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Abstract. Pseudo-Boolean constraints, also known as 0-1 Integer Lin-
ear Constraints, are used to model many real-world problems. A common
approach to solve these constraints is to encode them into a SAT for-
mula. The runtime of the SAT solver on such formula is sensitive to
the manner in which the given pseudo-Boolean constraints are encoded.
In this paper, we propose generalized Totalizer encoding (GTE), which
is an arc-consistency preserving extension of the Totalizer encoding to
pseudo-Boolean constraints. Unlike some other encodings, the number of
auxiliary variables required for GTE does not depend on the magnitudes
of the coefficients. Instead, it depends on the number of distinct combina-
tions of these coefficients. We show the superiority of GTE with respect
to other encodings when large pseudo-Boolean constraints have low num-
ber of distinct coefficients. Our experimental results also show that GTE
remains competitive even when the pseudo-Boolean constraints do not
have this characteristic.

1 Introduction

Pseudo-Boolean constraints (PBCs) or 0-1 Integer Linear constraints have been
used to model a plethora of real world problems such as computational biol-
ogy [13,24], upgradeability problems [3,15,16], resource allocation [27], schedul-
ing [26] and automated test pattern generation [22]. Due to its importance and a
plethora of applications, a lot of research has been done to efficiently solve PBCs.
One of the popular approaches is to convert PBCs into a SAT formula [7,11,21]
thus making them amenable to off-the-shelf SAT solvers. We start by formally
introducing PBC, followed by a discussion on how to convert a PBC into a SAT
formula.

A PBC is defined over a finite set of Boolean variables x1, . . . , xn which can be
assigned a value 0 (false) or 1 (true). A literal li is either a Boolean variable xi

(positive literal) or its negation ¬xi (negative literal). A positive (resp. negative)
literal li is said to be assigned 1 if and only if the corresponding variable xi is
assigned 1 (resp. 0). Without a loss of generality, PBC can be defined as a linear
inequality of the following normal form:

http://arxiv.org/abs/1507.05920v1
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(O : o2, o3, o5, o6 : 6)

(A : a2, a3, a5 : 5)

(C : l1 : 2) (D : l2 : 3)

(B : b3, b6 : 6)

(E : l3 : 3) (F : l4 : 3)

Fig. 1: Generalized Totalizer Encoding for 2l1 + 3l2 + 3l3 + 3l4 ≤ 5

∑

wili ≤ k (1)

Here, wi ∈ N
+ are called coefficients or weights, li are input literals and

k ∈ N
+ is called the bound. Linear inequalities in other forms (e.g. other in-

equality, equalities or negative coefficients) can be converted into this normal
form in linear time [8]. Cardinality constraint is a special case of PBC when all
the weights have the value 1. Many different encodings have been proposed to
encode cardinality constraints [4,5,25,28]. Linear pseudo-Boolean solving (PBS)
is a generalization of the SAT formulation where constraints are not restricted to
clauses and can be PBCs. A related problem to PBS is the linear pseudo-Boolean
optimization (PBO) problem, where all the constraints must be satisfied and the
value of a linear cost function is optimized. PBO usually requires an iterative al-
gorithm which solves a PBS in every iteration [11,18,19,21]. Considering that the
focus of the paper is on encodings rather than algorithms, we restrict ourselves
to the decision problem (PBS).

This paper makes the following contributions.

– We propose an arc-consistency [12] preserving extension of Totalizer encod-
ing [5] called Generalized Totalizer encoding (GTE) in Section 2.

– We compare various PBC encoding schemes that were implemented in a
common framework, thus providing a fair comparison. After discussing re-
lated work in Section 3, we show GTE as a promising encoding through its
competitive performance in Section 4.

2 Generalized Totalizer Encoding

The Totalizer encoding [5] is an encoding to convert cardinality constraints into a
SAT formula. In this section, the generalized Totalizer encoding (GTE) to encode
PBC into SAT is presented. GTE can be better visualized as a binary tree, as
shown in Fig. 1. With the exception of the leaves, every node is represented as
(node name : node vars : node sum). The node sum for every node represents
the maximum possible weighted sum of the subtree rooted at that node. For
any node A, a node variable aw represents a weighted sum w of the underlying
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subtree. In other words, whenever the weighted sum of some of the input literals
in the subtree becomes w, aw must be set to 1. Note that for any node A, we
would need one variable corresponding to every distinct weighted sum that the
input literals under A can produce. Input literals are at the leaves, represented
as (node name : literal name : literal weight) with each of the terms being self
explanatory.

For any node P with children Q and R, to ensure that weighted sum is
propagated from Q and R to P , the following formula is built for P :













∧

qw1
∈ Q.node vars

rw2
∈ R.node vars

w3 = w1 + w2

pw3
∈ P.node vars

(¬qw1
∨ ¬rw2

∨ pw3
)













∧







∧

sw ∈ (Q.node vars ∪ R.node vars)
w = w′

p
w

′ ∈ P.node vars

(¬sw ∨ pw′)






(2)

The left part of Eqn. (2) ensures that, if node Q has witnessed a weighted
sum of w1 and R has witnessed a weighted sum of w2, then P must be considered
to have witnessed the weighted sum of w3 = w1+w2. The right part of Eqn. (2)
just takes care of the boundary condition where weighted sums from Q and R

are propagated to P without combining it with their siblings. This represents
that Q (resp. R) has witnessed a weighted sum of w but R (resp. Q) may not
have witnessed any positive weighted sum.

Note that node O in Fig. 1 does not have variables for the weighted sums
larger than 6. Once the weighted sum goes above the threshold of k, we represent
it with k+1. Since all the weighted sums above k would result in the constraint
being not satisfied, it is sound to represent all such sums as k+1. This is in some
sense a generalization of k-simplification described in [9,17]. For k-simplification,
w3 in Eqn. (2) would change to w3 = min(w1 + w2, k + 1).

Finally, to enforce that the weighted sum does not exceed the given threshold
k, we add the following constraint at the root node O :

¬ok+1 (3)

Encoding properties: Let AIw represent the multiset of weights of all the
input literals in the subtree rooted at node A. For any given multiset S of
weights, let Weight(S) =

∑

e∈S e. For a given multiset S, let unique(S) denote
the set with all the multiplicity removed from S. Let |S| denote the cardinality
of the set S. Hence, the total number of node variables required at node A is:

|unique ({Weight(S)|S ⊆ AIw ∧ S 6= ∅})| (4)

Note that unlike some other encodings [7, 14] the number of auxiliary vari-
ables required for GTE does not depend on the magnitudes of the weights.
Instead, it depends on how many unique weighted sums can be generated. Thus,
we claim that for pseudo-Boolean constraints where the distinct weighted sum
combinations are low, GTE should perform better. We corroborate our claim in
Section 4 through experiments.
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Nevertheless, in the worst case, GTE can generate exponentially many auxil-
iary variables and clauses. For example, if the weights of input literals l1, . . . , ln
are respectively 20, . . . , 2n−1, then every possible weighted sum combination
would be unique. In this case, GTE would generate exponentially many aux-
iliary variables. Since every variable is used in at least one clause, it will also
generate exponentially many clauses.

Though GTE does not depend on the magnitudes of the weights, one can
use the magnitude of the largest weight to categorize a class of PBCs for which
GTE is guaranteed to be of polynomial size. If there are n input literals and
the largest weight is a polynomial P (n), then GTE is guaranteed to produce a
polynomial size formula. If the largest weight is P (n), then the total number
of distinct weight combinations (Eqn. (4)) is bounded by nP (n), resulting in a
polynomial size formula.

The best case for GTE occurs when all of the weights are equal, in which
case the number of auxiliary variables and clauses is, respectively, O(n log2n)
and O(n2). Notice that for this best case with k-simplification, we have O(nk)
variables and clauses, since it will behave exactly as the Totalizer encoding [5].

Note also that the generalized arc consistency (GAC) [12] property of Total-
izer encoding holds for GTE as well. GAC is a property of an encoding which
allows the solver to infer maximal possible information through propagation,
thus helping the solver to prune the search space earlier. The original proof [5]
makes an inductive argument using the left subtree and the right subtree of a
node. It makes use of the fact that, if there are q input variables set to 1 in
the left child Q and r input variables are set to 1 in the right child R, then
the encoding ensures that in the parent node P , the variable pq+r is set to 1.
Similarly, GTE ensures that if the left child Q contributes w1 to the weighted
sum (qw1

is set to 1) and the right child R contributes w2 to the weighted sum
(rw2

is set to 1), then the parent node P registers the weighted sum to be at
least w3 = w2+w1 (pw3

is set to 1). Hence, the GAC proof still holds for GTE.

3 Related Work

The idea of encoding a PBC into a SAT formula is not new. One of the first such
encoding is described in [11,30] which uses binary adder circuit like formulation
to compute the weighted sum and then compare it against the threshold k.
This encoding creates O(n log2k) auxiliary clauses, but it is not arc-consistent.
Another approach to encode PBCs into SAT is to use sorting networks [11].
This encoding produces O(N log22N) auxiliary clauses, where N is bounded by
⌈log2w1⌉+ . . .+⌈log2wn⌉. This encoding is also not arc-consistent for PBCs, but
it preserves more implications than the adder encoding, and it maintains GAC
for cardinality constraints.

The Watchdog encoding [7] scheme uses the Totalizer encoding, but in a
completely different manner than GTE. It uses multiple Totalizers, one for each
bit of the binary representation of the weights. The Watchdog encoding was the
first polynomial sized encoding that maintains GAC for PBCs and it only gen-
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erates O(n3log2n log2wmax) auxiliary clauses. Recently, the Watchdog encoding
has been generalized to a more abstract framework with the Binary Merger en-
coding [20]. Using a different translation of the components of the Watchdog
encoding allows the Binary Merger encoding to further reduce the number of
auxiliary clauses to O(n2log22n log2wmax). The Binary Merger is also polyno-
mial and maintains GAC.

Other encodings that maintain GAC can be exponential in the worst case
scenario, such as BDD based encodings [1, 6, 11]. These encodings share quite a
lot of similarity to GTE, such as GAC and independence from the magnitude of
the weight. One of the differences is that GTE always has a tree like structure
amongst auxiliary variables and input literals. However, the crucial difference
lies in the manner in which auxiliary variables are generated, and what they
represent. In BDD based approaches, an auxiliary variableDi attempts to reason
about the weighted sum of the input literals either li, . . . , ln or l1, . . . , li. On the
other hand, an auxiliary variable aw at a node A in GTE attempts to only
reason about the weighted sum of the input literals that are descendants of A.
Therefore, two auxiliary variables in two disjoint subtrees in GTE are guaranteed
to reason about disjoint sets of input literals. We believe that such a localized
reasoning could be a cause of relatively better performance of GTE as reported in
Section 4. It is worth noting that the worst case scenario for GTE, when weights
are of the form ai, where a ≥ 2, would generate a polynomial size formula for
BDD based approaches [1, 6, 11].

As GTE generalizes the Totalizer encoding, the Sequential Weighted Counter
(SWC) encoding [14] generalizes sequential encoding [28] for PBCs. Like BDD
based approaches and GTE, SWC can be exponential in the worst case.

4 Implementation and Evaluation

All experiments were performed on two AMD 6276 processors (2.3 GHz) run-
ning Fedora 18 with a timeout of 1,800 seconds and a memory limit of 16
GB. Similar resource limitations were used during the last pseudo-Boolean (PB)
evaluation of 20123. For a fair comparison, we implemented GTE (gte) in the
PBLib [29] (version 1.2) open source library which contains a plethora of en-
codings, namely, Adder Networks (adder) [11,30], Sorting Networks (sorter) [11],
watchdog (watchdog) [7], Binary Merger (bin-merger) [20], Sequential Weighted
Counter (swc) [14], and BDDs (bdd) [1]. A new encoding in PBLib can be added
by implementing encode method of the base class Encoder. Thus, all the encod-
ings mentioned above, including GTE, only differ in how encode is implemented
while they share the rest of the whole environment. PBLib provides parsing
and normalization [11] routines for PBC and uses Minisat 2.2.0 [10] as a back-
end SAT solver. When the constraint to be encoded into CNF is a cardinality
constraint, we use the default setting of PBLib that dynamically selects a car-
dinality encoding based on the number of auxiliary clauses. When the constraint
to be encoded into CNF is a PBC, we specify one of the above encodings.

3 http://www.cril.univ-artois.fr/PB12/

http://www.cril.univ-artois.fr/PB12/
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Table 1: Characteristics of pseudo-Boolean benchmarks
Benchmark #PB #lits k max wi

∑
wi #diff wi

PB’12 164.31 32.25 27.94 12.55 167.14 6.72
pedigree 1.00 10,794.13 11,106.69 456.28 4,665,237.38 2.00

Table 2: Number of solved instances
Benchmark Result sorter swc adder watchdog bin-merger bdd gte

PB’12 SAT 72 74 73 79 79 81 81

(214) UNSAT 74 77 83 85 85 84 84

pedigree SAT 2 7 6 25 43 82 83

(172) UNSAT 0 7 6 23 35 72 75

Total SAT/UNSAT 146 165 172 212 242 319 323

Benchmarks: Out of all 355 instances from the DEC-SMALLINT-LIN cate-
gory in the last PB evaluation of 2012 (PB’12), we only considered those 214
instances4 that contain at least 1 PBC. We also consider an additional set of
pedigree benchmarks from computational biology [13]. These benchmarks were
originally encoded in Maximum Satisfiability (MaxSAT) and were used in the
last MaxSAT Evaluation of 20145. Any MaxSAT problem can be converted to a
corresponding equivalent pseudo-Boolean problem [2]. We generate two pseudo-
Boolean decision problems (one satisfiable, another unsatisfiable) from the op-
timization version of each of these benchmarks. The optimization function is
transformed into a PBC with the value of the bound k set to a specific value.
Let the optimum value for the optimization function be kopt. The satisfiable de-
cision problem uses kopt as the value for the bound k, whereas the unsatisfiable
decision problem uses kopt−1 as the value for the bound k. Out of 200 generated
instances6, 172 had at least 1 PBC and were selected for further evaluation.

Tab. 1 shows the characteristics of the benchmarks used in this evaluation.
#PB denotes the average number of PBCs per instance. #lits, k, max wi,

∑

wi

and #diff wi denote the per constraint per instance average of input literals,
bound, the largest weight, maximum possible weighted sum and the number
of distinct weights. PB’12 benchmarks are a mix of crafted as well as industrial
benchmarks, whereas all of the pedigree benchmarks are from the same biological
problem [13]. The PB’12 benchmarks have on average several PBCs, however,
they are relatively small in magnitude. In contrast, the pedigree benchmarks
contain one large PB constraint with very large total weighted sum. pedigree
benchmarks have only two distinct values of weights, thus making them good
candidates for using GTE.

Results: Tab. 2 shows the number of instances solved using different encodings.
sorter, adder and swc perform worse than the remaining encodings for both sets of

4 Available at http://sat.inesc-id.pt/~ruben/benchmarks/pb12-subset.zip
5 http://www.maxsat.udl.cat/14/
6 Available at http://sat.inesc-id.pt/~ruben/benchmarks/pedigrees.zip

http://sat.inesc-id.pt/~ruben/benchmarks/pb12-subset.zip
http://www.maxsat.udl.cat/14/
http://sat.inesc-id.pt/~ruben/benchmarks/pedigrees.zip
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Fig. 2: Cactus plots of number of variables, number of clauses and runtimes
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benchmarks. The first two are not arc-consistent therefore the SAT solver is not
able to infer as much information as with arc-consistent encodings. swc, though
arc-consistent, generates a large number of auxiliary variables and clauses, which
deteriorates the performance of the SAT solver.

gte provides a competitive performance to bdd, bin-merger and watchdog for
PB’12. However, only the gte and bdd encodings are able to tackle pedigree

benchmarks, which contain a large number of literals and only two different
coefficients. Unlike other encodings, gte and bdd are able to exploit the charac-
teristics of these benchmarks.

swc requires significantly large number of variables as the value of k increases,
whereas bdd and gte keep the variable explosion in check due to reuse of variables
on similar combinations (Figs. 2a and 2b). This reuse of auxiliary variables
is even more evident on pedigree benchmarks (Fig. 2b) as these benchmarks
have only two different coefficients resulting in low number of combinations. k-
simplification also helps gte in keeping the number of variables low as all the
combinations weighing more than k + 1 are mapped to k + 1.

Number of clauses required for gte is quite large as compared to some other
encodings (Figs. 2c and 2d). gte requires clauses to be generated for all the
combinations even though most of them produce the same value for the weighted
sum, thus reusing the same variable. Though bdd has an exponential worst case,
in practice it appears to generate smaller formulas (Figs. 2c and 2d).

Fig. 2e shows that gte provides a competitive performance with respect to
bin-merger, watchdog and bdd. Runtime on pedigree benchmarks as shown in
Fig. 2f establishes gte as the clear winner with bdd performing a close second.
The properties that gte and bdd share help them perform better on pedigree

benchmarks as they are not affected by large magnitude of weights in the PBCs.

5 Conclusion

Many real-world problems can be formulated using pseudo-Boolean constraints
(PBC). Given the advances in SAT technology, it becomes crucial how to encode
PBC into SAT, such that SAT solvers can efficiently solve the resulting formula.

In this paper, an arc-consistency preserving generalization of the Totalizer
encoding is proposed for encoding PBC into SAT. Although the proposed en-
coding is exponential in the worst case, the new Generalized Totalizer encoding
(GTE) is very competitive in relation with other PBC encodings. Moreover, ex-
perimental results show that when the number of different weights in PBC is
small, it clearly outperforms all other encodings. As a result, we believe the im-
pact of GTE can be extensive, since one can further extend it into incremental
settings [23].
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280053, FCT grants AMOS (CMUP-EPB/TIC/0049/2013), POLARIS (PTDC/-
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4. Aśın, R., Nieuwenhuis, R., Oliveras, A., Rodŕıguez-Carbonell, E.: Cardinality Net-
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