
HAL Id: lirmm-01275591
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01275591

Submitted on 18 Oct 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Constraint-Based Approach to the Differential
Harvest Problem

Nicolas Briot, Christian Bessiere, Philippe Vismara

To cite this version:
Nicolas Briot, Christian Bessiere, Philippe Vismara. A Constraint-Based Approach to the Differen-
tial Harvest Problem. CP 2015 - 21st International Conference on Principles and Practice of Con-
straint Programming, Aug 2015, Cork, Ireland. pp.541-556, �10.1007/978-3-319-23219-5_38�. �lirmm-
01275591�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01275591
https://hal.archives-ouvertes.fr

A Constraint-based Approach to the
Differential Harvest Problem

Nicolas Briot1, Christian Bessiere1, and Philippe Vismara1,2

1 LIRMM, CNRS–University Montpellier, France
2 MISTEA, Montpellier SupAgro, INRA, 2 place Viala, 34060 Montpellier, France

{briot,bessiere,vismara}@lirmm.fr

Abstract. In this paper, we study the problem of differential harvest
in precision viticulture. Some recent prototypes of grape harvesting ma-
chines are supplied with two hoppers and are able to sort two types
of grape quality. Given estimated qualities and quantities on the differ-
ent areas of the vineyard, the problem is to optimize the routing of the
grape harvester under several constraints. The main constraints are the
amount of first quality grapes to harvest and the capacity of the hoppers.
We model the differential harvest problem as a constraint optimization
problem. We present preliminary results on real data. We also compare
our constraint model to an integer linear programming approach and
discuss expressiveness and efficiency.

1 Introduction

In precision viticulture, many studies have proposed to define field quality zones
[14]. They demonstrated the technical and economic value of a differential har-
vesting of these different zones. This interest justifies the recent development
of prototypes of conventional grape harvesting machines able to sort two types
of harvest quality, such as the EnoControlTM system prototype (newHolland
Agriculture, PA, USA). These grape harvesting machines have two tanks, called
hoppers, able to differentiate two types of grape quality, named A and B, ac-
cording to the harvested zone.

Optimizing harvest consists on minimizing the working time of grape har-
vester. This time corresponds to travel time and emptying time of the machine.
Ideally, this goal requires that both hoppers of the machine are full at each
emptying. In the case of selective harvesting, the simultaneous filling of the
two hoppers is combinatorial and complex. Indeed, the hopper that contains A
grapes can fill up at a speed different from the hopper that contains B grapes,
depending on the harvested zone. Other issues have to be considered. Top quality
grapes should not be altered (mixed with lower quality grapes) when the har-
vester moves from one quality zone to another. Turning radius of the machine
must also be taken into account.

This problem, called Differential Harvest Problem, has not been studied in
the literature except in a preliminary study we published in [4]. A comparison
with routing problems can be established. For instance, Bochtis et al. [1, 2] show

2 Nicolas Briot, Christian Bessiere, and Philippe Vismara

various formulations for many related problems in agriculture, such as precision
spraying, fertilizing in arable farming, etc. In [9], Kilby and Shaw give a Con-
straint Programming (CP) formulation for the Vehicle Routing Problem (VRP)
and detail other exact methods and heuristics to solve the problem. Balancing
Bike Sharing System (BBSS) is an example of real application solved with VRP
formulation and CP approach. Di Gaspero et al. [7] show two novel CP models
for BBSS and a Large Neighborhood Search approach is proposed.

In this paper, we explore how to solve the Differential Harvest Problem with
a CP approach. We consider two models: a Step model we introduced in our
previous work [4] and a new routing model that we call the Precedence model.
We also compare these two models to an Integer Linear Programming approach.

The paper is organized as follows. Section 2 describes the problem of differ-
ential harvest in viticulture. Section 3 proposes the two CP models. We present
preliminary results on real data in Section 4. We compare our CP model to an
Integer Linear Programming approach and discuss expressiveness and efficiency
in Section 5.

2 The Differential Harvest Problem

Precision viticulture is a new farming management approach that focuses on the
intra-field variability in a vineyard. Thanks to high resolution satellite images
and infield sensors, it is possible to predict the variability of quality and yield
within a vine field. The Differential Harvest Problem (DHP) is defined on a vine
field with two qualities of grapes. The first one will be denoted A grapes and
corresponds to high quality grapes. These grapes will be used to produce high
quality wine. The rest of the harvest will be put in the B-grapes class. Note that
high quality grapes (A grapes) can be downgraded to the low quality B. But the
converse is not true.

We consider a harvesting machine with two hoppers. We denote by Cmax the
maximum capacity of a hopper. With such a machine, two categories of grapes
can be separated. Generally, one hopper (called A hopper) receives only A grapes
whereas the other one (called B&A hopper) can contain either B grapes only or
both A grapes and B grapes. It is important not to contaminate the grapes in A
hopper with B grapes. When the hoppers are full, the machine can dump them
into a bin located around the plot before continuing its work. Generally, the bin
is immediately brought to the winery after each dump of the hoppers in order
to preserve grapes quality. A second bin waits in stand-by to avoid delaying the
harvester.

The harvesting machine takes some time between picking grapes and putting
them into hoppers. This time (≈ 10 seconds), required to empty the conveyor
belt, is called latency. When the harvesting machine passes over two zones, the
quality of grapes harvested is not guaranteed during this time because latency
may lead to mixing both qualities of grapes. Hence, when the machine leaves a
zone of A grapes to enter a zone of B grapes or leaves a zone of B grapes to
enter a zone of A grapes, the grapes must be considered B grapes. For the same

A Constraint-based Approach to the Differential Harvest Problem 3

row, the type of transitions may vary according to the direction that the row is
harvested. Because of latency, the quantity of A grapes (resp. B grapes) that
are collected within a given row can change with the direction. For instance,
consider a row where the sequence of quality areas is A-B-A-B (see Figure 1). If
the machine harvests the row from left to right, there is only one B-A transition.
If the machine harvests the row in the opposite direction, two transitions B-A
appear. Thus, quantities of A grapes and B grapes harvested will necessarily
depend on the direction in which the rows are harvested.

A grapes B grapes A grapes B grapes

A hopper:
B&A hopper:

A grapes B grapes A grapes B grapes

A hopper:
B&A hopper:

Latency

LatencyLatency

Fig. 1. Quantities of grapes depend on the direction of row harvest.

Consider Rmin, the desired minimum volume of A grapes harvested in the
vine field. Rmin is a threshold. In practice, Rmin corresponds to shortfall of a
volume of A grapes according to the objectives of the winery. If the vineyard
contains more than Rmin A grapes, the excess amount can be downgraded to
B-grapes quality. As long as Rmin has not been reached, A grapes are stored
into the A hopper. Once Rmin has been reached and after the hoppers have
been emptied, A grapes and B grapes can be mixed in both hoppers. Regarding
Rmin, there are three possibilities to fill the two hoppers. When the harvesting
machine must differentiate qualities in hoppers and the A hopper is not full, A
grapes are put in the A hopper and B grapes in the B&A hopper (see Figure 2.a).
When A hopper is full, the machine can put A grapes in the B&A hopper (see
Figure 2.b). In such a case, these A grapes are downgraded. Once Rmin has
been reached, the machine can mix grapes in both hoppers (see Figure 2.c).

The vine field, composed of n rows, is modelled by differentiating the two
extremities of each row. A row r ∈ {0, . . . , n − 1} is represented by extremities
2r and 2r+1. For each row, we denote QA2r→2r+1 and QB2r→2r+1 (resp. QA2r+1→2r

and QB2r+1→2r) the quantities of A grapes and B grapes that will be collected

4 Nicolas Briot, Christian Bessiere, and Philippe Vismara

A hopper B&A hopper
(a)

A hopper B&A hopper
full (b)

A hopper B&A hopper
(c)

A grapes B grapes A grapes B grapes A grapes B grapes

Fig. 2. Three possibilities to fill the hoppers. (a) A grapes and B grapes are separated.
(b) When A hopper is full, A grapes and B grapes are mixed in the B&A hopper. (c)
Once Rmin has been reached, A grapes and B grapes are mixed in the two hoppers.

in row r with orientation 2r → 2r + 1 (resp. 2r + 1→ 2r). These quantities are
computed according to the latency.

Another important information is the cost of the path between two extremi-
ties of different rows and between row extremities and the bin place. We denote
d(p, q) = d(q, p) ∀p, q ∈ {0, 1, . . . , 2n − 1} ∪ {2n} the time required to go from
an extremity p to an extremity q (where 2n denotes the bin place). This cost
depends on the distances between extremities and the turning radius of the
harvesting machine.

We are ready to define the problem.

Definition 1 (Differential Harvest Problem). Given a vine field described
by a cost path matrix between row extremities (or the bin place) and an estimation
of the quantity of A grapes and B grapes on each row according to the direction,
given a harvesting machine with a hopper capacity of Cmax and a latency delay,
given a threshold of Rmin A grapes to harvest, the Differential Harvest Problem
consists in finding a sequence of extremities (that is, an order and orientation of
the rows) that minimizes the time required to harvest the vine field and ensures
at least Rmin A grapes harvested.

3 Constraint Programming for the DHP

The problem of differential harvest in precision viticulture is a recent problem.
Its specification is not yet stable as it corresponds to a simplification of the real
agronomic problem. In this context, other constraints will certainly appear when
the first solutions will be applied. An example of probable extra constraint is
shown in section 5.2. Constraint programming is well recognized for its flexibility
and ease of maintenance. For these reasons, using constraint programming to
model the DHP seems to be a good approach.

A Constraint-based Approach to the Differential Harvest Problem 5

This section is devoted to present two CP models. First, the Step model
consists in choosing which row to harvest step by step. Second, the Precedence
model is devoted to find the best predecessor of each row.

Given a set of variables and a set of possible values for each variable, given a
set of constraints, and given an optimization criterion, constraint optimization
consists in finding an instantiation of variables that satisfies all constraints of
the problem and minimizes the criterion.

3.1 The Step model

In [4], we presented a preliminary CP model to solve the Differential Harvest
problem. This model was dedicated to measure the gain of an optimized rout-
ing compared to the traditional approach. The traditional routing consists in
systematically taking the second next row on the same side,3 until the capacity
of one hopper is reached. We showed in [4] that using a CP model to optimize
the routing can reduce the harvest time of almost 40% compared to traditional
harvest routing.

The Step model presented in [4] is illustrated in Figure 3. This model is based
on three main kinds of variables that describe:

– the number of the row visited at each step of the route,
– the orientation of the visited row (harvest direction),
– the act of emptying the hoppers into the bin at the end of the visited row

or not.

0 1 2 3 4 5 6 7

Step 0 1 2 3 4 5 6 7

Row 1 4 5 7 0 2 3 6

Orientation 0 1 0 1 0 1 0 1

Emptying into the bin? 0 1 0 0 0 1 0 1

Fig. 3. The Step model.

An Alldifferent constraint ensures that the machine passes exactly once in
each row. Additional variables are used to represent the quantity of grapes har-

3 Because of the turning radius of the machine, turning into the next row is generally
longer than jumping to the second next row.

6 Nicolas Briot, Christian Bessiere, and Philippe Vismara

vested until each step. They are subject to a set of numeric constraints that
control the capacities of the hoppers.

The first k steps of the route perform differential harvest. Before step k,
B grapes cannot appear in A hoppers, i.e. harvest is separated. In step k, the
machine goes to the bin and must have harvested at least a total of Rmin
A grapes. After step k, A grapes and B grapes are mixed in both hoppers.

In the first version of this Step model we included k as a variable but experi-
mental results were very bad. The combinatorial aspect of the problem decreases
if we set k to a fixed value. Hence, each instance of the original problem is re-
placed by a set of sub-instances with different values of k. According to the
capacity of the hoppers and the value of Rmin, few values of k must be consid-
ered. Since these instances are independent, they can be executed in parallel.

In section 4, we will see that this model is not effective. The next subsection
gives another model for the DHP, based on models for routing problems.

3.2 The Precedence model

The Precedence model is based on variables that represent the previous row of a
row. Our model shares similarities with the model presented in [9] for the Vehicle
Routing Problem.

For a given instance of the Differential Harvest Problem, suppose that we
have an upper bound λ on the number of times the hoppers have to be dumped
into the bin. We note γ the number of dumps used in the differential part (begin-
ning) of the harvest (γ ≤ λ ≤ n) where n is the number of rows in the vine field.
We callR = {0, . . . , n−1} the set of rows. S = R∪{n, . . . , n+γ−1, . . . , n+λ−1}
denotes the set of sites (rows and hopper dumps into the bin).

0 1 2 3 4 5 6 7

8
10

9

3 harvest mixed

1 harvest separated link predecessor/successor

10 bins
row

98

Site 0 1 2 3 4 5 6 7 8 9 10

Predecessor 7 10 0 8 1 9 3 5 2 4 6

Orientation 0 0 1 0 1 0 1 1

Mix 0 0 0 1 0 0 1 0 0 0 1

Fig. 4. The Precedence model.

A Constraint-based Approach to the Differential Harvest Problem 7

Variables For each site i ∈ S we create:

– Pi,Si: are integer variables that represent the direct predecessor (Pi) and
direct successor (Si) of site i. We have D(Pi) = D(Si) = S \ {i};

– Mixi: is a Boolean variable that represents the harvest mode in site i. If
Mixi = 0 the A grapes are separated (differential harvest) otherwise they
are mixed with B grapes. The domain of this variable is: D(Mixi) = {0, 1};

– Ti: is an integer variable that represents the time to travel from Pi to site
i, including the time to harvest row i. D(Ti) = N;

– UA
i , UB

i are integer variables that represent the quantity of A grapes and B
grapes harvested up to site i since the last dump into the bin. The domains
are: D(UAi) = D(UBi) = {0, . . . , 2× Cmax}.

For each row r ∈ R we have:

– Orir: is a Boolean variable that represents the orientation for row r (0 is the
direction from odd to even extremities, as described in Section 2);

– uA
r (resp. uB

r): represents the quantity of grapes of quality A (resp. B)
harvested in row r according to the direction of harvest. D(uAr) = D(uBr) =
N;

Constraints Predecessor variables form a permutation of rows and are subject
to the alldifferent constraint (1).

AllDifferent(P0, . . . , Pn+λ−1) (1)

Constraint (2) is a channelling constraint between predecessor and successor
variables.

PSi
= i SPi

= i ∀i ∈ S (2)

Constraints (3) and (4) force the harvest mode to be differential or mixed ac-
cording to the index of the corresponding hopper dump. Constraint (5) is an
element constraint that communicates the harvest mode between successors:

Mixi = 0 ∀i ∈ {n, . . . , n+ γ − 1} (3)

Mixi = 1 ∀i ∈ {n+ γ, . . . , n+ λ− 1} (4)

Mixr = MixSr
∀r ∈ R (5)

The following constraints give the quantities of grapes according to the orien-
tation of the row. It can be implement as a table constraint or as an if . . . then
. . . else one. ∀r ∈ R, we have :

uAr = Orir ×QA2r→2r+1 + (1−Orir)×QA2r+1→2r (6)

uBr = Orir ×QB2r→2r+1 + (1−Orir)×QB2r+1→2r (7)

Constraint (8) fixes quantities A and B for all sites representing dumps into the
bin. Constraint (9) computes the quantities at the end of row i by adding the

8 Nicolas Briot, Christian Bessiere, and Philippe Vismara

accumulated amount from predecessor Pi and the quantity in row i given by the
precedent constraints.

Uαi = 0 ∀α ∈ {A,B} ∀i ∈ S \ R (8)

Uαi = UαPi
+ uαi ∀α ∈ {A,B} ∀i ∈ R (9)

Harvested quantities are limited by the capacity of hoppers. Variable UAi always
have an upper bound of 2Cmax because A grapes can be put in the two hoppers.
When variable Mixi = 0, harvest is not mixed and quantity of B grapes is bound
by Cmax (10). When variable Mixi = 1, A grapes and B grapes are mixed in the
two hoppers. Constraint (11) checks that the total amount of harvested grapes
is smaller than the capacity of the two hoppers:

UBi ≤ (1 +Mixi)× Cmax ∀i ∈ R (10)

UAi + UBi ≤ 2× Cmax ∀i ∈ R (11)

Constraint (12) requires to harvest at least Rmin A grapes. Only the A grapes
stored in A hopper must be considered. This quantity corresponds to the part of
UAi which is smaller than the capacity of the A hopper. It concerns the differential
harvest mode only, i.e. dumps from n to n+ γ − 1.

n+γ−1∑
i=n

min(UApi , Cmax) ≥ Rmin (12)

It is possible to reformulate constraint (12) without the minimum operator. We
add new variables called Aci ∀i ∈ {n, . . . , n+ γ − 1} such that:

Aci ≤Cmax that is: D(Aci) = {0, . . . , Cmax} (12’a)

Aci ≤UAPi
∀i ∈ {n, . . . , n+ γ − 1} (12’b)

n+γ−1∑
i=n

Aci ≥Rmin (12’c)

Constraint (13) forces the exit from row Pi to be on the same side of the vine
field as the entrance of row i. Hence, Pi and i have inverse orientations. This is
the case in practice with traditional routing.

Orii = 1−OriPi ∀i ∈ R (13)

Next constraints ((14a) and (14b)) require a unique cycle (subtour elimination)
on predecessor variables and successor variables. Figure 5 is an example of fil-
tering for the circuit constraint described in [5, 12].

Circuit(1, (P0, . . . , Pn+λ−1)) (14a)

Circuit(1, (S0, . . . , Sn+λ−1)) (14b)

Constraints (15) force Ti to be equal to the time to travel from Pi to site i,

A Constraint-based Approach to the Differential Harvest Problem 9

1

2 3

4

56 7

1

2 3
4

56 7

(a) (b)

1

2 3

4

56 7

1

2 3

4

56 7

(c) (d)

Fig. 5. An example of circuit constraint propagator on successor variables. Arrows rep-
resent the link (successor) between two variables (circles). (a) is a current instantiation.
(b) filtering prohibits links between variables that represent the end and the start of
a same path (i.e., the value that represents the start of a subpath is removed from
the domain of variables that represent the end of this path). (c) and (d) represent two
possible solutions in this example.

including the time to harvest row i if it is the case. Function d gives the time to
travel between two extremities of rows (or an extremity and the bin) as defined
in Section 2. Note that for two consecutive dumps into the bin (i 6∈ R and
Pi 6∈ R) the travel time is equal to 0 (15b).

if Pr ∈ R then Tr = d(2Pr +OriPr
, 2r + 1−Orir)

else Tr = d(2n, 2r + 1−Orir) ∀r ∈ R (15a)

if Pi ∈ R then Ti = d(2Pi +OriPi
, 2n) else Ti = 0 ∀i ∈ S \ R (15b)

Constraint (16) is the objective function that minimizes the travel time of
the grape harvester:

Minimize

n+λ−1∑
i=0

Ti (16)

Symmetry breaking The main variables of this model are predecessor vari-
ables. They take their values in a set of rows and dumps into the bin. For the set
of dumps in the differential (or mixed) mode, there is a value symmetry caused
by the possibility to interchange the dump indexes. To break this symmetry, we
add an ordering constraint (17a) (resp. (17b)) on the variables that correspond

10 Nicolas Briot, Christian Bessiere, and Philippe Vismara

to the same harvest mode.

Pi < Pi+1 ∀i ∈ {n, . . . , n+ γ − 2} (17a)

Pi < Pi+1 ∀i ∈ {n+ γ, . . . , n+ λ− 2} (17b)

4 Experimental Results

In this section, we present some experimental results. We have implemented the
two models in Choco [13] using the variable ordering strategy DomOverWDeg
[3] limited to the Pi variables. All experiments were executed on a Linux server
with an Intel(R) Xeon(R) CPU E5-2697 2.60GHz processor. It has 14 cores that
makes it possible to solve several instances in parallel but the solver was not
configured to exploit the multicore architecture.

Our models were tested on a real data from an experimental vineyard of
INRA Pech-Rouge (Gruissan) located in southern France (see Figure 6). In this
experiment we want to compute the optimal solution. To test the models on
instances of increasing size, we have extracted subsets of continuous rows from
the 24 rows vine field.

Fig. 6. A vine field with two qualities B grapes in red and A grapes in green.

Table 1 reports results with Step and Precedence models for 10, 12 and 14
rows. Each row in the table reports the average time on 12 instances of the
given size generated from contiguous sequences of rows of the vine field. For
each sequence, we experimented with two capacities of the hoppers (1000 and
2000) and two values for the desired threshold Rmin (50% and 70% of the total
amount of A grapes).

A Constraint-based Approach to the Differential Harvest Problem 11

For the Step model, each instance of the Differential Harvest Problem is split
into a set of more specific sub-instances of the constraint optimization problem.
Each sub-instance is associated with a fixed value k of number of rows harvested
on differential mode. For 10 (resp. 12) rows we varied k from 4 to 8 (resp. 6 to
10). Each set of sub-instances can be solved in parallel. So, Table 1 shows the
maximum time needed to solve a sub-instance of a given set. The total time (for
all sub-instances) corresponds to a single core architecture. Table 1 also gives
the time for the sub-instance which has the optimal solution. With sequences
of 14 rows, at least one sub-instance of each instance is not solved before the
timeout (7200 sec).

Table 1. Comparison of the Step model and the Precedence model. All CPU times
are averages on 12 instances and are given in seconds. Timeout at 7200 seconds.

Step model Precedence model
#

rows
Parallel solving

(maximum time)
Single processor

(total time)
Time for the sub-instance
with the optimal solution

Time

10 262 527 180 8

12 3414 8466 2749 118

14 timeout 8 instances solved

These results show that the Step model is clearly outperformed by the Prece-
dence model. One disadvantage of the Step model is that it has to communicate
the harvested quantities between steps. Hence, as long as the route is undefined,
it is impossible to know if the capacity of hoppers is exceeded and if Rmin
is reached. This hinders propagation. There is another drawback of the Step
model. It assumes a fixed value k for the step on which differential harvest stops
(A grapes and B grapes are mixed from step k to step n). Finding an optimal so-
lution requires to solve several instances of the problem with different values of k.
This can be done in parallel as the problems are independent. But Table 1 shows
that, even with an oracle predicting the value k of the sub-instance containing
the optimal solution of the original instance, the Step model is outperformed by
the Precedence model.

Table 2 shows results for instances of the Precedence model for sequences
of 12, 14 and 16 rows. The first column shows the number of rows in the vine
field. The second column gives the capacity of the hoppers (Cmax) and the third
column gives the desired threshold Rmin. For each size of problem, we give the
average time to solve it and the average number of nodes. Timeout is 7200 sec.
For 16 rows with a Cmax value of 1000 and for any greater number of rows, all
instances exeeded the timeout.

These results indicate fairly high variability in CPU times. Instances with
a small value of Cmax seem to be more difficult to solve. When the threshold
Rmin is equal to 50% of A grapes, CPU time generally increases.

12 Nicolas Briot, Christian Bessiere, and Philippe Vismara

Table 2. Precedence model on 12, 14 and 16 rows.

Rows Cmax Rmin Time (s) # Nodes

12
1000

50% 227 663267
70% 170 667112

2000
50% 35 153300
70% 41 175017

14
1000

50% 2/3 instances solved
70% 0/3 instances solved

2000
50% 52 181262
70% 21 72468

16 2000
50% 856 2835199
70% 106 318246

Table 3 shows results for different configurations of the Precedence model.
All CPU times and node numbers are average on all instances of the same
number of rows. The first two columns correspond to the complete Precedence
model. The next columns give the results for variants of this model: without
symmetry breaking (constraints (17a) and (17b)); with constraint (12) instead
of constraints (12’a), (12’b) and (12’c); and with the default Choco variable
ordering (minDomain) instead of the DomOverWDeg strategy.

Despite a small number of bins, adding constraints to eliminate symmetric
solutions helps a lot to reduce the search effort. It is also the case when con-
straint (12) with the minimum function is replaced by constraints (12’a), (12’b)
and (12’c), or when the default Choco variable ordering is replaced by DomOver-
WDeg.

Table 3. Impact of different configurations for the Precedence model

Precedence
model

without symmetry
breaking constraints

with min
function in (12)

with minDomain
variable ordering

Row Time # Nodes Time # Nodes Time # Nodes Time # Nodes

10 8 41811 17 95363 167 382345 101 1066550

12 118 441674 539 4017780 1042 4824446 776 3582405

5 Discussion

Our experimental results show that the Precedence model is orders of magnitude
faster than the Step model. For small instances (up to 16 rows), the Precedence
model solves the Differential Havest Problem in a reasonable amount of time.
For larger instances, the timeout of 2 hours is generally reached. This amount

A Constraint-based Approach to the Differential Harvest Problem 13

of time has to be compared to the time needed to collect data and to build the
quality and yield map for the vine field. With additional improvements of the
CP model, we can expect to solve larger real instances.

Our results confirm what other studies have reported on similar problems
like the BBSS problem presented in [7]. In that paper, Di Gaspero et al. show
that a Step formulation is outperformed by Routing (similar to Precedence)
formulation for the optimal solution. In a second experiment, they show that
large neighborhood search (LNS) is a good approach to decrease the time to
solve, though the optimal solution can no longer be guaranteed. It could be
interesting to explore that direction.

5.1 Comparison with an ILP formulation

Contrary to our expectations, it was not difficult to express our model of the
Differential Harvesting Problem as a set of linear constraints on integer variables.
Such a problem can be solved with Integer Linear Programming (ILP).

So we have designed an ILP model using the two-index vehicle flow formula-
tion of the Capacited Vehicle Routing Problem (CVRP) introduced by Laporte,
Nobert, and Desrochers [10]. There is one Boolean variable xt:i→j , for each pair
i, j of rows extremities and bin on tour t. Each tour corresponds to a single mode
of harvest (differential or not). xt:i→j is equal to 1 if the harvesting machine goes
from i to j on tour t and 0 otherwise. Constraints on the xt:i→j variables ensure
that each extremity is visited exactly once on all routes. Quantities of grapes
harvested in each tour are expressed by a summation over the traversed rows and
similarly for travel cost (objective function). As in CVRP formulation, there are
constraints on capacity of hoppers according to the tour t. Variables and linear
constraints (12’a), (12’b), and (12’c) on threshold Rmin can directly be added
to the ILP formulation.

Unfortunately, the cycle constraint cannot be added so easily. The basic ILP
approach to forbid sub-tours (cycles that do not pass through the bin) is to post
constraints of the form

∑
i,j∈S xt:i→j < |S| for any subset S of extremities of

rows. The number of such constraints is exponential. Another formulation in-
troduced by Miller, Tucker, and Zemlin (MTZ − formulation [11]) makes the
number of constraints polynomial but its linear relaxation generally produces a
significantly weaker lower bound compared to the basic model [6]. Hence, a typ-
ical approach consists in adding the sub-tour elimination constraints incremen-
tally, as follows: Step 1: find an optimal solution (without sub-tour constraints
at the beginning). Step 2: If the solution does not contain sub-tours, it is an
optimal solution of the problem; Otherwise, new constraints are added to forbid
all the sub-tours in the current solution. Then, proceed to Step 1. In the worst
case, this algorithm has to solve an exponential number of instances with finally
an exponential number of constraints on sub-tours. Thus, each intermediate ILP
loop gives relaxed solutions that contain sub-tours between rows. It is only in
the last ILP step that the reported (optimal) solution does not contain sub-tours
and can be exploited. As a consequence, if we interrupt the ILP solver at a given

14 Nicolas Briot, Christian Bessiere, and Philippe Vismara

timeout limit, it has not yet produced any feasible solution, not even subopti-
mal ones. This is an advantage of the CP model over the ILP model. Any of its
solutions, at any time in the solving process, can be exploited.

We have implemented the ILP model with the Cplex solver [8]. Table 4 shows
a comparison between the Precedence model and the ILP formulation using a
single core. Tests are performed with and without an initial upper bound. This
bound is an estimation of the harvest time using a manual routing based on
a repetitive pattern. This upper bound does not improve the ILP results so
we give only one value for the ILP model. Preliminary experiments show that
the ILP formulation clearly outperforms the CP model for small instances. But
for hard instances (n ≥ 16 and Cmax = 1000), ILP search fails to obtain a
solution before the timeout of 7200 seconds. On hard instances the CP model can
find suboptimal solutions that significantly improve the manual routing solution
whilst ILP provides no solution at all.

Table 4. Comparison between CP model and ILP model for 12, 14, 16 and 24 rows,
Cmax = 1000, Rmin = 70% and timeout of 7200s. In bold, optimal solutions.

rows
upper-bound for CP model ILP model
harvesting time harvesting time CPU time harvesting time CPU time

12
+∞ 960 556s

960 3s
2671 960 496s

14
+∞ 1120 timeout

1112 113s
2436 1116 timeout

16
+∞ 1260 timeout

- timeout
2694 1260 timeout

24
+∞ 1805 timeout

- timeout
2059 1800 timeout

5.2 Complements to the model

Another advantage of the CP model is its ability to integrate new constraints.
The formulation of the problem presented in this paper is a quite simplified
version of the Differential Harvest Problem and it is dedicated to evolve. For
instance, consider the case where the harvesting machine finishes a tour on an
extremity of a row opposite to the bin. If the row is in the middle of the vineyard,
the shortest path to the bin passes through a row. But it is not possible to go
to the bin by passing through a non-harvested row. This can be expressed by
the following rule: the path to the bin, for an extremity which is on the side
opposite to the bin, must pass through a row that precedes the extremity in the
global route. Such a constraint is very difficult to add to the ILP formulation
but can be easily implemented in the CP approach. The propagate procedure
of the circuit constraint already computes the set of rows that precede the last
step of any tour in order to detect subtours. So it is easy to find in this set what

A Constraint-based Approach to the Differential Harvest Problem 15

is the best row to go back to the bin. This can be done without changing the
overall complexity of the propagate procedure.

6 Conclusion

In this paper, we have presented the Differential Harvest Problem in precision
viticulture. We have proposed to use constraint programming to solve it. Two
models have been presented, the Step model and the Precedence model. In the
Step model, variables represent the row that is visited at a given time step and in
which direction the row is traversed. In the Precedence model, variables connect
a row to its predecessor and successor. The experiments we have performed to
assess the behavior of these models show that the Precedence model is orders
of magnitude faster than the Step model. We have also experimentally shown
that an ILP formulation of the Differential Harvest Problem outperforms our
CP approach on easy instances. However, such an ILP formulation requires an
exponential space, and more importantly, fails to produce solutions on hard
instances. All in all, our Precedence model seems to be a good approach. It
allows to solve the problem on real data within reasonable time and it inherits
the flexibility of CP models, that allows the addition of extra user-constraints
in a simple way.

References

1. Dionysis Bochtis and Claus G. Sørensen. The vehicle routing problem in field
logistics: part i. Biosystems engineering, 104:447–457, 2009.

2. Dionysis Bochtis and Claus G. Sørensen. The vehicle routing problem in field
logistics: part ii. Biosystems engineering, 105:180–188, 2010.

3. Frédéric Boussemart, Fred Hemery, Christophe Lecoutre, and Lakhdar Sais. Boost-
ing systematic search by weighting constraints. In Proceedings of the 16th Eureo-
pean Conference on Artificial Intelligence (ECAI’2004), pages 146–150, Valencia,
Spain, 2004.

4. Nicolas Briot, Christian Bessiere, Bruno Tisseyre, and Philippe Vismara. Integra-
tion of operational constraints to optimize differential harvest in viticulture. In
Proc. 10th European Conference on Precision Agriculture, July 2015, to appear.

5. Yves Caseau and François Laburthe. Solving small TSPs with constraints. In
Lee Naish, editor, Logic Programming, Proceedings of the Fourteenth International
Conference on Logic Programming, Leuven, Belgium, July 8-11, 1997, pages 316–
330. MIT Press, 1997.

6. Martin Desrochers and Gilbert Laporte. Improvements and extensions to the
miller-tucker-zemlin subtour elimination constraints. Operations Research Letters,
10(1):27–36, 1991.

7. Luca Di Gaspero, Andrea Rendl, and Tommaso Urli. Constraint-based approaches
for balancing bike sharing systems. In Principles and Practice of Constraint Pro-
gramming - 19th International Conference, CP 2013, Uppsala, Sweden, September
16-20, 2013. Proceedings, pages 758–773, 2013.

8. IBM ILOG. Cplex. http://www-01.ibm.com/software/integration/

optimization/cplex-optimizer/, (accessed April, 2015).

16 Nicolas Briot, Christian Bessiere, and Philippe Vismara

9. Philip Kilby and Paul Shaw. Vehicle routing. In Francesca Rossi, Peter Van Beek,
and Toby Walsh, editors, Handbook of constraint programming, chapter 23, pages
799, 834. Elsevier, 2006.

10. Gilbert Laporte, Yves Nobert, and Martin Desrochers. Optimal routing under
capacity and distance restrictions. Operations research, 33(5):1050–1073, 1985.

11. Clair E Miller, Albert W Tucker, and Richard A Zemlin. Integer programming for-
mulation of traveling salesman problems. Journal of the ACM (JACM), 7(4):326–
329, 1960.

12. Gilles Pesant, Michel Gendreau, Jean-Yves Potvin, and Jean-Marc Rousseau. An
exact constraint logic programming algorithm for the traveling salesman problem
with time windows. Transportation Science, 32(1):12–29, 1998.

13. Charles Prud’homme, Jean-Guillaume Fages, and Xavier Lorca. Choco3 Docu-
mentation. TASC, INRIA Rennes, LINA CNRS UMR 6241, COSLING S.A.S.,
2014.

14. Bruno Tisseyre, Hernan Ojeda, and James Taylor. New technologies and method-
ologies for site-specific viticulture. Journal International des Sciences de la Vigne
et du Vin, 41:63–76, 2007.

