis multipliers for a class of finite fields. IEEE Trans. Computers 47(3), 353–356 (1998)

    Article  MATH  Google Scholar 

  10. Itoh, T., Tsujii, S.: Structure of parallel multipliers for a class of fields \(GF(2^{m})\). Information and Computation 83, 21–40 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  11. Lee, C.-Y., Yang, C.-S., Meher, B.K., Meher, P.K., Pan, J.-S.: Low-complexity digit-serial and scalable SPB/GPB multipliers over large binary extension fields using \((b,2)\)-way Karatsuba decomposition. IEEE Trans. Circuits and Systems-I: Regular Papers 61(11), 3115–3124 (2014)

    Article  Google Scholar 

  12. Fan, H., Hasan, M.A.: A new approach to subquadratic space complexity parallel multipliers for extended bina-ry fields. IEEE Trans. Computers 56(2), 224–233 (2007)

    Article  MathSciNet  Google Scholar 

  13. Huang, W.-T., Chang, C.H., Chiou, C.W., Tan, S.-Y.: Non-XOR approach for low-cost bit-parallel polynomial basis multiplier over \(GF(2^{m})\). IET Information Security 5(3), 152–162 (2011)

    Article  Google Scholar 

  14. Xie, J., He, J.J., Meher, P.K.: Low latency systolic Montgomery multiplier for finite field \(GF(2^{m})\) based on pentanomials. IEEE Trans. VLSI Systems 21(2), 385–389 (2013)

    Article  Google Scholar 

  15. Lee, C.-Y., Meher, P.K., Lee, W.-Y.: Subquadratic space complexity digit-serial multiplier over binary extension fields using Toom-Cook algorithm. In: Proc. of 2014 International Symposium on Integrated Circuits (ISIC), Singapore, pp. 176–179, December 10–12, 2014

    Google Scholar 

  16. Berlekamp, E.R.: Bit-serial reed-solomon encoder. IEEE Trans. Inf. Theory IT–28, 869–874 (1982)

    Article  Google Scholar 

  17. Wu, H., Hasan, M.A., Blake, I.F.: New low-complexity bit-parallel finite field multipliers using weakly dual bases. IEEE Trans. Computers 47(11), 1223–1234 (1998)

    Article  MathSciNet  Google Scholar 

  18. Wang, M., Blake, I.F.: Bit serial multiplication in finite fields. SIAM J. Disc. Math. 3(1), 140–148 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  19. Wang, J.-H., Chang, H.W., Chiou, C.W., Liang, W.-Y.: Low-complexity design of bit-parallel dual basis multiplier over \(GF(2^{m})\). IET Information Security 6(4), 324–328 (2012)

    Article  Google Scholar 

  20. Hua, Y.Y., Lin, J.-M., Chiou, C.W., Lee, C.-Y., Liu, Y.H.: A novel digit-serial dual basis Karatsuba multiplier over \(GF(2^{m})\). Journal of Computers 23(2), 80–94 (2012)

    Google Scholar 

  21. Pan, J.-S., Azarderakhsh, R., Kermani, M.M., Lee, C.-Y., Lee, W.-Y., Chiou, C.W., Lin, J.-M.: Low-latency digit-serial systolic double basis multiplier over \(GF(2^{m})\) using subquadratic Toeplitz matrix-vector product approach. IEEE Trans. Computers 63(5), 1169–1181 (2014)

    Article  Google Scholar 

  22. Massey, J.L., Omura, J.K.: Computational method and apparatus for finite field arithmetic. U.S. Patent Number 4,587,627 (May 1986)

    Google Scholar 

  23. Wang, C.C., Troung, T.K., Shao, H.M., Deutsch, L.J., Omura, J.K., Reed, I.S.: VLSI architectures for computing multiplications and inverses in \(GF(2^{m})\). IEEE Trans. Computers C–34(8), 709–717 (1985)

    Article  Google Scholar 

  24. Reyhani-Masoleh, A.: Efficient algorithms and architectures for field multiplication using Gaussian normal bases. IEEE Trans. Computers 55(1), 34–47 (2006)

    Article  Google Scholar 

  25. Agnew, G.B., Mullin, R.C., Onyszchuk, I.M., Vanstone, S.A.: An implementation for a fast public-key cryptosystem. Journal of Cryptology 3, 63–79 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  26. Hasan, M.A., Wang, M.Z., Bhargava, V.K.: A modified Massey-Omura parallel multiplier for a class of finite fields. IEEE Trans. Computers 42(10), 1278–1280 (1993)

    Article  MATH  Google Scholar 

  27. Kwon, S.: A low complexity and a low latency bit parallel systolic multiplier over \(GF(2^{m})\) using an optimal normal basis of type II. In: Proc. of the 16th IEEE Symposium on Computer Arithmetic, Santiago de Compostela, Spain, pp. 196–202, June 15–18, 2003

    Google Scholar 

  28. Fan, H., Hasan, M.A.: Subquadratic computational complexity schemes for extended binary field multiplication using optimal normal bases. IEEE Trans. Computers 56(10), 1435–1437 (2007)

    Article  MathSciNet  Google Scholar 

  29. Lee, C.-Y., Chiou, C.W.: Scalable Gaussian normal basis multipliers over \(GF(2^{m})\) using Hankel matrix-vector representation. Journal of Signal Processing Systems for Signal Image and Video Technology 69(2), 197–211 (2012)

    Article  Google Scholar 

  30. Chiou, C.W., Chuang, T.-P., Lin, S.-S., Lee, C.-Y., Lin, J.-M., Yeh, Y.-C.: Palindromic-like representation for Gaussian normal basis multiplier over \(GF(2^{m})\) with odd type-t. IET Information Security 6(4), 318–323 (2012)

    Article  Google Scholar 

  31. Chiou, C.W., Chang, H.W., Liang, W.-Y., Lee, C.-Y., Lin, J.-M., Yeh, Y.-C.: Low-complexity Gaussian normal basis multiplier over \(GF(2^{m})\). IET Information Security 6(4), 310–317 (2012)

    Article  Google Scholar 

  32. Azarderakhsh, R., Reyhani-Masoleh, A.: Low-complexity multiplier architectures for single and hybrid-double multiplications in Gaussian normal bases. IEEE Trans. Computers 62(4), 744–757 (2013)

    Article  MathSciNet  Google Scholar 

  33. Yang, C.-S., Pan, J.-S., Lee, C.-Y.: Digit-serial GNB multiplier based on TMVP approach over \(GF(2^{m})\). In: Proc. of 2013 Second International Conference on Robot, Vision and Signal Processing, Kitakyushu, Japan, pp. 123–128, December 10–12, 2013

    Google Scholar 

  34. Chiou, C.W., Chang, C.-C., Lee, C.-Y., Hou, T.-W., Lin, J.-M.: Concurrent Error detection and Correction in Gaussian Normal Basis Multiplier over \(GF(2^{m})\). IEEE Trans. Computers 58(6), 851–857 (2009)

    Article  MathSciNet  Google Scholar 

  35. Leone, M.: A new low complexity parallel multiplier for a class of finite fields. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 160–170. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  36. Ash, D.W., Blake, I.F., Vanstone, S.A.: Low complexity normal bases. Discrete Applied Math. 25, 191–210 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  37. FIPS 186–2: Digital Signature Standard (DSS). Federal Information Processing Standards Publication 186–2, Nat’l Inst. of Standards and Technology (2000)

    Google Scholar 

  38. ISO/IEC 11770–3:2008: Information technology - Security techniques - Key management - Part 3: Mechanisms using asymmetric techniques (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. W. Chiou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Chiou, C.W., Sun, YS., Lee, CM., Chiu, YL., Lin, JM., Lee, CY. (2016). Problems on Gaussian Normal Basis Multiplication for Elliptic Curve Cryptosystem. In: Zin, T., Lin, JW., Pan, JS., Tin, P., Yokota, M. (eds) Genetic and Evolutionary Computing. GEC 2015. Advances in Intelligent Systems and Computing, vol 388. Springer, Cham. https://doi.org/10.1007/978-3-319-23207-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23207-2_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23206-5

  • Online ISBN: 978-3-319-23207-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics