University

&7 of Glasgow

McCreesh, C., and Prosser, P. (2015) A Parallel, Backjumping Subgraph
Isomorphism Algorithm using Supplemental Graphs. In: 21st International
Conference on Principles and Practice of Constraint Programming (CP 2015),
Cork, Ireland, 31 Aug -04 Sep 2015, pp. 295-312. ISBN 9783319232188.

There may be differences between this version and the published version. You are
advised to consult the publisher’s version if you wish to cite from it.

http://eprints.gla.ac.uk/107619/

Deposited on: 25 June 2015

Enlighten — Research publications by members of the University of Glasgow
http://eprints.gla.ac.uk

A Parallel, Backjumping Subgraph Isomorphism
Algorithm using Supplemental Graphs

Ciaran McCreesh* and Patrick Prosser

University of Glasgow, Glasgow, Scotland
c.mccreesh.1@research.gla.ac.uk,
patrick.prosser@glasgow.ac.uk

Abstract. The subgraph isomorphism problem involves finding a pattern
graph inside a target graph. We present a new bit- and thread-parallel
constraint-based search algorithm for the problem, and experiment on a
wide range of standard benchmark instances to demonstrate its effective-
ness. We introduce supplemental graphs, to create implied constraints.
We use a new low-overhead, lazy variation of conflict directed backjump-
ing which interacts safely with parallel search, and a counting-based
all-different propagator which is better suited for large domains.

1 Introduction

The subgraph isomorphism family of problems involve “finding a copy of” a
pattern graph inside a larger target graph; applications include bioinformatics [3],
chemistry [31], computer vision [I2/37], law enforcement [7], model checking [33],
and pattern recognition [9]. These problems have natural constraint programming
models: we have a variable for each vertex in the pattern graph, with the vertices
of the target graph being the domains. The exact constraints vary depending
upon which variation of the problem we are studying (which we discuss in the
following section), but generally there are rules about preserving adjacency, and
an all-different constraint across all the variables.

This constraint-based search approach dates back to works by Ullmann [39)
and McGregor [25], and was improved upon in the LV [20] and VF2 [T1] algorithms.
More recently, ILF [41], LAD [36] and SND [I] are algorithms which take a “deep
thinking” approach, using strong inference at each stage of the search. This is
powerful, but we observe LAD or SND sometimes make less than one recursive
call per second with larger target graphs, and cannot always explore enough
of the search space to find a solution in time. This motivates an alternative
approach: on the same hardware, we will be making 10* to 10% recursive calls
per core per second. The main features of our algorithm are:

1. We introduce supplemental graphs, which generalise some of the ideas in
SND. The key idea is that a subgraph isomorphism i : P »— T induces a

* This work was supported by the Engineering and Physical Sciences Research Council
[grant number EP/K503058/1]

subgraph isomorphism F'(i) : F(P) — F(T), for certain functors F. This is
used to generate implied constraints: we may now look for a mapping which
is simultaneously a subgraph isomorphism between several carefully selected
pairs of graphs.

2. We use weaker inference than LAD and SND: we do not achieve or maintain
arc consistency. We introduce a cheaper, counting-based all-different propa-
gator which has better scalability for large target graphs, and which has very
good constant factors on modern hardware thanks to bitset encodings.

3. We describe a clone-comparing variation of conflict-directed backjumping,
which does not require conflict sets. We show that an all-different propagator
can produce reduced conflict explanations, which can improve backjumping.

4. We use thread-parallel preprocessing and search, to make better use of modern
multi-core hardware. We explain how parallel search may interact safely with
backjumping. We use explicit, non-randomised work stealing to offset poor
early heuristic choices during search.

Although weaker propagation and backjumping have fallen out of fashion in
general for constraint programming, here this approach usually pays off. In
section [we show that over a large collection of instances commonly used to
compare subgraph isomorphism algorithms, our solver is the single best.

2 Definitions, Notation, and a Proposition

Throughout, our graphs are finite, undirected, and do not have multiple edges
between pairs of vertices, but may have loops (an edge from a vertex to itself).
We write V(G) for the vertex set of a graph G, and N(G,v) for the neighbours
of a vertex v in G (that is, the vertices adjacent to v). The degree of v is the
cardinality of its set of neighbours. The mneighbourhood degree sequence of v,
denoted S(G, v), is the sequence consisting of the degrees of every neighbour of v,
from largest to smallest. A vertex is isolated if it has no neighbours. By v ~g w
we mean vertex v is adjacent to vertex w in graph G. We write G[V] for the
subgraph of G induced by a set of vertices V.

A non-induced subgraph isomorphism is an injective mapping i : P — T
from a graph P to a graph T which preserves adjacency—that is, if v ~p w
then we require i(v) ~7 i(w) (and thus if v has a loop, then i(v) must have a
loop). The non-induced subgraph isomorphism problem is to find such a mapping
from a given pattern graph P to a given target graph T. (The induced subgraph
isomorphism problem additionally requires that if v «p w then i(v) %7 i(w),
and variants also exist for directed and labelled graphs; we discuss only the
non-induced version in this paper. All these variants are NP-complete.)

If R and S are sequences of integers, we write R < S if there exists a
subsequence of S with length equal to that of R, such that each element in R is
less than or equal to the corresponding element in S. For a set U and element v,
we write U — v to mean U \ {v}, and U + v to mean U U {v}.

A path in a graph is a sequence of distinct vertices, such that each successive
pair of vertices are adjacent; we also allow a path from a vertex to itself, in which

case the first and last vertices in the sequence are the same (and there is a cycle).
The distance between two vertices is the length of a shortest path between them.
We write G¢ for the graph with vertex set V(G), and edges between v and w
if the distance between v and w in G is at most d. We introduce the notation
Glel for the graph with vertex set V(G), and edges between vertices v and w
(not necessarily distinct) precisely if there are at least ¢ paths of length exactly
[between v and w in G. The following proposition may easily be verified by
observing that injectivity means paths are preserved:

Proposition 1. Leti: P — T be a subgraph isomorphism. Then i is also
1. a subgraph isomorphism i¢ : P — T? for any d > 1, and
2. a subgraph isomorphism il&! : Plell o Tl for any ¢,1 > 1.

The (contrapositive of the) first of these facts is used by SND, which dynamically
performs distance-based filtering during search. We will instead use the second
fact, at the top of search, to generate implied constraints.

3 A New Algorithm

Algorithm [1] describes our approach. We begin (line [3) with a simple check that
there are enough vertices in the pattern graph for an injective mapping to exist.
We then (line 4)) discard isolated vertices in the pattern graph—such vertices may
be greedily assigned to any remaining target vertices after a solution is found.
This reduces the number of variables which must be copied when branching. Next
we construct the supplemental graphs (line and initialise domains (line @
We then (line [7)) use a counting-based all-different propagator to reduce these
domains further. Finally, we perform a backtracking search (line . Each of these
steps is elaborated upon below.

3.1 Preprocessing and Initialisation

Following Proposition [1} in Algorithm [2] we construct a sequence of supplemental
graph pairs from our given pattern and target graph. We will then search for
a mapping which is simultaneously a mapping from each pattern graph in the

Algorithm 1: A non-induced subgraph isomorphism algorithm

1 nonInducedSubgraphIsomorphism (Graph P, Graph 7) — Bool
2 begin

3 if |V(P)| > | V(T)| then return false

Discard isolated vertices in P

L + createSupplementalGraphList(P,T)

D « init(V(P),V(T), L)

if countingAllDifferent(D) # Success then return false
return search(L, D) = Success

® N O ok

Algorithm 2: Supplemental graphs for Algorithm

1 createSupplementalGraphList (Graph P, Graph 7) — GraphPairs
2 begin
veturn [(P, 7), (P,), (PRA, TR (plal),

(73[1,3]’ 7—[1,3])’ (P[2,3]7 7—[23])7 (7)[373]’ 7*[373])]

sequence to its paired target graph—this gives us implied constraints, leading to
additional filtering during search.

Our choice of supplemental graphs is somewhat arbitrary. We observe that
distances of greater than 3 rarely give additional filtering power, and constructing
G4 is computationally very expensive (for unbounded [, the construction is
NP-hard). Checking ¢ > 3 is also rarely beneficial. Our choices work reasonably
well in general on the wide range of benchmark instances we consider, but can
be expensive for trivial instances—thus there is potential room to improve the
algorithm by better selection on an instance by instance basis [23].

Algorithm [3] is responsible for initialising domains. We have a variable for
each vertex in the (original) pattern graph, with each domain being the vertices
in the (original) target graph. It is easy to see that a vertex of degree d in the
pattern graph P may only be mapped to a vertex in the target graph T of degree
d or higher: this allows us to perform some initial filtering. By extension, we may
use compatibility of neighbourhood degree sequences: v may only be mapped
to w if S(P,v) < S(T,w) [I]. Because any subgraph isomorphism P — T is
also a subgraph isomorphism F(P) — F(T) for any of our supplemental graph
constructions F, we may further restrict initial domains by considering only the
intersection of filtered domains using each supplemental graph pair individually
(line . At this stage, we also enforce the “loops must be mapped to loops”
constraint.

Following this filtering, some target vertices may no longer appear in any
domain, in which case R will be reduced on line[6] If this happens, we iteratively
repeat the domain construction, but do not consider any target vertex no longer

Algorithm 3: Variable initialisation for Algorithm

1 init (Vertices V, Vertices R, GraphPairs L) — Domains

2 begin

3 repeat

4 foreach v € V do

5 L Dy < (\(p, myer {w €ER: v NV W w A S(P,v) < S(T[R],w)}
6 R+ UUEV Dv

7 until R is unchanged

8 return D

Algorithm 4: Recursive search for Algorithm

1 search (GraphPairs L, Domains D) — Fail F' or Success

2 begin

3 if D = () then return Success

4 D, < a domain in D with minimum size, tiebreaking on static degree in P
5 F + {v}

6 foreach v’ € D, ordered by static degree in 7 do

7
8
9

D' + clone(D)
case assign(L,D’,v,v’) of
Fail F/ then F «+ F U F’

10 Success then
11 case search(L, D’ — D,) of
12 Success then return Success
13 Fail F’ then
14 if #w € F’ such that D, # D), then return Fail F’
15 L F+« FUF
16 return Fail F

in R when calculating degree sequences. (Note that for performance reasons, we
do not recompute supplemental graphs when this occurs.)

3.2 Search and Inference

Algorithm [f] describes our recursive search procedure. If every variable has already
been assigned, we succeed (line . Otherwise, we pick a variable (line|4) to branch
on by selecting the variable with smallest domain, tiebreaking on descending static
degree only in the original pattern graph (we tried other variations, including
using supplemental graphs for calculating degree, and domain over degree, but
none gave an overall improvement). For each value in its domain in turn, ordered
by descending static degree in the target graph [I3], we try assigning that value
to the variable (line [§)). If we do not detect a failure, we recurse (line [LT)).

The assignment and recursive search both either indicate success, or return
a nogood set of variables F' which cannot all be instantiated whilst respecting
assignments which have already been made. This information is used to prune
the search space: if a subproblem search has failed (line , but the current
assignment did not remove any value from any of the domains involved in the
discovered nogood (line , then we may ignore the current assignment and
backtrack immediately. In fact this is simply conflict-directed backjumping [27]
in disguise: rather than explicitly maintaining conflict sets to determine culprits
(which can be costly when backjumping does nothing [2I[14]), we lazily create
the conflict sets for the variables in F” as necessary by comparing D before the
current assignment with the D’ created after it. Finally, as in backjumping, if
none of the assignments are possible, we return with a nogood of the current

Algorithm 5: Variable assignment for Algorithm

1 assign (GraphPairs L, Domains D, Vertex v, Vertex v') — Fail I or Success
2 begin

3 D, «+ {v'}

4 foreach D, € D — D, do

5 Dy + Dy — '

6 foreach (P, T) € L do

7 L if v ~p w then D,, + D, NN(T,v")

8 if D, = 0 then return Fail {w}

9 | return countingAllDifferent(D)

variable (line [5)) combined with the union of the nogoods of each failed assignment
(line [9) or subsearch (line [L5).

For assignment and inference, Algorithm |5| gives the value v’ to the domain
D, (line 3, and then infers which values may be eliminated from the remaining
domains. Firstly, no other domain may now be given the value v’ (line. Secondly,
for each supplemental graph pair, any domain for a vertex adjacent to v may
only be mapped to a vertex adjacent to v’ (line[7). If any domain gives a wipeout,
then we fail with that variable as the nogood (line .

To enforce the all-different constraint, it suffices to remove the assigned value
from every other domain, as we did in line [5, However, it is often possible to
do better. We can sometimes detect that an assignment is impossible even if
values remain in each variable’s domain (if we can find a set of n variables whose
domains include strictly less than n values between them, which we call a failed
Hall set), and we can remove certain variable-value assignments that we can
prove will never occur (if we can find a set of n variables whose domains include
only n values between them, which we call a Hall set, then those values may be
removed from the domains of any other variable). The canonical way of doing
this is to use Régin’s matching-based propagator [30].

However, matching-based filtering is expensive and may do relatively little,
particularly when domains are large, and the payoff may not always be worth the
cost. Various approaches to offsetting this cost while maintaining the filtering
power have been considered [I5]. Since we are not maintaining arc consistency in
general, we instead use an intermediate level of inference which is not guaranteed
to identify every Hall set: this can be thought of as a heuristic towards the
matching approach. This is described in Algorithm [6]

The algorithm works by performing a linear pass over each domain in turn,
from smallest cardinality to largest (line 4)). The H variable contains the union
of every Hall set detected so far; initially it is empty. The A set accumulates the
union of domains seen so far, and n contains the number of domains contributing
to A. For each new domain we encounter, we eliminate any values present in
previous Hall sets (line @ We then add that domain’s values to A and increment

Algorithm 6: Counting-based all-different propagation

1 countingAllDifferent (Domains D) — Fail F' or Success
2 begin
3 (F, H, A, n) < (0, 0, 0, 0)
4 foreach D, € D from smallest cardinality to largest do
5 F+—F+v
6 D, + D,\ H
7 (A, n) < (AUD,, n+1)
8 if D, =0 or |A| < n then return Fail F’
9 if |A| =n then (H, A, n) + (HUA, 0, 0)
10 return Success

n (line . If we detect a failed Hall set, we fail (line . If we detect a Hall set,
we add those values to H, and reset A and n, and keep going (line [9).

It is important to note that this approach may fail to identify some Hall
sets, if the initial ordering of domains is imperfect. However, the algorithm runs
very quickly in practice: the sorting step is O(vlogv) (where v is the number of
remaining variables), and the loop has complexity O(vd) (where d is the cost of
a bitset operation over a target domain, which we discuss below). We validate
this trade-off experimentally in the following section.

In case a failure is detected, the F' set of nogoods we return need only include
the variables processed so far, not every variable involved in the constraint. This
is because an all-different constraint implies an all-different constraint on any
subset of its variables. A smaller set of nogoods can increase the potential for
backjumping (and experiments verified that this is beneficial in practice).

We have been unable to find this algorithm described elsewhere in the liter-
ature, although a sort- and counting-based approach has been used to achieve
bounds consistency [28] (but our domains are not naturally ordered) and as a
preprocessing step [29]. Bitsets (which we discuss below) have also been used to
implement the matching algorithm [19].

3.3 Bit- and Thread-Parallelism

The use of bitset encodings for graph algorithms to exploit hardware parallelism
dates back to at least Ullmann’s algorithm [39], and remains an active area of
research [32/40]. We use bitsets here: our graphs are stored as arrays of bit vectors,
our domains are bit vectors, the neighbourhood intersection in Algorithm [f] is a
bitwise-and operation, the unions in Algorithm [4] and Algorithm [6] are bitwise-or
operations, and the cardinality check in Algorithm |§| is a population count (this
is a single instruction in modern CPUs).

In addition to the SIMD-like parallelism from bitset encodings, we observed
two opportunities for multi-core thread parallelism in the algorithm:

Graph and domain construction We may parallelise the outer for loops involved
in calculating neighbourhood degree sequences and in initialising the domains
of variables in Algorithm [3] Similarly, constructing each supplemental graph in
Algorithm [2| involves an outer for loop, iterating over each vertex in the input
graph. These loops may also be parallelised, with one caveat: we must be able to
add edges to (but not remove edges from) the output graph safely, in parallel.
This may be done using an atomic “or” operation.

Search Viewing the recursive calls made by the search function in Algorithm
as forming a tree, we may explore different subtrees in parallel. The key points
are:

1. We do not know in advance whether the foreach loop (Algorithm 4| line @
will exit early (either due to a solution being found, or backjumping). Thus
our parallelism is speculative: we make a single thread always preserve
the sequential search order, and use any additional threads to precompute
subsequent entries in the loop which might be used. This may mean we get
no speedup at all, if our speculation performs work which will not be used.

2. The search function, parallelised without changes, could attempt to exit early
due to backjumping. We rule out this possibility by refusing to pass knowledge
to the left: that is, we do not allow speculatively-found backjumping conditions
to change the return value of search. This is for safety [38] and reproducibility:
value-ordering heuristics can alter the performance of unsatisfiable instances
when backjumping, and allowing parallelism to select a different backjump
set could lead to an absolute slowdown [26]. To avoid this possibility, when
a backjump condition is found, we must cancel any speculative work being
done to the right of its position, and cannot cancel any ongoing work to
the left. This means that unlike in conventional backtracking search without
learning, we should not expect a linear speedup for unsatisfiable instances.

(In effect we are treating the foreach loop as a parallel lazy fold, so that a
subtree does not depend upon items to its left. Backjumping conditions are
left-zero elements [21], although we do not have a unique zero.)

3. If any thread finds a solution, we do succeed immediately, even if this involves
passing knowledge to the left. If there are multiple solutions, this can lead to
a parallel search finding a different solution to the one which would be found
sequentially—since the solution we find is arbitrary, this is not genuinely
unsafe. However, this means we could witness a superlinear (greater than n
from n threads) speedup for satisfiable instances [4].

4. For work stealing, we explicitly prioritise subproblems highest up and then
furthest left in the search tree. This is because we expect our value-ordering
heuristics to be weakest early on in search [I8], and we use parallelism to
offset poor choices early on in the search [6l24].

4 Experimental Evaluation

Our algorithm was implementecﬂn C++ using C++11 native threads, and was
compiled using GCC 4.9.0. We performed our experiments on a machine with
dual Intel Xeon E5-2640 v2 processors (for a total of 16 cores, and 32 hardware
threads via hyper-threading), running Scientific Linux 6.6. For the comparison
with SND in the following section, we used Java HotSpot 1.8.0_11. Runtimes
include preprocessing and thread launch costs, but not the time taken to read in
the graph files from disk (except in the case of SND, which we were unable to
instrument).

For evaluation, we used the same families of benchmark instances that were
used to evaluate LAD [36] and SND [I]. The “LV” family [20] contains graphs
with various interesting properties from the Stanford Graph Database, and
the 793 pattern/target pairs give a mix of satisfiable and unsatisfiable queries.
The “SF” family contains 100 scale-free graph pairs, again mixing satisfiable
and unsatisfiable queries. The remainder of these graphs come from the Vflib
database [I1]: the “BVG” and “BVGm” families are bounded degree graphs (540
pairs all are satisfiable), “M4D” and “M4Dr” are four-dimensional meshes (360
pairs, all satisfiable), and the “r” family is randomly generated (270 pairs, all
satisfiable). We expanded this suite with 24 pairs of graphs representing image
pattern queries [12] (which we label “football”), and 200 randomly selected pairs
from each of a series of 2D image (“images”) and 3D mesh (“meshes”) graph
queries [37]. The largest number of vertices is 900 for a pattern and 5,944 for a
target, and the largest number of edges is 12,410 for a pattern and 34,210 for a
target; some of these graphs do contain loops. All 2,487 instances are publicly
available in a simple text formatﬂ

4.1 Comparison with Other Solvers

We compare our implementation against the Abscon 609 implementation of SND
(which is written in Java) [I], Solnon’s C implementation of LAD [36], and the
VFLib C implementation of VF2 [II]. (The versions of each of these solvers we
used could support loops in graphs correctly.)

Note that SND is not inherently multi-threaded, but the Java 8 virtual
machine we used for testing makes use of multiple threads for garbage collection
even for sequential code. On the one hand, this could be seen as giving SND an
unfair advantage. However, nearly all modern CPUs are multi-core anyway, so one
could say that it is everyone else’s fault for not taking advantage of these extra
resources. We therefore present both sequential (from a dedicated implementation,
not a threaded implementation running with only a single thread) and threaded
results for our algorithm.

In Fig. |1l we show the cumulative performance of each algorithm. The value
of the line at a given time for an algorithm shows the total number of instances

! source code, data, experimental scripts and raw results available at

https://github.com/ciaranm/cp2015-subgraph-isomorphism
2 http://liris.cnrs.fr/csolnon/SIP.html

https://github.com/ciaranm/cp2015-subgraph-isomorphism
http://liris.cnrs.fr/csolnon/SIP.html

2487

< 2000 |-
[}
2
3 VF2
n
[}
o
5
g 1500 ,
o 2487
o] L
o C
g 2450,/ - Our Parallel
FE r Our Sequential
25 1000 C No Supplementals
o 2400 SND
4 o LAD
2 C
= r
=] -
E 2350 -
© 500 C

2300 |-

2250 ‘

1m 1h 1d
0 1 1 1 ‘ 1 1 1 ‘ 1 1 1 ‘ 1 1 1 ‘ 1 1 1 ‘ 1 1 1 ‘
10° 10t 102 103 10* 10° 108 107 108

Runtime (ms)

Fig. 1. Cumulative number of benchmark instances solved within a given time, for
different algorithms: at time ¢, the value is the size of the set of instances whose runtime
is at most ¢ for that algorithm. Parallel results are using 32 threads on a 16 core
hyper-threaded system.

which, individually, were solved in at most that amount of time. Our sequential
implementation beats VF2 for times over 0.2s, LAD for times over 0.6s, and
always beats SND. Our parallel implementation beats VF2 for times over 0.06s,
LAD for times over 0.02s, and always beats SND; parallelism gives us an overall
benefit from 12ms onwards. Finally, removing the supplemental graphs from
our sequential algorithm gives an improvement below 10s (due to the cost of
preprocessing), but is beneficial for longer runtimes.

Fig.[2 presents an alternative perspective of these results. Each point represents
an instance, and the shape of a point shows its family. For the y position for an
instance, we use our sequential (top graph) or parallel (bottom graph) runtime.
For the = position, we use the runtime from the virtual best other solver; the
colour of a point indicates which solver this is. For any point below the x =y
diagonal line, we are the best solver. A limit of 10® ms was used—points along
the outer axes represent timeouts.

Although overall ours is the single best solver, VF2 is stronger on trivial
instances. This is not surprising: we must spend time constructing supplemental

r LAD e
VF2 e
SND
@
£ LV (sat) O
qé LV (unsat) @
= BVG / BVGm +
Z M4D / M4Dr X
é SF (sat) v
ai) SF (unsat) ¥
g ro ok
E football ¢
©) images (sat) A&
images (unsat) A
meshes (sat) O
meshes (unsat) MW

Our parallel runtime (ms)

Virtual best other solver runtime (ms)

Fig. 2. Above, our sequential runtime compared to the virtual best other sequential
solver, for each benchmark instance; below, the same, with our parallel runtimes and
including parallel solvers. For points below the diagonal line, ours is the best solver for
this instance; for points above the diagonal, the point colour indicates the best solver.

graphs. Thus it may be worth using either VF2 or our own algorithm without
supplemental graphs as a presolver, if short runtimes for trivial instances is
desirable—this may be the case in graph database systems where many trivial
queries must be run [16] (although these systems could cache the supplemental
graphs for targets). These results also suggest potential scope for algorithm
portfolios, or instance-specific configuration: for example, we could omit or use
different supplemental graphs in some cases.

4.2 Parallelism

Fig. [3| shows, for each instance, the speedup obtained from parallelism. Except
at very low sequential runtimes, we see a reasonable general improvement. For
some satisfiable instances, we see strongly superlinear speedups. These instances
are exceptionally hard problems [35]: we would have found a solution quickly,
except for a small number of wrong turns at the top of search. Our work stealing
strategy was able to avoid strong commitment to early value-ordering heuristic
choices, providing an alternative to using more complicated sequential search
strategies to offset this issue. (Some of these results were also visible in Fig.
where we timed out on satisfiable instances which another solver found trivial.)

Some non-trivial satisfiable instances exhibited a visible slowdown. This is
because we were using 32 software threads, to match the advertised number of
hardware hyper-threads, but our CPUs only have 16 “real” cores between them.
For these instances parallelism did not reduce the amount of work required to
find a solution, but did result in a lower rate of recursive calls per second on the
sequential search path—this is similar to the risk of introducing a slower processing
element to a cluster [38]. Even when experimenting with 16 threads, we sometimes
observed a small slowdown due to worse cache and memory bus performance,
and due to the overhead of modifying the code to allow for work stealing (recall
that we are benchmarking against a dedicated sequential implementation).

In a small number of cases, we observe low speedups for non-trivial unsatisfi-
able instances. These are from cases where backjumping has a substantial effect
on search, making much of our speculative parallelism wasted effort. (Additionally,
if cancellation were not to be used, some of these instances would exhibit large
absolute slowdowns.)

4.3 Effects of Backjumping

In Fig. 4] we show the benefits of backjumping: points below the diagonal line
indicate an improvement to runtimes from backjumping. Close inspection shows
that backjumping usually at least pays for itself, or gives a slight improvement.
(This was not the case when we maintained conflict sets explicitly: there, the
overheads lead to a small average slowdown.)

For a few instances, backjumping makes an improvement of several orders of
magnitude. The effects are most visible for some of the LV benchmarks, which
consist of highly structured graphs. This mirrors the conclusions of Chen and
Van Beek [5], who saw that “adding CBJ to a backtracking algorithm ...can

108 »

07 E ¢

i ° LV (sat) o
LV (unsat) ([

> o, BVG/BVGm

£ M4D / M4Dr
é SF (sat) v
b SF (unsat) v
é 8 r *

) football
g) images (sat) A
o 8 images (unsat) A
meshes (sat)]
8 meshes (unsat)]

100 Bl vl e v el

Sequential Runtime (ms)

Fig. 3. The effects of parallelism, using 32 threads on a 16 core hyper-threaded system.
Each point is a problem instance; points below the diagonal line indicate a speedup.

108 P

107
LV (sat) (@]

0

£ 10° LV (unsat) (]
. BVG / BVGm

% 105 M4D / M4Dr

3 SF (sat) v
=

S 104 SF (unsat) v
M r *
é 3 football

& 10 .

> images (sat) A
£ images (unsat) A
2

g 10? meshes (sat)]
= u

meshes (unsat)

10!

10°

Runtime without Backjumping (ms)

Fig. 4. The effects of backjumping. Each point is one benchmark instance; points below
the diagonal line indicate a speedup.

Recursive calls with counting-based all-different

10 10t 102 10® 10* 10° 10% 107 108

Recursive calls with counting-based all-different

Recursive calls with value-deleting all-different

45 L
s 10° |
5 L
&
ST B LV (sat) o
% F LV (unsat) []
3 s L BVG / BVGm
2 L M4D / M4Dr
4 10° C SF (sat) v
= C SF (unsat) v
2
ERRT Lo
o - football
=
£ 10° C images (sat) A
2 C images (unsat) A
8 s T meshes (sat) O
,qé 10 il meshes (unsat)]
w
&
5 L
8 10 |
- C

100 ;w T R NN NN TRINY MR B NIN] NI I Rr] A

Fig. 5. Above, the improvement to the search space size which would be given by
Régin’s matching-based all-different propagator. Below, the improvement given by using
counting all-different rather than simple deletion. Each point is one benchmark instance;
the point style shows the benchmark family. Points below the diagonal line indicate a
reduction in the search space size.

(still) speed up the algorithm by several orders of magnitude on hard, structured
problems”. Real-world graphs often have unexpected structural properties which
are not present in random instances [22l34], so we consider backjumping to be
worthwhile.

4.4 Comparing All-Different Propagators

We now justify our use of the counting all-different propagator. In the top half of
Fig. 5| we show the benefits to the size of the search space that would be gained
if we used Régin’s algorithm at every step instead of our counting propagator
(cutting search off after 10 search nodes). We see that for most graph families,
there would be little to no benefit even if there was no additional performance
cost. Only in a small portion of the LV graphs do we see a gain (and in one case,
due to dynamic variable ordering, there is a penalty).

Thus, either our counting propagator is nearly always as good as matching,
or neither propagator does very much in this domain. In the bottom half of
Fig. bl we show the benefits to the size of the search space that are gained from
using counting, rather than simply deleting a value from every other domain on
assignment. The large number of points below the diagonal line confirm that
going beyond simple value deletion for all-different propagation is worthwhile.

5 Conclusion

Going against conventional wisdom, we saw that replacing strong inference with
cheaper surrogates could pay off, and that backjumping could be implemented
cheaply enough to be beneficial. We also saw parallelism give a substantial benefit.
This was true even for relatively low runtimes, due to us exploiting parallelism
for pre-processing as well as for search. Parallel backjumping has only been given
limited attention [SI7J10]. However, a simple approach has worked reasonably
well here (in contrast to stronger clause-learning systems, where successes in
parallelism appear to be rare).

There is also plenty of scope for extensions of and improvement to our
algorithm. We have yet to deeply investigate the possibility of constructing
domain- or instance-specific supplemental graphs. Nor did we discuss directed
graphs or induced isomorphisms: supplemental graphs can be taken further for
these variations of the problem. In particular, composing transformations for
induced isomorphisms would allow us to reason about “paths of non-edges”, which
may be very helpful. Finally, we have yet to consider exploiting the symmetries
and dominance relations which we know are present in many graph instances.

Acknowledgements

The authors wish to thank Christine Solnon for discussions, providing the graph
instances and the LAD implementation, Christophe Lecoutre for discussion and
the SND implementation, and Lars Kotthoff and Alice Miller for their comments.

References

10.

11.

12.

Audemard, G., Lecoutre, C., Modeliar, M.S., Goncalves, G., Porumbel, D.: Scoring-
based neighborhood dominance for the subgraph isomorphism problem. In: Prin-
ciples and Practice of Constraint Programming - 20th International Conference,
CP 2014, Lyon, France, September 8-12, 2014. Proceedings. pp. 125-141 (2014),
http://dx.doi.org/10.1007/978-3-319-10428-7_12

Bessiere, C., Régin, J.: MAC and combined heuristics: Two reasons to forsake
FC (and cbj?) on hard problems. In: Proceedings of the Second International
Conference on Principles and Practice of Constraint Programming, Cambridge,
Massachusetts, USA, August 19-22, 1996. pp. 61-75 (1996), http://dx.doi.org/
10.1007/3-540-61551-2_66

Bonnici, V., Giugno, R., Pulvirenti, A., Shasha, D., Ferro, A.: A subgraph iso-
morphism algorithm and its application to biochemical data. BMC Bioinformatics
14(Suppl 7), S13 (2013), http://www.biomedcentral.com/1471-2105/14/87/513
de Bruin, A., Kindervater, G., Trienekens, H.: Asynchronous parallel branch and
bound and anomalies. In: Ferreira, A., Rolim, J. (eds.) Parallel Algorithms for
Irregularly Structured Problems, Lecture Notes in Computer Science, vol. 980, pp.
363-377. Springer Berlin Heidelberg, Berlin, Heidelberg (1995), http://dx.doi.
org/10.1007/3-540-60321-2_29

Chen, X., van Beek, P.: Conflict-directed backjumping revisited. J. Artif. Intell.
Res. (JAIR) 14, 53-81 (2001), http://dx.doi.org/10.1613/jair.788

Chu, G., Schulte, C., Stuckey, P.J.: Confidence-based work stealing in parallel
constraint programming. In: Gent, I.P. (ed.) Principles and Practice of Con-
straint Programming - CP 2009, Lecture Notes in Computer Science, vol. 5732,
pp. 226-241. Springer Berlin Heidelberg (2009), http://dx.doi.org/10.1007/
978-3-642-04244-7_20

Coffman, T., Greenblatt, S., Marcus, S.: Graph-based technologies for intelligence
analysis. Commun. ACM 47(3), 45-47 (Mar 2004), http://doi.acm.org/10.1145/
971617.971643

Conrad, J., Mathew, J.: A backjumping search algorithm for a distributed memory
multicomputer. In: Parallel Processing, 1994. ICPP 1994 Volume 3. International
Conference on. vol. 3, pp. 243-246 (Aug 1994)

Conte, D., Foggia, P., Sansone, C., Vento, M.: Thirty years of graph matching in
pattern recognition. International Journal of Pattern Recognition and Artificial
Intelligence 18(03), 265-298 (2004), http://www.worldscientific.com/doi/abs/
10.1142/50218001404003228

Cope, M., Gent, [.P., Hammond, K.: Parallel heuristic search in Haskell. In: Se-
lected papers from the 2nd Scottish Functional Programming Workshop (SFP00),
University of St Andrews, Scotland, July 26th to 28th, 2000. pp. 65-76 (2000)
Cordella, L.P., Foggia, P., Sansone, C., Vento, M.: A (sub)graph isomorphism
algorithm for matching large graphs. IEEE Trans. Pattern Anal. Mach. Intell. 26(10),
1367-1372 (2004), http://doi.ieeecomputersociety.org/10.1109/TPAMI. 2004,
75

Damiand, G., Solnon, C., de la Higuera, C., Janodet, J.C., Emilie Samuel: Poly-
nomial algorithms for subisomorphism of nD open combinatorial maps. Com-
puter Vision and Image Understanding 115(7), 996 — 1010 (2011), http://wuw,
sciencedirect.com/science/article/pii/S1077314211000816, special issue on
Graph-Based Representations in Computer Vision

http://dx.doi.org/10.1007/978-3-319-10428-7_12
http://dx.doi.org/10.1007/3-540-61551-2_66
http://dx.doi.org/10.1007/3-540-61551-2_66
http://www.biomedcentral.com/1471-2105/14/S7/S13
http://dx.doi.org/10.1007/3-540-60321-2_29
http://dx.doi.org/10.1007/3-540-60321-2_29
http://dx.doi.org/10.1613/jair.788
http://dx.doi.org/10.1007/978-3-642-04244-7_20
http://dx.doi.org/10.1007/978-3-642-04244-7_20
http://doi.acm.org/10.1145/971617.971643
http://doi.acm.org/10.1145/971617.971643
http://www.worldscientific.com/doi/abs/10.1142/S0218001404003228
http://www.worldscientific.com/doi/abs/10.1142/S0218001404003228
http://doi.ieeecomputersociety.org/10.1109/TPAMI.2004.75
http://doi.ieeecomputersociety.org/10.1109/TPAMI.2004.75
http://www.sciencedirect.com/science/article/pii/S1077314211000816
http://www.sciencedirect.com/science/article/pii/S1077314211000816

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Geelen, P.A.: Dual viewpoint heuristics for binary constraint satisfaction problems.
In: ECAL pp. 31-35 (1992)

Gent, 1.P., Miguel, 1., Moore, N.C.: Lazy explanations for constraint propagators.
In: Carro, M., Pea, R. (eds.) Practical Aspects of Declarative Languages, Lecture
Notes in Computer Science, vol. 5937, pp. 217-233. Springer Berlin Heidelberg
(2010), http: //dx.doi.org/10.1007/978-3-642-11503-5_19

Gent, I.P., Miguel, I., Nightingale, P.: Generalised arc consistency for the
alldifferent constraint: An empirical survey. Artificial Intelligence 172(18),
1973 — 2000 (2008), http://www.sciencedirect.com/science/article/pii/
S0004370208001410, special Review Issue

Giugno, R., Bonnici, V., Bombieri, N., Pulvirenti, A., Ferro, A., Shasha, D.: Grapes:
A software for parallel searching on biological graphs targeting multi-core ar-
chitectures. PLoS ONE 8(10), €76911 (10 2013), http://dx.doi.org/10.1371%
2F journal .pone.0076911

Habbas, Z., Herrmann, F., Merel, P.P., Singer, D.: Load balancing strategies for
parallel forward search algorithm with conflict based backjumping. In: Parallel and
Distributed Systems, 1997. Proceedings., 1997 International Conference on. pp.
376-381 (Dec 1997)

Harvey, W.D., Ginsberg, M.L.: Limited discrepancy search. In: IJCAI (1). pp.
607-615. Morgan Kaufmann, San Francisco, CA, USA (1995)

Kessel, P.V., Quimper, C.: Filtering algorithms based on the word-RAM model. In:
Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence, July
22-26, 2012, Toronto, Ontario, Canada. (2012), http://www.aaai.org/ocs/index,
php/AAAT/AAAT12/paper/view/5135

Larrosa, J., Valiente, G.: Constraint satisfaction algorithms for graph pattern
matching. Mathematical Structures in Computer Science 12(4), 403422 (2002),
http://dx.doi.org/10.1017/50960129501003577

Lobachev, O.: Parallel computation skeletons with premature termination property.
In: Schrijvers, T., Thiemann, P. (eds.) Functional and Logic Programming, Lecture
Notes in Computer Science, vol. 7294, pp. 197-212. Springer Berlin Heidelberg
(2012), http: //dx.doi.org/10.1007/978-3-642-29822-6_17

Maclntyre, E., Prosser, P., Smith, B.M., Walsh, T.: Random constraint satisfaction:
Theory meets practice. In: Maher, M.J., Puget, J. (eds.) Principles and Practice of
Constraint Programming - CP98, 4th International Conference, Pisa, Italy, October
26-30, 1998, Proceedings. Lecture Notes in Computer Science, vol. 1520, pp. 325-339.
Springer (1998), http://dx.doi.org/10.1007/3-540-49481-2_24

Malitsky, Y.: Instance-Specific Algorithm Configuration. Springer (2014), http!
//dx.doi.org/10.1007/978-3-319-11230-5

McCreesh, C., Prosser, P.: The shape of the search tree for the maximum clique
problem and the implications for parallel branch and bound. ACM Trans. Parallel
Comput. 2(1), 8:1-8:27 (Apr 2015), http://doi.acm.org/10.1145/2742359
McGregor, J.J.: Relational consistency algorithms and their application in finding
subgraph and graph isomorphisms. Inf. Sci. 19(3), 229-250 (1979), http://dx.doi|
org/10.1016/0020-0255(79)90023-9

Prosser, P.: Domain filtering can degrade intelligent backtracking search. In: Pro-
ceedings of the 13th International Joint Conference on Artifical Intelligence - Volume
1. pp. 262-267. IJCAT’93, Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA (1993), http://dl.acm.org/citation.cfm?id=1624025. 1624062

Prosser, P.: Hybrid algorithms for the constraint satisfaction problem. Computa-
tional Intelligence 9, 268-299 (1993), http://dx.doi.org/10.1111/j.1467-8640,
1993.tb00310.x

http://dx.doi.org/10.1007/978-3-642-11503-5_19
http://www.sciencedirect.com/science/article/pii/S0004370208001410
http://www.sciencedirect.com/science/article/pii/S0004370208001410
http://dx.doi.org/10.1371%2Fjournal.pone.0076911
http://dx.doi.org/10.1371%2Fjournal.pone.0076911
http://www.aaai.org/ocs/index.php/AAAI/AAAI12/paper/view/5135
http://www.aaai.org/ocs/index.php/AAAI/AAAI12/paper/view/5135
http://dx.doi.org/10.1017/S0960129501003577
http://dx.doi.org/10.1007/978-3-642-29822-6_17
http://dx.doi.org/10.1007/3-540-49481-2_24
http://dx.doi.org/10.1007/978-3-319-11230-5
http://dx.doi.org/10.1007/978-3-319-11230-5
http://doi.acm.org/10.1145/2742359
http://dx.doi.org/10.1016/0020-0255(79)90023-9
http://dx.doi.org/10.1016/0020-0255(79)90023-9
http://dl.acm.org/citation.cfm?id=1624025.1624062
http://dx.doi.org/10.1111/j.1467-8640.1993.tb00310.x
http://dx.doi.org/10.1111/j.1467-8640.1993.tb00310.x

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

Puget, J.: A fast algorithm for the bound consistency of alldiff constraints. In:
Proceedings of the Fifteenth National Conference on Artificial Intelligence and
Tenth Innovative Applications of Artificial Intelligence Conference, AAAT 98, TAAI
98, July 26-30, 1998, Madison, Wisconsin, USA. pp. 359-366 (1998), http://www|
aaai.org/Library/AAAI/1998/aaai98-051.php

Quimper, C., Walsh, T.: The all different and global cardinality constraints on
set, multiset and tuple variables. In: Recent Advances in Constraints, Joint
ERCIM/CoLogNET International Workshop on Constraint Solving and Con-
straint Logic Programming, CSCLP 2005, Uppsala, Sweden, June 20-22, 2005,
Revised Selected and Invited Papers. pp. 1-13 (2005), http://dx.doi.org/10.,
1007/11754602_1

Régin, J.: A filtering algorithm for constraints of difference in CSPs. In: Proceedings
of the 12th National Conference on Artificial Intelligence, Seattle, WA, USA, July 31
- August 4, 1994, Volume 1. pp. 362-367 (1994), http://www.aaai.org/Library/
AAAT/1994/aaai94-055.php

Régin, J.C.: Développement d’outils algorithmiques pour 'Intelligence Artificielle.
Application & la chimie organique. Ph.D. thesis, Université Montpellier 2 (1995)
San Segundo, P., Rodriguez-Losada, D., Galan, R., Matia, F., Jimenez, A.: Ex-
ploiting CPU bit parallel operations to improve efficiency in search. In: Tools with
Artificial Intelligence, 2007. ICTAI 2007. 19th IEEE International Conference on.
vol. 1, pp. 53-59 (Oct 2007)

Sevegnani, M., Calder, M.: Bigraphs with sharing. Theoretical Computer Science
577(0), 43 — 73 (2015), http://www.sciencedirect.com/science/article/pii/
S0304397515001085

Slater, N., Itzchack, R., Louzoun, Y.: Mid size cliques are more common in real
world networks than triangles. Network Science 2, 387-402 (12 2014), http://
journals.cambridge.org/article_S2050124214000228

Smith, B.M., Grant, S.A.: Modelling exceptionally hard constraint satisfaction
problems. In: Smolka, G. (ed.) Principles and Practice of Constraint Programming-
CP97, Lecture Notes in Computer Science, vol. 1330, pp. 182-195. Springer Berlin
Heidelberg (1997), http://dx.doi.org/10.1007/BFb0017439

Solnon, C.: Alldifferent-based filtering for subgraph isomorphism. Artif. Intell.
174(12-13), 850-864 (2010), http://dx.doi.org/10.1016/j.artint.2010.05.002
Solnon, C., Damiand, G., de la Higuera, C., Janodet, J.C.: On the complexity of
submap isomorphism and maximum common submap problems. Pattern Recogni-
tion 48(2), 302 — 316 (2015), http://www.sciencedirect.com/science/article/
pii/S0031320314002192

Trienekens, H.W.: Parallel Branch and Bound Algorithms. Ph.D. thesis, Erasmus
University Rotterdam (1990)

Ullmann, J.R.: An algorithm for subgraph isomorphism. Journal of the ACM
(JACM) 23(1), 31-42 (1976)

Ullmann, J.R.: Bit-vector algorithms for binary constraint satisfaction and subgraph
isomorphism. J. Exp. Algorithmics 15, 1.6:1.1-1.6:1.64 (Feb 2011), http://doi.
acm.org/10.1145/1671970.1921702

Zampelli, S., Deville, Y., Solnon, C.: Solving subgraph isomorphism problems with
constraint programming. Constraints 15(3), 327-353 (2010), http://dx.doi.org/
10.1007/s10601-009-9074-3

http://www.aaai.org/Library/AAAI/1998/aaai98-051.php
http://www.aaai.org/Library/AAAI/1998/aaai98-051.php
http://dx.doi.org/10.1007/11754602_1
http://dx.doi.org/10.1007/11754602_1
http://www.aaai.org/Library/AAAI/1994/aaai94-055.php
http://www.aaai.org/Library/AAAI/1994/aaai94-055.php
http://www.sciencedirect.com/science/article/pii/S0304397515001085
http://www.sciencedirect.com/science/article/pii/S0304397515001085
http://journals.cambridge.org/article_S2050124214000228
http://journals.cambridge.org/article_S2050124214000228
http://dx.doi.org/10.1007/BFb0017439
http://dx.doi.org/10.1016/j.artint.2010.05.002
http://www.sciencedirect.com/science/article/pii/S0031320314002192
http://www.sciencedirect.com/science/article/pii/S0031320314002192
http://doi.acm.org/10.1145/1671970.1921702
http://doi.acm.org/10.1145/1671970.1921702
http://dx.doi.org/10.1007/s10601-009-9074-3
http://dx.doi.org/10.1007/s10601-009-9074-3

	A Parallel, Backjumping Subgraph Isomorphism Algorithm using Supplemental Graphs

