Skip to main content

Upper and Lower Bounds on the Time Complexity of Infinite-Domain CSPs

  • Conference paper
  • First Online:
Book cover Principles and Practice of Constraint Programming (CP 2015)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 9255))

  • 2125 Accesses

Abstract

The constraint satisfaction problem (CSP) is a widely studied problem with numerous applications in computer science. For infinite-domain CSPs, there are many results separating tractable and NP-hard cases while upper bounds on the time complexity of hard cases are virtually unexplored. Hence, we initiate a study of the worst-case time cmplexity of such CSPs. We analyse backtracking algorithms and show that they can be improved by exploiting sparsification. We present even faster algorithms based on enumerating finite structures. Last, we prove non-trivial lower bounds applicable to many interesting CSPs, under the assumption that the strong exponential-time hypothesis is true.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berend, D., Tassa, T.: Improved bounds on Bell numbers and on moments of sums of random variables. Probability and Mathematical Statistics 30(2), 185–205 (2010)

    MATH  MathSciNet  Google Scholar 

  2. Björklund, A., Husfeldt, T., Koivisto, M.: Set partitioning via inclusion-exclusion. SIAM Journal on Computing 39(2), 546–563 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bodirsky, M.: Complexity classification in infinite-domain constraint satisfaction. Mémoire d’habilitation à diriger des recherches, Université Diderot - Paris 7. arXiv:1201.0856 (2012)

  4. Bodirsky, M., Hils, M.: Tractable set constraints. Journal of Artificial Intelligence Research 45, 731–759 (2012)

    MATH  MathSciNet  Google Scholar 

  5. Bodirsky, M., Kára, J.: The complexity of equality constraint languages. Theory of Computing Systems 43(2), 136–158 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bodirsky, M., Kára, J.: The complexity of temporal constraint satisfaction problems. Journal of the ACM 57(2), 9:1–9:41 (2010)

    Article  Google Scholar 

  7. Bodirsky, M., Mueller, J.K.: The complexity of rooted phylogeny problems. Logical Methods in Computer Science 7(4) (2011)

    Google Scholar 

  8. Broxvall, M., Jonsson, P.: Point algebras for temporal reasoning: Algorithms and complexity. Artificial Intelligence 149(2), 179–220 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  9. Broxvall, M., Jonsson, P., Renz, J.: Disjunctions, independence, refinements. Artificial Intelligence 140(1–2), 153–173 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  10. Calabro, C.: The Exponential Complexity of Satisfiability Problems. PhD thesis, University of California, San Diego, CA, USA (2009)

    Google Scholar 

  11. Cohen, D., Jeavons, P., Jonsson, P., Koubarakis, M.: Building tractable disjunctive constraints. Journal of the ACM 47(5), 826–853 (2000)

    Article  MathSciNet  Google Scholar 

  12. Dantsin, E., Goerdt, A., Hirsch, E.A., Kannan, R., Kleinberg, J.M., Papadimitriou, C.H., Raghavan, P., Schöning, U.: A deterministic \((2-2/(k+1))^n\) algorithm for \(k\)-SAT based on local search. Theoretical Computer Science 289(1), 69–83 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  13. Djokic, B., Miyakawa, M., Sekiguchi, S., Semba, I., Stojmenovic, I.: A fast iterative algorithm for generating set partitions. The Computer Journal 32(3), 281–282 (1989)

    Article  Google Scholar 

  14. Gaspers, S.: Exponential Time Algorithms - Structures, Measures, and Bounds. VDM (2010)

    Google Scholar 

  15. Hodges, W.: A Shorter Model Theory. Cambridge University Press, New York (1997)

    MATH  Google Scholar 

  16. Impagliazzo, R., Paturi, R.: On the complexity of \(k\)-SAT. Journal of Computer and System Sciences 62(2), 367–375 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  17. Impagliazzo, R., Paturi, R.: Exact complexity and satisfiability. In: Gutin, G., Szeider, S. (eds.) IPEC 2013. LNCS, vol. 8246, pp. 1–3. Springer, heidelberg (2013)

    Chapter  Google Scholar 

  18. Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential complexity? Journal of Computer and System Sciences 63(4), 512–530 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  19. Jonsson, P., Bäckström, C.: A unifying approach to temporal constraint reasoning. Artificial Intelligence 102(1), 143–155 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  20. Jonsson, P., Lagerkvist, V., Nordh, G., Zanuttini, B.: Complexity of SAT problems, clone theory and the exponential time hypothesis. In: Proceedings of the 24th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA-2013), pp. 1264–1277 (2013)

    Google Scholar 

  21. Kanj, I., Szeider, S.: On the subexponential time complexity of CSP. In: Proceedings of the Twenty-Seventh AAAI Conference on Artificial Intelligence (AAAI-2013) (2013)

    Google Scholar 

  22. Krokhin, A., Jeavons, P., Jonsson, P.: Reasoning about temporal relations: The tractable subalgebras of Allen’s interval algebra. Journal of the ACM 50(5), 591–640 (2003)

    Article  MathSciNet  Google Scholar 

  23. Ligozat, G.: Qualitative Spatial and Temporal Reasoning. Wiley-ISTE (2011)

    Google Scholar 

  24. Ligozat, G., Renz, J.: What Is a qualitative calculus? a general framework. In: Zhang, C., W. Guesgen, H., Yeap, W.-K. (eds.) PRICAI 2004. LNCS (LNAI), vol. 3157, pp. 53–64. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  25. Liu, B., Jaffar, J.: Using constraints to model disjunctions in rule-based reasoning. In: Proceedings of the Thirteenth National Conference on Artificial Intelligence, AAAI 1996, Portland, Oregon, vol. 2, pp. 1248–1255 (1996)

    Google Scholar 

  26. Lokshtanov, D., Marx, D., Saurabh, S.: Lower bounds based on the exponential time hypothesis. Bulletin of EATCS 3(105) (2013)

    Google Scholar 

  27. Marriott, K., Moulder, P., Stuckey, P.J.: Solving disjunctive constraints for interactive graphical applications. In: Walsh, T. (ed.) CP 2001. LNCS, vol. 2239, p. 361. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  28. Prüfer, H.: Neuer beweis eines satzes über permutationen. Archiv der Mathematik und Physik 27, 742–744 (1918)

    Google Scholar 

  29. Renz, J., Nebel, B.: Efficient methods for qualitative spatial reasoning. Journal of Artificial Intelligence Research 15(1), 289–318 (2001)

    MATH  MathSciNet  Google Scholar 

  30. Rossi, F., van Beek, P., Walsh, T. (eds.) Handbook of Constraint Programming. Elsevier (2006)

    Google Scholar 

  31. Stergiou, K., Koubarakis, M.: Backtracking algorithms for disjunctions of temporal constraints. Artificial Intelligence 120(1), 81–117 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  32. Stojmenović, I.: An optimal algorithm for generating equivalence relations on a linear array of processors. BIT Numerical Mathematics 30(3), 424–436 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  33. Traxler, P.: The time complexity of constraint satisfaction. In: Grohe, M., Niedermeier, R. (eds.) IWPEC 2008. LNCS, vol. 5018, pp. 190–201. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  34. Vilain, M.B., Kautz, H.A.: Constraint propagation algorithms for temporal reasoning. In: Proceedings of the 5th National Conference on Artificial Intelligence (AAAI 1986), pp. 377–382 (1986)

    Google Scholar 

  35. Vsemirnov, M., Hirsch, E., Dantsin, E., Ivanov, S.: Algorithms for SAT and upper bounds on their complexity. Journal of Mathematical Sciences 118(2), 4948–4962 (2003)

    Article  MathSciNet  Google Scholar 

  36. Woeginger, G.: Exact algorithms for NP-hard problems: a survey. In: Juenger, M., Reinelt, G., Rinaldi, G. (eds.) Combinatorial Optimization - Eureka! You Shrink!. LNCS, vol. 2570, pp. 185–207. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor Lagerkvist .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Jonsson, P., Lagerkvist, V. (2015). Upper and Lower Bounds on the Time Complexity of Infinite-Domain CSPs. In: Pesant, G. (eds) Principles and Practice of Constraint Programming. CP 2015. Lecture Notes in Computer Science(), vol 9255. Springer, Cham. https://doi.org/10.1007/978-3-319-23219-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23219-5_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23218-8

  • Online ISBN: 978-3-319-23219-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics